## **Supplementary Information**

## **Engineering Molecular Crystals with Abnormally Weak Cohesion**

Kenneth E. Maly,<sup>†\*</sup> Eric Gagnon<sup>‡</sup> and James D. Wuest<sup>‡</sup>

<sup>†</sup>Department of Chemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 Canada <sup>‡</sup>Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7 Canada

Contents

## Page

| I.    | Experimental Methods                                                                                                                               | S2         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| II.   | <b>Figure S1.</b> Representative thermogravimetric plots showing the rate of sublimation of hexaphenylbenzene <b>1a</b> at different temperatures. | <b>S</b> 3 |
| III.  | <b>Figure S2.</b> Representative thermogravimetric plots showing the rate of sublimation of hexaphenylbenzene <b>1b</b> at different temperatures. | S4         |
| IV.   | <b>Figure S3.</b> Representative thermogravimetric plots showing the rate of sublimation of hexaphenylbenzene <b>1c</b> at different temperatures. | S5         |
| V.    | <b>Table S1.</b> Rates of Sublimation of Hexaphenylbenzenes 1a-c atDifferent Temperatures.                                                         | S6         |
| VI.   | <b>Table S2.</b> Vapor Pressure and Rate of Sublimation forTetraphenylporphyrin 2a at Different Temperatures.                                      | S6         |
| VII.  | <b>Figure S4.</b> Plot of $\ln P$ versus $\ln (dm/dt)$ for tetraphenylporphyrin <b>2a</b> .                                                        | S7         |
| VIII. | <b>Figure S5.</b> Arrhenius plots of the rates of sublimation versus $1/T$ for hexaphenylbenzenes <b>1a-c.</b>                                     | <b>S</b> 8 |

\*To whom correspondence should be addressed. E-mail: kmaly@wlu.ca

## **Experimental Methods**

Hexaphenylbenzenes **1a-c** were prepared and crystallized by methods reported previously.<sup>1</sup> Tetraphenylporphyrin **2a** was prepared according to a published procedure and recrystallized from CHCl<sub>3</sub>/CH<sub>3</sub>OH before use.<sup>2</sup> Isothermal thermogravimetry was carried out with a TA Instruments Q50 apparatus, using a dynamic atmosphere of  $N_2$  introduced at a rate of 60 mL/min.

<sup>&</sup>lt;sup>1</sup> J. C. J. Bart, *Acta Crystallogr.* 1968, **B24**, 1277-1287; M. Lutz, A. L. Spek, S. Bonnet, R. J. M. Klein Gebbink and G. van Koten, as communicated in 2006 to the Cambridge Crystallographic Data Centre (CCDC 609800, Refcode: HPHBNZ03); E. Gagnon, S. D. Halperin, V. Métivaud, K. E. Maly and J. D. Wuest, *J. Org. Chem.* 2010, **75**, 399-406.

<sup>&</sup>lt;sup>2</sup> A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, *J. Org. Chem.* 1967, **32**, 476.



Figure S1. Representative thermogravimetric plots showing the rate of sublimation of hexaphenylbenzene 1a at different temperatures.



**Figure S2.** Representative thermogravimetric plots showing the rate of sublimation of hexaphenylbenzene **1b** at different temperatures.



**Figure S3.** Representative thermogravimetric plots showing the rate of sublimation of hexaphenylbenzene **1c** at different temperatures.

|                  | Rates of Sublimation (mg/min) |        |        |
|------------------|-------------------------------|--------|--------|
| Temperature (K)  | <b>1</b> a                    | 1b     | 1c     |
|                  |                               |        |        |
| 573              | 0.0502                        | 0.1115 | 0.2698 |
| 583              | 0.0987                        | 0.2184 | 0.4474 |
| 593              | 0.1603                        | 0.3588 | 0.7157 |
| 603              | 0.2997                        | 0.5533 | 1.0083 |
| 613              | 0.4348                        | 0.8293 | 1.7029 |
| 623              | 0.7373                        | 1.141  | 2.3236 |
| 633 <sup>a</sup> | 1.0498                        | -      | -      |
| 643 <sup>a</sup> | 1.4961                        | -      | -      |

**Table S1.** Rates of Sublimation of Hexaphenylbenzenes **1a-c** at Different Temperatures.

<sup>a</sup>Rates for compounds **1b-c** were too high at these temperatures to be measured reliably.

**Table S2.** Vapor Pressure and Rate of Sublimation for Tetraphenylporphyrin 2a at DifferentTemperatures.

| Temperature (K) | Vapor Pressure $(10^2 \text{ Pa})^a$ | <i>dm/dt</i> (mg/min) |
|-----------------|--------------------------------------|-----------------------|
|                 |                                      |                       |
| 593             | 4.35                                 | 0.0004818             |
| 603             | 10.8                                 | 0.0008556             |
| 613             | 28.3                                 | 0.00138               |
| 623             | 59.3                                 | 0.00248               |
| 633             | 138                                  | 0.00482               |
| 643             | 222                                  | 0.00769               |
| 653             | 361                                  | 0.01417               |
|                 |                                      |                       |

<sup>a</sup>Vapor pressure data obtained from: G. L. Perlovich, O. A. Golubchikov and M. E. Klueva, J.

Porphyrins Phthalocyanines 2000, 4, 699-706.



Figure S4. Plot of  $\ln P$  versus  $\ln (dm/dt)$  for tetraphenylporphyrin 2a.



Figure S5. Arrhenius plots of the rates of sublimation versus 1/T for hexaphenylbenzenes 1a-c.