Electronic supplementary information (ESI)

Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property

Shui-Sheng Chen,^{*a,c*} Min Chen,^{*a*} Satoshi Takamizawa,^{*b*} Peng Wang,^{*a*} Gao-Chao Lv^{*a*} and Wei-Yin Sun*^{*a*}

^a Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.

E-mail: sunwy@nju.edu.cn; Fax: +86 25 83314502

- ^b Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
- ^c School of Chemistry and Chemical Engineering, Fuyang Teachers College, Fuyang 236041, China

Materials and methods. All commercially available chemicals are of reagent grade and were used as received without further purification. The ligand H₃L was prepared according to the reported procedure.^{S1} Elemental analyses of C, H and N were taken on a Perkin-Elmer 240C elemental analyzer at the analysis center of Nanjing University. Infrared spectra (IR) were recorded on a Bruker Vector22 FT-IR spectrophotometer by using KBr pellets. Thermogravimetric analyses (TGA) were performed on a simultaneous SDT 2960 thermal analyzer under nitrogen with a heating rate of 10 °C min⁻¹. Powder X-ray diffraction (PXRD) patterns were measured on a Shimadzu XRD-6000 X-ray diffractometer with Cu K*a* ($\lambda = 1.5418$ Å) radiation at room temperature. Carbon dioxide (CO₂) and nitrogen (N₂) sorption experiments were carried out on a Belsorp-max volumetric gas sorption instrument and methane (CH_4) and hydrogen (H_2) sorption experiments were performed on Quantachrome Autosorb-1MP.

X-ray crystallography. The crystallographic data collections for **1** and **2** were carried out on a Bruker Smart Apex CCD area-detector diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 293(2) K using ω -scan technique. The diffraction data were integrated by using the *SAINT* program,^{S2} which was also used for the intensity corrections for the Lorentz and polarization effects. Semi-empirical absorption correction was applied using the *SADABS* program.^{S3} The structures were solved by direct methods and all the non-hydrogen atoms were refined anisotropically on F^2 by the full-matrix least-squares technique using the SHELXL-97 crystallographic software package.^{S4}

Reference:

- S1 (a) M. P. Castaldi, S. E. Gibson, M. Rudd and A. J. P. White, *Chem. -Eur. J.* 2006, 12, 138;
 (b) R. ten Have, M. Huisman, A. Meetsma and A. M. van Leusen, *Tetrahedron*, 1997, 53, 11355.
- S2 SAINT, version 6.2; Bruker AXS, Inc., Madison, WI, 2001.
- S3 Sheldrick, G. M. SADABS, University of Göttingen, Göttingen, Germany.
- S4 Sheldrick, G. M. SHELXTL, version 6.10; Bruker Analytical X-ray Systems, Madison, WI, 2001.

	1	2
Empirical formula	$C_{18}H_{19}N_7O_2Co$	C ₁₅ H ₁₄ N ₆ O ₂ Co
Formula weight	424.33	369.25
Temperature / K	293(2)	293(2)
Crystal system	Monoclinic	Tetragonal
Space group	$P2_1/c$	$I4_1/a$
<i>a</i> /Å	11.6486(14)	23.3452(10)
b/Å	17.609(2)	23.3452(10)
c /Å	10.5835(13)	14.9359(13)
eta /°	110.272(2)	90.00
$V(\text{\AA}^3)$	2036.4(4)	8140.0(9)
Ζ	4	16
Dcalc / (g cm ⁻³)	1.384	1.205
<i>F</i> (000)	876	3024
θ range /°	1.86 - 25.01	2.38 - 25.59
Reflections collected	9952	20908
Independent reflections	3583	3820
Goodness-of-fit on F^2	1.063	1.113
$R_1 \left[I > 2\sigma \left(I \right) \right]^{\rm a}$	0.0527	0.0568
$wR_2 \left[I > 2\sigma \left(I\right)\right]^{\mathrm{b}}$	0.1529	0.1614
^{<i>a</i>} $R_1 = \Sigma F_0 - F_c / \Sigma F_0 .$	$^{b} wR_{2} = \Sigma w(F_{o} ^{2} - F_{c} ^{2})$	$ \Sigma w(F_0)^2 ^{1/2}$, where $w = 1/[\sigma^2(F_0^2)]$

	a	â		
Table S1	Crystal data and	structure refinement	ts for compl	exes 1 and 2

 $+(aP)^2+bP$]. $P = (F_o^2 + 2F_c^2)/3.$

Table S2Selected bond lengths (Å) and bond angles (°) for complexes 1 and 2

1			
Co(1)-N(1)	2.016(3)	Co(1)-N(5)#1	1.988(3)
Co(1)-N(6)#2	1.993(3)	Co(1)-N(3)#3	2.002(3)
N(5)#1-Co(1)-N(6)#2	113.15(12)	N(5)#1-Co(1)-N(3)#3	111.93(12)
N(6)#2-Co(1)-N(3)#3	112.54(12)	N(5)#1-Co(1)-N(1)	108.30(12)
N(6)#2-Co(1)-N(1)	106.91(12)	N(3)#3-Co(1)-N(1)	103.32(11)
2			
Co(1)-N(1)#4	1.976(3)	Co(1)-N(3)#5	1.979(3)
Co(1)-N(2)	1.988(3)	Co(1)-N(5)#6	2.010(3)
N(1)#4-Co(1)-N(3)#5	109.49(12)	N(1)#4-Co(1)-N(2)	115.50(13)
N(3)#5-Co(1)-N(2)	113.30(14)	N(1)#4-Co(1)-N(5)#6	107.91(13)
N(3)#5-Co(1)-N(5)#6	110.78(13)	N(2)-Co(1)-N(5)#6	99.30(13)

Symmetry transformations used to generate equivalent atoms: #1 x+1, y, z, #2 x+1, -y+1/2, z+1/2, #3 -x+1, y-1/2, -z+3/2, #4 -y+3/4, x+1/4, z+1/4, #5 -x+1/2, -y+3/2, -z+1/2, #6 -x+1/2, -y+1, z-1/2.

Scheme S1. Schematic structures of tib and H₃L.

Figure S1. 2D network of 1 formed by two of three imidazole groups of $(HL)^{2-}$ coordinating

with Co(II) atoms.

Figure S2. (a) 3D structure of 1 constructed from the 2D networks (in color) pillared by the third imidazole group (yellow). (b) The space filling view of the 1D channels along *a* axis in 1.

Figure S3. Schematic representation of the zeolite **BCT** topology of **1**, pink balls represent the Co(II) atoms and turquoise balls represent the centers of benzene ring plane of $(HL)^{2-}$.

Figure S4. (a) The helical tubes in **2** represented by central phenyl rings and imidazole groups together with Co(II) atoms. (b) The 4₁ helixes in **2**.

Figure S5. The space filling views of 3D channels of 2 along *a*, *b*, *c* axes respectively.

Figure S6. Schematic representation of the ecl/I topology of 2, pink balls represent the Co(II) atoms and turquoise balls represent the centers of benzene ring plane of $(HL)^{2-}$.

Figure S7. The TGA curves of 1, 1' and 2.

Figure S8. IR spectra of 1 and 1'.

Figure S9. The PXRD patterns of 1: a - simulated; b - as-synthesized; c - desolvated solid1' obtained by heating 1 at 210 °C under vacuum for 24 h.

Figure S10. The PXRD patterns of **2**: a - simulated; b - as-synthesized; c - desolvated solid **2'** obtained by heating **2** at 160 °C under vacuum for 24 h.

Figure S11. N₂ gas adsorption isotherms of 1': (\blacktriangle) at 298 K, (\blacksquare) at 273 K. Filled shape: adsorption; open shape: desorption.

Figure S12. CO_2 adsorption enthalpy for **2'** calculated from the CO_2 adsorption isotherms at

273 and 298 K.

Figure S13. H_2 adsorption enthalpy for 2' calculated from the H_2 adsorption isotherms at 77 and 87 K.

Analysis of Gas Sorption Isotherms:

The methods are applied to deal with the sorption data according to the literature 15 (*J. Am. Chem. Soc.* 2005, **127**, 9367). The Langmuir-Freundlich equation is used to fit CO_2 and H_2 adsorption isotherms and predict the adsorption capacity of the framework at saturation, and Clausius-Clapeyron equation is employed to calculation the enthalpies of CO_2 and H_2

adsorption.

$$In\left(\frac{P_1}{P_2}\right) = \Delta H_{ads} \times \frac{T_2 - T_1}{RT_1T_2} \tag{6}$$

Where P_i = pressure for isotherm *i* T_i = temperature for isotherm *i* R = 8.315 J / (K·mol)

The equation (I) can be applied to calculate the enthalpy of adsorption of a gas as a function of the quantity of gas adsorbed. Pressure as a function of the amount of gas adsorbed was determined using the Langmuir-Freundlich fit for the isotherms.

$$\frac{Q}{Qm} = \frac{BP^{(1/t)}}{1 + BP^{(1/t)}}$$
(II)

where Q = moles adsorbed $Q_{\rm m}$ = moles adsorbed at saturation P = pressure B and t are constants

Rearrange (II) to get:

$$P = \left(\frac{Q/Q_m}{B - BQ/Q_m}\right)^t$$
(III)

Replace P in equation (I) to obtain:

$$\Delta H_{ads} = \frac{RT_{1}T_{2}}{T_{2} - T_{1}} \times In \frac{\left(\frac{Q/Q_{m1}}{B_{1} - B_{1}Q/Q_{m1}}\right)^{t}}{\left(\frac{Q/Q_{m2}}{B_{2} - B_{2}Q/Q_{m2}}\right)^{t}}$$
(IV)

1. Dealing with the carbon dioxide adsorption data in details for 2':

(1) Fitting CO₂ adsorption isotherms using the Langmuir-Freundlich equation.

(2) Building the relationship between $\ln P$ and the quantity of CO₂ adsorbed for the two isotherms by calculating.

(3) Calculating the $\triangle H_{ads}$ using the equation IV.

2. Calculation of CO₂/N₂ selectivity

The methods are applied to estimate the CO_2/N_2 selectivity according to the literature 17a (*J. Am. Chem. Soc.*, 2010, **132**, 38). The ratios of these initial slopes of the CO_2 and N_2 adsorption isotherms were applied to estimate the adsorption selectivity for CO_2 over N_2 .

Figure S14. The fitting initial slope for CO_2 and N_2 isotherms collected at 273 K (CO_2 : red squares; N_2 : blue triangles).

Figure S15. The fitting initial slope for CO₂ and N₂ isotherms collected at 298 K (CO₂: red squares; N₂: blue triangles).

3. Dealing with the hydrogen adsorption data in details:

(1) Fitting H₂ adsorption isotherms using the Langmuir-Freundlich equation.

(2) Building the relationship between lnP and the quantity of hydrogen adsorbed for the two isotherms by calculating.

(3) Calculating the $\triangle H_{ads}$ using the equation IV.

