Electronic supplementary information (ESI)

Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property

Shui-Sheng Chen,,${ }^{a, c}$ Min Chen,,${ }^{a}$ Satoshi Takamizawa, ${ }^{b}$ Peng Wang, ${ }^{a}$ Gao-Chao Lv ${ }^{a}$ and Wei-Yin Sun* ${ }^{a}$
${ }^{a}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.
E-mail: sunwy@nju.edu.cn; Fax: +86 2583314502
${ }^{b}$ Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
${ }^{c}$ School of Chemistry and Chemical Engineering, Fuyang Teachers College, Fuyang 236041, China

Materials and methods. All commercially available chemicals are of reagent grade and were used as received without further purification. The ligand $\mathrm{H}_{3} \mathrm{~L}$ was prepared according to the reported procedure. ${ }^{\text {S1 }}$ Elemental analyses of C, H and N were taken on a Perkin-Elmer 240C elemental analyzer at the analysis center of Nanjing University. Infrared spectra (IR) were recorded on a Bruker Vector22 FT-IR spectrophotometer by using KBr pellets. Thermogravimetric analyses (TGA) were performed on a simultaneous SDT 2960 thermal analyzer under nitrogen with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Powder X-ray diffraction (PXRD) patterns were measured on a Shimadzu XRD-6000 X-ray diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ ($\lambda=1.5418 \AA$) radiation at room temperature. Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and nitrogen $\left(\mathrm{N}_{2}\right)$ sorption experiments were carried out on a Belsorp-max volumetric gas sorption instrument
and methane $\left(\mathrm{CH}_{4}\right)$ and hydrogen $\left(\mathrm{H}_{2}\right)$ sorption experiments were performed on Quantachrome Autosorb-1MP.

X-ray crystallography. The crystallographic data collections for $\mathbf{1}$ and $\mathbf{2}$ were carried out on a Bruker Smart Apex CCD area-detector diffractometer with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$) at 293(2) K using ω-scan technique. The diffraction data were integrated by using the $S A I N T$ program, ${ }^{\text {S2 }}$ which was also used for the intensity corrections for the Lorentz and polarization effects. Semi-empirical absorption correction was applied using the SADABS program. ${ }^{\text {S3 }}$ The structures were solved by direct methods and all the non-hydrogen atoms were refined anisotropically on F^{2} by the full-matrix least-squares technique using the SHELXL-97 crystallographic software package. ${ }^{\text {S4 }}$

Reference:

S1 (a) M. P. Castaldi, S. E. Gibson, M. Rudd and A. J. P. White, Chem. -Eur. J. 2006, 12, 138;
(b) R. ten Have, M. Huisman, A. Meetsma and A. M. van Leusen, Tetrahedron, 1997, 53, 11355.

S2 SAINT, version 6.2; Bruker AXS, Inc., Madison, WI, 2001.
S3 Sheldrick, G. M. SADABS, University of Göttingen, Göttingen, Germany.
S4 Sheldrick, G. M. SHELXTL, version 6.10; Bruker Analytical X-ray Systems, Madison, WI, 2001.

Table S1 Crystal data and structure refinements for complexes $\mathbf{1}$ and $\mathbf{2}$

	$\mathbf{1}$	$\mathbf{2}$
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{Co}$	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Co}$
Formula weight	424.33	369.25
Temperature $/ \mathrm{K}$	$293(2)$	$293(2)$
Crystal system	Monoclinic	Tetragonal
Space group	$P 2_{1} / \mathrm{c}$	$I 4_{1} / \mathrm{a}$
a / \AA	$11.6486(14)$	$23.3452(10)$
b / \AA	$17.609(2)$	$23.3452(10)$
c / \AA	$10.5835(13)$	$14.9359(13)$
$\beta /^{\circ}$	$110.272(2)$	90.00
$V\left(\AA^{3}\right)$	$2036.4(4)$	$8140.0(9)$
Z	4	16
Dcalc $/\left(\mathrm{g}\right.$ cm $\left.{ }^{-3}\right)$	1.384	1.205
$F(000)$	876	3024
θ range $/{ }^{\circ}$	$1.86-25.01$	$2.38-25.59$
Reflections collected	9952	20908
Independent reflections	3583	3820
Goodness-of-fit on F^{2}	1.063	1.113
$R_{1}[I>2 \sigma(I)]^{\mathrm{a}}$	0.0527	0.0568
$w R_{2}[I>2 \sigma(I)]^{\mathrm{b}}$	0.1529	0.1614
$a R_{1}=\left.\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c} \mid}\right\| / \Sigma\right\| F_{\mathrm{o}}\right\|^{b}{ }^{b} w R_{2}=\left\|\Sigma w\left(\left\|F_{\mathrm{o}}\right\|^{2}-\mid F_{\mathrm{c}}{ }^{2}\right)\right\| / \Sigma\left\|w\left(F_{\mathrm{o}}\right)^{2}\right\|^{1 / 2}$, where $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)\right.$		
$\left.+(a P)^{2}+b P\right]$.	$\mathrm{P}=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$.	

Table S2 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for complexes $\mathbf{1}$ and $\mathbf{2}$
1

$\mathrm{Co}(1)-\mathrm{N}(1)$	$2.016(3)$	$\mathrm{Co}(1)-\mathrm{N}(5) \# 1$	$1.988(3)$
$\mathrm{Co}(1)-\mathrm{N}(6) \# 2$	$1.993(3)$	$\mathrm{Co}(1)-\mathrm{N}(3) \# 3$	$2.002(3)$
$\mathrm{N}(5) \# 1-\mathrm{Co}(1)-\mathrm{N}(6) \# 2$	$113.15(12)$	$\mathrm{N}(5) \# 1-\mathrm{Co}(1)-\mathrm{N}(3) \# 3$	$111.93(12)$
$\mathrm{N}(6) \# 2-\mathrm{Co}(1)-\mathrm{N}(3) \# 3$	$112.54(12)$	$\mathrm{N}(5) \# 1-\mathrm{Co}(1)-\mathrm{N}(1)$	$108.30(12)$
$\mathrm{N}(6) \# 2-\mathrm{Co}(1)-\mathrm{N}(1)$	$106.91(12)$	$\mathrm{N}(3) \# 3-\mathrm{Co}(1)-\mathrm{N}(1)$	$103.32(11)$

2

$\mathrm{Co}(1)-\mathrm{N}(1) \# 4$	$1.976(3)$	$\mathrm{Co}(1)-\mathrm{N}(3) \# 5$	$1.979(3)$
$\mathrm{Co}(1)-\mathrm{N}(2)$	$1.988(3)$	$\mathrm{Co}(1)-\mathrm{N}(5) \# 6$	$2.010(3)$
$\mathrm{N}(1) \# 4-\mathrm{Co}(1)-\mathrm{N}(3) \# 5$	$109.49(12)$	$\mathrm{N}(1) \# 4-\mathrm{Co}(1)-\mathrm{N}(2)$	$115.50(13)$
$\mathrm{N}(3) \# 5-\mathrm{Co}(1)-\mathrm{N}(2)$	$113.30(14)$	$\mathrm{N}(1) \# 4-\mathrm{Co}(1)-\mathrm{N}(5) \# 6$	$107.91(13)$
$\mathrm{N}(3) \# 5-\mathrm{Co}(1)-\mathrm{N}(5) \# 6$	$110.78(13)$	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(5) \# 6$	$99.30(13)$

Symmetry transformations used to generate equivalent atoms: $\# 1 \mathrm{x}+1, \mathrm{y}, \mathrm{z}, \# 2 \mathrm{x}+1,-\mathrm{y}+1 / 2$, $\mathrm{z}+1 / 2, \# 3-x+1, y-1 / 2,-z+3 / 2, \# 4-y+3 / 4, x+1 / 4, z+1 / 4, \# 5-x+1 / 2,-y+3 / 2,-z+1 / 2, \# 6-x+1 / 2$, $-\mathrm{y}+1, \mathrm{z}-1 / 2$.

tib

$\mathbf{H}_{3} \mathrm{~L}$

Scheme S1. Schematic structures of tib and $\mathrm{H}_{3} \mathrm{~L}$.

Figure S1. 2D network of $\mathbf{1}$ formed by two of three imidazole groups of $(\mathrm{HL})^{2-}$ coordinating with $\mathrm{Co}(\mathrm{II})$ atoms.

(a)

(b)

Figure S2. (a) 3D structure of $\mathbf{1}$ constructed from the 2D networks (in color) pillared by the third imidazole group (yellow). (b) The space filling view of the 1D channels along a axis in 1.

Figure S3. Schematic representation of the zeolite BCT topology of 1, pink balls represent the $\mathrm{Co}(\mathrm{II})$ atoms and turquoise balls represent the centers of benzene ring plane of $(\mathrm{HL})^{2-}$.

(a)

(b)

Figure S4. (a) The helical tubes in 2 represented by central phenyl rings and imidazole groups together with $\mathrm{Co}(\mathrm{II})$ atoms. (b) The 4_{1} helixes in 2 .

Figure S5. The space filling views of 3D channels of $\mathbf{2}$ along a, b, c axes respectively.

Figure S6. Schematic representation of the ecl/I topology of 2, pink balls represent the $\mathrm{Co}(\mathrm{II})$ atoms and turquoise balls represent the centers of benzene ring plane of $(\mathrm{HL})^{2-}$.

Figure S7. The TGA curves of $\mathbf{1 , 1} \mathbf{1}^{\prime}$ and $\mathbf{2}$.

Figure S8. IR spectra of $\mathbf{1}$ and $\mathbf{1}^{\prime}$.

Figure S9. The PXRD patterns of 1: a - simulated; b-as-synthesized; c - desolvated solid $\mathbf{1}^{\prime}$ obtained by heating $\mathbf{1}$ at $210^{\circ} \mathrm{C}$ under vacuum for 24 h .

Figure S10. The PXRD patterns of 2: a - simulated; b-as-synthesized; c - desolvated solid 2^{\prime} obtained by heating 2 at $160^{\circ} \mathrm{C}$ under vacuum for 24 h .

Figure S11. N_{2} gas adsorption isotherms of $\mathbf{1}^{\prime}:(\mathbf{(})$ at $298 \mathrm{~K},(\mathbf{\square})$ at 273 K . Filled shape: adsorption; open shape: desorption.

Figure S12. CO_{2} adsorption enthalpy for $\mathbf{2}^{\prime}$ calculated from the CO_{2} adsorption isotherms at 273 and 298 K .

Figure S13. H_{2} adsorption enthalpy for $\mathbf{2}^{\prime}$ calculated from the H_{2} adsorption isotherms at 77 and 87 K .

Analysis of Gas Sorption Isotherms:

The methods are applied to deal with the sorption data according to the literature 15 (J. Am. Chem. Soc. 2005, 127, 9367). The Langmuir-Freundlich equation is used to fit CO_{2} and H_{2} adsorption isotherms and predict the adsorption capacity of the framework at saturation, and Clausius-Clapeyron equation is employed to calculation the enthalpies of CO_{2} and H_{2}
adsorption.

$$
\begin{equation*}
\operatorname{In}\left(\frac{P_{1}}{P_{2}}\right)=\Delta H_{a d s} \times \frac{T_{2}-T_{1}}{R T_{1} T_{2}} \tag{I}
\end{equation*}
$$

Where $\mathrm{P}_{i}=$ pressure for isotherm i
$\mathrm{T}_{i}=$ temperature for isotherm i
$\mathrm{R}=8.315 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{mol})$
The equation (I) can be applied to calculate the enthalpy of adsorption of a gas as a function of the quantity of gas adsorbed. Pressure as a function of the amount of gas adsorbed was determined using the Langmuir-Freundlich fit for the isotherms.
$\frac{Q}{Q m}=\frac{B P^{(1 / t)}}{1+B P^{(1 / t)}}$
where $Q=$ moles adsorbed
$Q_{\mathrm{m}}=$ moles adsorbed at saturation
$P=$ pressure
B and t are constants
Rearrange (II) to get:
$P=\left(\frac{Q / Q_{m}}{B-B Q / Q_{m}}\right)^{t}$
Replace P in equation (I) to obtain:
$\Delta H_{a d s}=\frac{R T_{1} T_{2}}{T_{2}-T_{1}} \times \operatorname{In} \frac{\left(\frac{Q / Q_{m 1}}{B_{1}-B_{1} Q / Q_{m 1}}\right)^{t}}{\left(\frac{Q / Q_{m 2}}{B_{2}-B_{2} Q / Q_{m 2}}\right)^{t}}$

1. Dealing with the carbon dioxide adsorption data in details for 2':

(1) Fitting CO_{2} adsorption isotherms using the Langmuir-Freundlich equation.

(2) Building the relationship between $\ln P$ and the quantity of CO_{2} adsorbed for the two isotherms by calculating.

(3) Calculating the $\triangle H_{\text {ads }}$ using the equation IV.

2. Calculation of $\mathrm{CO}_{2} / \mathrm{N}_{2}$ selectivity

The methods are applied to estimate the $\mathrm{CO}_{2} / \mathrm{N}_{2}$ selectivity according to the literature 17 a (J. Am. Chem. Soc., 2010, 132, 38). The ratios of these initial slopes of the CO_{2} and N_{2} adsorption isotherms were applied to estimate the adsorption selectivity for CO_{2} over N_{2}.

Figure S14. The fitting initial slope for CO_{2} and N_{2} isotherms collected at $273 \mathrm{~K}\left(\mathrm{CO}_{2}\right.$: red squares; N_{2} : blue triangles).

Figure S15. The fitting initial slope for CO_{2} and N_{2} isotherms collected at $298 \mathrm{~K}\left(\mathrm{CO}_{2}\right.$: red squares; N_{2} : blue triangles).

3. Dealing with the hydrogen adsorption data in details:

(1) Fitting H_{2} adsorption isotherms using the Langmuir-Freundlich equation.

(2) Building the relationship between $\ln P$ and the quantity of hydrogen adsorbed for the two isotherms by calculating.

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011
(3) Calculating the $\triangle H_{\text {ads }}$ using the equation IV.

