Supporting information

Lewis Acid – Catalyzed Formal [3+2] Cycloadditions of N-Tosylaziridines with Electron-rich Alkenes via Selective Carbon-Carbon Bond Cleavage

Lei Li,¹ Xingxing Wu¹ and Junliang Zhang*^{1,2}

¹Shanghai Key Laboratory of Green Chemistry and Chemical Processes,

Department of Chemistry, East China Normal University, 3663 N. Zhongshan

Road, Shanghai 200062 Fax:(+86)-021-6223-5039; e-mail : jlzhang@chem.ecnu.edu.cn

General information.

Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. ¹H NMR spectra, ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d₃. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration). All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. ClCH₂CH₂Cl (DCE) and CH₂Cl₂ (DCM) were freshly distilled from CaH₂; toluene was freshly distilled prior to use.

	$\frac{Ts}{Ph} CO_2Me}{CO_2Me} + \frac{1}{1a}$	Cat. (5 mol Cat. (5 mol 4 Å MS, Solv rt	Phin CC vent 2a	₂Me ⊃₂Me
Entry	Catalyst	Solvent	Time (h)	$\operatorname{Yield}^{b}(\%)$
1	Mg(OTf) ₂	DCM	1	0
2	Yb(OTf) ₃	DCM	1	72
3	$Sc(OTf)_3$	DCM	1	68
4	$Sn(OTf)_2$	DCM	3	49
5	Fe(OTf) ₃	DCM	3	31
6	$Ni(ClO_4)_2 6H_2O$	DCM	1	78
7	In(OTf) ₃	DCM	1	67
8	$Y(OTf)_3$	DCM	1	81
9	$Y(OTf)_3$	DCE	1	73
10	Y(OTf) ₃	toluene	1	70
11^{c}	ZnCl ₂	DCM	3	47
^{<i>a</i>} All reaction	ons were performed with	h 0.4 mmol of 1 a	a, 3,4-dihydro-21	<i>H</i> -pyran (2 eq.) and

Table 1. C	Optimization	of the	reaction	conditions. ^a

^{*a*} All reactions were performed with 0.4 mmol of **1a**, 3,4-dihydro-2*H*-pyran (2 eq.) and 5 mol % of catalyst, 4 Å molecular sieves (200 mg) in 4 mL of solvent at rt. ^{*b*} Isolated yield and *d*. *r*.>20:1 ^{*c*} 10 mol% of catalyst.

Synthesis of aziridine:

Aziridines were prepared according to the literature (Fan, R.; Ye, Y. *Adv. Synth. Catal.* **2008**, *350*, 1526-1530).

1. (4aR*,5R*,7aS*)-dimethyl 5-phenyl-6-tosylhexahydropyrano[3,2c]pyrrole-7,7(7aH)-dicarboxylate (2a).

The reaction of aziridine **1a** (155.7 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % of Y(OTf)₃(10.7 mg, 0.02 mmol) in DCM(4 mL) was carried out at r.t. for 1 h to afford 153.6 mg of **2a** in 81% yield, white solid. m.p. 186-188 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 8.0 Hz, 2 H), 7.02-7.12 (m, 3 H), 6.96 (d, *J* = 8.0 Hz, 2 H), 6.87 (d, *J* = 6.8 Hz, 2 H), 5.38 (d, *J* = 8.8 Hz, 1 H), 3.97-4.06 (m, 1 H), 3.95(s, 6 H), 3.83(d, *J* = 11.6 Hz, 1 H), 3.29 (t, *J* = 12.0 Hz, 1 H), 2.72-2.83 (m, 1 H), 2.27(s, 3 H), 1.75 (d, *J* = 12.4 Hz, 1 H), 1.52-1.68 (m, 1 H), 1.44 (d, *J* = 13.6 Hz, 1 H), 0.53- 0.68 (m, 1 H), ¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 166.9, 142.9, 137.1, 136.9, 128.3, 128.1, 127.9, 127.0, 126.5, 83.9, 75.3, 69.1, 64.9, 53.5, 43.2, 25.0, 24.6, 21.3 ppm. IR (neat) *v*/cm⁻¹ : 3028, 2953, 2923, 2855, 1756,1731, 1599, 1456, 1436, 1344, 1236, 1057, 959, 913. MS (EI, 70 eV) m/z (%): 473 [M⁺] (0.02), 91 (100); HRMS calcd for C₂₄H₂₇NO₇S: 473.1508, found:473.1509.

2. (4aR*,5R*,7aS*)-dimethyl 5-(4-chlorophenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2b).

The reaction of aziridine **1b** (169.6 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % of Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford **2b** (167.9 mg) in 82% yield, white solid. m.p.199-201 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.39$ (d, J = 8.0 Hz, 2 H); 6.96 (d, J =8.0 Hz, 2 H), 6.93 (d, J = 8.0 Hz, 2 H), 6.77 (d, J = 8.0 Hz, 2 H), 5.23 (d, J = 8.8 Hz, 1 H), 3.94 (dd, J = 11.6, 4.0 Hz, 1 H), 3.88 (s, 3 H), 3.86 (s, 3 H), 3.70 (d, J = 11.6 Hz, 1 H), 3.20 (t, J = 12.0 Hz, 1 H), 2.66 (dd, J =20.4, 9.2 Hz, 6 H), 2.23 (s, 3 H), 1.64 (d, J = 12.4 Hz, 1 H), 1.43-1.58 (m, 1 H), 1.37 (d, J = 13.2 Hz, 1 H), 0.47-0.60 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9$, 166.6, 143.3, 136.9, 135.5, 132.8, 128.4, 128.1, 127.99, 127.95, 83.8, 75.2, 69.0, 64.0, 53.5, 53.4, 43.0, 25.0, 24.5, 21.2 ppm; IR (neat) ν/cm^{-1} : 3040, 2957, 2861, 1757, 1738, 1491, 1435, 1293, 1164, 1040, 958. MS (EI, 70 eV) m/z (%): 507 [M⁺] (0.03), 91 (100); HRMS calcd for C₂₄H₂₆CINO₇S: 507.1119, found: 507.1122.

3. (4aR*, 5R*, 7aS*)-dimethyl 5-(4-bromophenyl)-6-tosylhexahydro pyrano[3, 2-c]pyrrole-7,7(7aH)-dicarboxylate (2c).

The reaction of aziridine **1c** (187.2 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73 μ L, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % of Y(OTf) ₃(10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford **2c** (172.2 mg) in 82% yield, white solid. m.p. 205-207 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.47 (d, *J* = 7.6 Hz, 2 H); 7.19 (d, *J* = 7.6 Hz, 1 H), 7.00 (d, *J* = 7.6 Hz, 2 H), 6.78 (d, *J* = 7.6 Hz, 2 H), 5.28 (d, *J* = 8.8 Hz, 1 H), 4.03 (dd, *J* = 11.2, 4.4 Hz, 1 H), 3.96 (s, 3 H), 3.94 (s, 3 H), 3.78 (d, *J* = 11.2 Hz, 1 H); 3.28 (t, *J* = 12, 1 H), 2.73 (dd, *J* = 21.2, 10.8 Hz, 1 H), 2.32 (s, 3 H), 1.72(d, *J* = 12.4 Hz, 1H), 1.53-1.68 (m, 1 H), 1.46 (d, *J* = 13.6 Hz, 1 H), 0.56-0.69 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 166.6, 142.3, 136.8, 136.0, 130.9, 128.4, 128.3, 128.0, 120.8, 83.8, 75.2, 69.0, 64.0, 53.6 53.4, 43.0; 25.0; 24.5, 21.3 ppm; IR (neat) *v*/cm⁻¹ 2990, 2955, 2867, 2840, 1758, 1738, 1597, 1431, 1291, 1162, 1045, 955. MS (EI, 70 eV) m/z (%): 551 [M⁺] (0.02), 91 (100); HRMS calcd for C₂₄H₂₆BrNO₇S: 551.0613, found: 551.0616.

4. (4aR*, 5R*, 7aS*)-dimethyl 5-(4-nitrophenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2d).

The reaction of aziridine **1d** (173.6 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol, 5 mol%) in DCM (4 mL) was carried out at r.t. for 2.5 h to afford **2d** (154.2 mg) in 82% yield, pale yellow solid. m.p. 227-229 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 7.6 Hz, 2 H), 7.51 (d, *J* = 7.6 Hz, 2 H), 7.13 (d, *J* = 7.6 Hz, 2 H), 7.10 (d, *J* = 7.6 Hz, 2 H), 5.41 (d, *J* = 9.2 Hz, 1 H), 4.00-4.10 (m, 1 H), 4.00 (s, 3 H), 3.95 (s, 3 H), 3.75 (d, *J* = 11.2 Hz, 1 H), 3.27 (t, *J* = 12.0 Hz, 1 H), 2.83 (dd, J = 21.6, 11.2 Hz, 1 H), 2.28 (s, 3 H), 1.78 (d, J = 12.4 Hz, 1 H), 1.56 - 1.69 (m, 1 H), 1.48 (d, J = 13.2 Hz, 1 H), 0.49-0.61(m, 1 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9, 166.4, 146.8, 144.7, 143.8, 136.5, 128.6, 128.1, 127.5, 123.0, 83.7, 75.3, 69.0, 63.9, 53.7, 53.5, 43.1, 25.0, 24.5, 21.2 ppm. IR (neat) <math>\nu/\text{cm}^{-1}$ 2987, 2973, 2901; 1756, 1737, 1600, 1435, 1294, 1234, 1085, 1067, 958. MS (EI, 70 eV) m/z (%): 518 [M⁺] (0.14), 91(100); HRMS calcd for C₂₄H₂₆N₂O₉S: 518.1359, found: 518.1360.

5. (4aR*, 5R*, 7aS*)-dimethyl 5-*p*-tolyl-6-tosylhexahydropyrano[3,2c]pyrrole-7,7(7aH)-dicarboxylate (2e).

The reaction of aziridine **1e** (161.2 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % of Y(OTf) ₃(10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford **2e** (162.0 mg) in 83% yield, white solid. m.p.133-135 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 7.6 Hz, 2 H), 6.97 (d, *J* = 7.6 Hz, 2 H), 6.88 (d, *J* = 7.6 Hz, 2 H), 6.76 (d, *J* = 7.6 Hz, 2 H), 5.32 (d, *J* = 8.4 Hz, 1 H), 3.98-4.04 (m, 1 H), 3.94 (s, 6 H), 3.84 (d, *J* = 11.6 Hz, 1 H), 3.28 (t, *J* = 12.0 Hz, 1 H), 2.68- 2.78 (m, 1 H), 2.28 (s, 3 H), 2.24 (s, 3 H), 1.72(d, *J* = 13.2 Hz, 1 H), 1.52-1.67 (m, 1 H), 1.43(d, *J* = 14.0 Hz, 1 H), 0.57-0.69 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.0, 167.0 142.9, 137.3, 136.7, 133.9, 128.6, 128.3, 128.2, 126.6, 84.0, 75.3, 69.1, 64.8, 53.5, 43.2, 25.1, 24.7, 21.3, 20.9 ppm. IR (neat) *v*/cm⁻¹ 2955, 2925, 2861, 1757, 1739, 1598, 1515, 1435, 1234, 1163, 1151, 1039, 957. MS (EI, 70 eV) m/z (%): 487 [M⁺] (0.08), 91 (100); HRMS calcd for $C_{24}H_{29}NO_7S$: 487.1665, found: 487.1664.

6. (4aR*, 5R*, 7aS*)-dimethyl 5-(4-isopropylphenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2f).

The reaction of aziridine **1f** (172.8 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃(10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford **2f** (165.1 mg) in 80% yield, white solid. m.p.161-163 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (d, *J* = 7.6 Hz, 2 H), 6.91 (t, *J* = 8.4 Hz, 4 H), 6.76 (d, *J* = 7.6 Hz, 2 H), 5.34 (d, *J* = 8.8 Hz, 1 H), 4.01- 4.08 (m, 1 H), 3.95 (s, 6 H), 3.86 (d, *J* = 11.6 Hz, 1 H), 3.31 (t, *J* = 12.4 Hz, 1 H), 2.68-2.82 (m, 2 H), 2.25 (s, 3 H), 1.73 (d, *J* = 12.4 Hz, 1 H), 1.52-1.65 (m, 1 H), 1.44 (d, *J* = 13.6 Hz, 1 H), 1.16 (d, *J* = 6.8 Hz, 6 H), 0.62-0.72(m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.0, 167.0, 147.7, 142.6, 137.3, 134.2, 128.2, 128.1, 126.7, 125.9, 84.1, 75.3, 69.2, 64.8, 53.5, 43.3, 33.6, 25.0, 24.7, 24.0, 23.8, 21.3 ppm; IR (neat) *v*/cm⁻¹ 2987, 2925, 2868, 1758, 1598, 1435, 1295, 1196, 1038, 940; MS (EI, 70 eV) m/z (%): 515 [M⁺] (0.43), 91 (100), HRMS calcd for C₂₇H₃₃NO₇S: 515.1978, found: 515.1976.

7. (4aR*, 5R*, 7aS*)-dimethyl 5-(2-bromophenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2g).

The reaction of aziridine **1g** (187.2 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 10 mol % Y(OTf) ₃(21.4 mg, 0.04 mmol) in DCM(4 mL) was carried out at r.t. for 1 h to afford **2g** (150.4 mg) in 68% yield, white solid. m.p. 188-190 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.33-7.42 (m, 3 H), 6.82-6.91 (m, 4 H), 6.74- 6.82 (m, 1 H), 5.75 (d, *J* = 8.8 Hz, 1 H), 3.92-3.95 (m, 1 H), 3.91 (s, 3 H), 3.86 (s, 3 H), 3.78 (d, *J* = 11.6 Hz, 1 H), 3.22 (t, *J* = 12.0 Hz, 1 H), 2.63-2.76 (m, 1 H), 2.18 (s, 3 H), 1.99 (d, *J* = 12.8 Hz, 1 H), 1.43-1.59 (m, 1 H), 1.34 (d, *J* = 13.6 Hz, 1 H), 0.51-0.65 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 169.0, 166.6, 143.1, 136.6, 136.2, 132.5, 128.8, 128.44, 128.39, 128.0, 127.1, 122.5, 83.8, 75.3, 69.2, 63.7, 53.6, 53.4, 43.3, 24.4, 24.3, 21.2 ppm; IR (neat) *v*/cm⁻¹. 2952, 2873, 2852, 1766, 1738, 1664, 1597, 1339, 1265, 1089, 988, 932; MS (EI, 70 eV) m/z (%): 551 [M⁺] (0.02), 91 (100); HRMS calcd for C₂₄H₂₆BrNO₇S: 551.0613, found: 551.0611.

8. (4aR*, 5R*, 7aS*)-dimethyl 5-m-tolyl-6-tosylhexahydropyrano-[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2h).

The reaction of aziridine **1h** (161.2 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73 μ L, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford **2h** (154.2 mg) in 76 % yield, white solid. m.p. 198-200 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.45 (d, *J* = 7.6 Hz, 2 H), 6.97 (t, *J* = 8.0 Hz, 3 H), 6.89 (d, *J* = 7.2 Hz, 1 H), 6.67 (d, *J* = 7.6 Hz, 1 H), 6.62 (s, 1 H), 5.35 (d, *J* = 8.8 Hz, 1 H), 4.02 (dd, *J* = 12.0, 4.4 Hz, 1 H), 3.95 (s, 6 H), 3.82 (d, *J* = 11.6 Hz, 1 H), 3.30 (t, *J* = 12.0 Hz, 1 H), 2.75 (dd, *J* = 20.8, 9.6 Hz, 1 H), 2.27 (s, 3 H), 2.10 (s, 3 H), 1.75 (d, *J* = 12.8 Hz, 1 H), 1.53 – 1.69 (m, 1 H), 1.45 (d, *J* = 13.6 Hz, 1 H), 0.58- 0.71 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 166.9, 142.8, 137.4, 137.2, 136.6, 128.2, 128.1, 127.8, 127.6, 127.4, 123.8, 84.0, 75.3, 69.1, 64.8, 53.4, 53.4, 43.1, 25.1, 24.7, 21.2, 21.1 ppm; IR (neat) *v*/cm⁻¹. 2961, 2921, 2852, 1748, 1599, 1492, 1456, 1432, 1352, 1260, 1162; MS (EI, 70 eV) m/z (%): 487 [M⁺] (0.66), 91 (100); HRMS calcd for C₂₅H₂₉NO₇S: 487.1665, found: 487.1663.

9. (4aR*, 5R*, 7aS*)-diethyl 5-phenyl-6-tosylhexahydropyrano[3,2c]pyrrole-7,7(7aH)-dicarboxylate (1i).

The reaction of aziridine **1i** (166.8 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford **2i** (170.1 mg) in 82% yield, white solid. m.p. 164-166 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 7.6 Hz, 2 H), 7.02-7.14 (m, 3 H), 6.95 (d, *J* = 7.6 Hz, 2 H), 6.90 (d, *J* = 7.2 Hz, 2 H), 5.35 (d, *J* = 8.8 Hz, 1 H), 4.32-4.53 (m, 4 H), 3.97- 4.06 (m, 1 H), 3.83 (d, *J* = 11.6 Hz, 1 H), 3.27 (t, J = 12.0 Hz, 1 H), 2.69-2.81 (m, 1 H), 2.26 (s, 3 H), 1.72 (t, J = 12.8 Hz, 1 H), 1.51-1.62 (m, 1 H), 1.32-1.48 (m, 7 H), 0.55- 0.68.(m, 1 H); ¹³C NMR (400 MHz, CDCl₃): $\delta = 168.4$, 166.3, 142.8, 137.4, 137.1, 128.3, 128.1, 127.9, 126.9, 126.7, 84.0, 75.3, 69.0, 64.9, 62.5, 62.4, 43.2, 25.2, 24.8, 21.3, 14.03, 14.00 ppm; IR (neat) ν/cm^{-1} 2980, 2929, 2853, 1762, 1676, 1597, 1494, 1242, 1094, 1030. m/z (%): 501[M⁺] (0.02), 91 (100); HRMS calcd for C₂₆H₃₁NO₇S: 501.1821, found: 501.1818.

10. (4aR*, 5R*, 7aS*)-diisopropyl 5-phenyl-6-tosylhexahydropyrano [3,2-c]pyrrole-7,7(7aH)-dicarboxylate (1j).

The reaction of aziridine **1j** (178.4 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford **2j** (181.1 mg) in 85% yield, white solid. m.p. 161-163°C, ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (d, *J* = 7..6 Hz, 2 H), 7.00-7.12 (m, 3 H), 6.94 (d, *J* = 7.6 Hz, 2 H), 6.89 (d, *J* = 6.8 Hz, 2 H), 5.22-5.34 (m, 3 H), 4.00 (d, *J* = 7.6 Hz, 1 H), 3.77 (d, *J* = 11.6 Hz, 1 H), 3.24 (t, *J* = 12.0 Hz, 1 H), 2.69-2.81 (m, 1 H), 2.25 (s, 3 H), 1.74 (d, *J* = 12.4 Hz, 1 H), 1.48-1.62 (m, 1 H), 1.36-1.48 (m, 10 H), 1.34 (d, *J* = 6.4 Hz, 3 H), 0.53-0.68 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.0, 165.7, 142.7, 137.4, 137.1, 128.3, 128.2, 127.8, 126.8, 126.6, 84.1, 75.4, 70.3, 70.1, 68.9, 64.7, 43.2, 25.2, 24.9, 21.7, 21.60, 21.58, 21.5, 21.3 ppm. IR (neat) ν/cm^{-1} . 2987, 2958, 2868, 1758, 1738, 1598, 1513, 1435, 1383, 1346, 1295, 1228, 1153, 1118, 1038; MS (EI, 70 ev) m/z (%): 529 [M⁺] (0.02), 43 (100); HRMS calcd for $C_{28}H_{35}NO_{67}S$: 529.2134, found: 529.2133.

11. (4aR*, 5R*, 7aS*)-diisopropyl 5-(4-isopropylphenyl)-6-tosylhexahydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (2k).

The reaction of aziridine 1k (195.2 mg, 0.4 mmol), 3,4-dihydro-2Hpyran (73 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃(10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford 2k (184.9 mg) in 81% yield, colorless oil, ¹H NMR (400 MHz, CDCl₃): $\delta = 7.48$ (d, J = 8.0 Hz, 2 H), 6.90 (d, J = 8.0 Hz, 2 H), 6.87(d, J = 8.0 Hz, 2 H), 6.78 (d, J = 8.0 Hz, 2 H), 5.20-5.32 (m, 3 H),4.00 (d, J = 8.0 Hz, 1 H), 3.82 (d, J = 11.6 Hz, 1 H), 3.26 (t, J = 12.0 Hz, 1 H), 2.64- 2.82 (m, 2 H), 2.23 (s, 3 H), 1.71 (d, J = 12.4 Hz, 1 H), 1.48-1.61 (m, 1 H), 1.29-1.48 (m, 13 H), 1.15 (d, J = 6.8 Hz, 6 H), 0.60-0.72 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.9$, 165.6, 147.3, 142.2, 137.4, 134.2, 128.0, 126.6, 125.6, 84.2, 77.2, 75.2, 70.1, 69.9, 68.8, 64.5, 43.2, 33.4, 25.0, 24.8, 23.9, 23.7, 21.6, 21.5, 21.5, 21.4, 21.1 ppm.IR (neat) v/cm⁻¹. 2982, 2959, 2940, 2868, 1745, 1598, 1514, 1467, 1453, 1374, 1336, 1270, 1237, 1165, 1115, 1031; MS (EI, 70 eV) m/z (%): 571 $[M^+]$ (0.05), 43(100), HRMS calcd for C₃₂H₄₁NO₇S: 571.2604, found: 571.2606.

12. dimethyl 6-(4-nitrophenylsulfonyl)-5-p-tolylhexahydropyrano[2, 3-c]pyrrole-7,7(7aH)-dicarboxylate (2l).

The reaction of aziridine **11** (172.6 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73 µL, 0.8 mmol), 150 mg of activated 4Å M.S.and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford **21** (167 mg) in 80% yield, colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.39$ (d, J = 8.0 Hz, 2 H), 6.89 (d, J = 8.0 Hz, 2 H), 6.80 (d, J= 7.2 Hz, 2 H), 6.72 (d, J = 7.2 Hz, 2 H), 5.21 (d, J = 8.4 Hz, 1 H), 4.23-4.44 (m, 4 H), 3.94 (d, J = 10.0 Hz, 1 H), 3.76 (d, J = 11.2 Hz, 1 H), 3.20 (t, J = 12.0 Hz, 1 H), 2.57-2.69 (m, 1 H), 2.20 (s, 3 H), 2.17 (s, 3 H), 1.64 (d, J = 12.8 Hz, 1 H), 1.40-1.58 (m, 1 H), 1.23-1.40 (m, 7 H), 0.48- 0.62 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.3$, 166.3, 142.6, 137.3, 136.5, 133.9, 128.4; 128.2, 128.0, 126.5, 84.0; 75.2, 68.9, 64.7, 62.4, 62.3, 43.1, 25.1, 24.7, 21.2, 20.8, 13.94, 13.90 IR (neat) ν /cm⁻¹ 2988, 2950, 2871, 1745, 1599, 1514, 1440, 1344, 1287, 1272, 1221, 1163, 1113, 1084, 1037. MS (EI) m/z (%): 442 [M⁺-CO₂Et] (1.94), 91 (100), HRMS calcd for C₂₄H₂₈NO₅S[M⁺-CO₂Et]: 442.1688, found: 442.1687.

The synthesis of enantioenriched **2l** of : 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) and 5 mol % the Pybox **8** (2,6-bis[(3a*R*, 8a*S*)-(+)-8H-indeno[1,2-d]oxazolin-2-yl)pyridine) (7.9 mg ,0.02 mmol) stirred at r.t. for 2 h in DCM (1 mL). This catalyst solution was transferred to the mixture of aziridine **1l** (172.6 mg, 0.4 mmol), 3,4-dihydro-2*H*-pyran (73 μ L, 0.8 mmol), 150 mg of activated 4Å M.S. in DCM (4 mL). The reaction mixture was stirred at r.t. for 3 hs. After the routine workup, the reaction afforded **2l** (156.5 mg) in 75 % yield with 59% ee. Enantiomeric excess

was determined by HPLC with a Chiralpak OD-H column (hexane: 2propanol = 80:10, 0.8 mL/min, 220 nm); minor enantiomer tr = 8.1 min, major enantiomer tr = 16.4 min.

13. (3S*,5R*)-dimethyl 3-methoxy-3-methyl-5-phenyl-1-tosylpyrrolidine-2,2-dicarboxylate (3a).

The reaction of aziridine **1a** (155.7 mg, 0.4 mmol), 2-methoxyprop-1ene (77µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃(10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford **3a** (129.4 mg) in 70% yield, white solid. m.p. 147-149 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.28 (d, *J* = 7.6 Hz, 2 H), 7.13 (d, *J* = 7.2 Hz, 2 H), 6.90-7.02 (m, 3 H), 6.86 (d, *J* = 7.6 Hz, 2 H), 5.48 (d, *J* = 10.0 Hz, 1 H), 3.85 (s, 3 H), 3.78 (s, 3 H), 2.68 (dd, *J* = 14.0, 10.0 Hz, 1 H), 2.57 (s, 3 H), 2.20 (s, 3 H), 2.15 (d, *J* = 14.0 Hz, 1 H), 1.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.7, 166.6, 142.7, 141.1, 137.5, 128.5, 128.0, 127.6, 127.4, 126.4, 88.8, 85.3, 63.6, 53.2, 52.5, 49.1, 40.4, 21.3, 17.4 ppm;. IR (neat) *v*/cm⁻¹ 2987, 2957, 2927, 2827, 1751, 1730, 1492, 1414, 1334, 1154, 948. MS (EI, 70 eV) m/z (%): 462 [M⁺] (0.04), 91 (100), HRMS calcd for C₂₃H₂₇NO₇S: 461.1508, found: 461.1510.

The enantioenriched **3a** was obtained in 60% yield with 57% ee. Enantiomeric excess was determined by HPLC with a Chiralpak ODH column (hexane: 2-propanol = 85:15, 0.8 mL/min, 220 nm); major enantiomer tr = 11.0 min, minor enantiomer tr = 13.9 min.

14. (3S*, 5R*)-dimethyl 3-methoxy-3-methyl-5-p-tolyl-1-tosylpyrrolidine-2,2-dicarboxylate (3b).

The reaction of aziridine **1e** (161.2 mg, 0.4 mmol), 2-methoxyprop-1ene (77 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford **3b** (131.4 mg) in 69% yield, white solid. m.p. 129-131 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.26 (d, *J* = 7.6 Hz, 2 H), 6.95 (d, *J* = 7.6 Hz, 2 H), 6.86 (d, *J* = 7.6 Hz, 2 H), 6.77 (d, *J* = 7.6 Hz, 2 H), 5.43 (d, *J* = 13.6 Hz, 1 H), 3.84 (s, 3 H), 3.77 (s, 3 H), 2.65 (dd, *J* = 13.6, 10.4 Hz, 1 H), 2.62 (s, 3 H), 2.21 (s, 3 H), 2.17 (s, 3 H), 2.13 (d, *J* = 13.6 Hz, 1 H), 1.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ = 168.8, 166.6, 142.5, 138.2, 137.6, 136.0, 128.5, 128.3, 127.9, 127.4, 88.7, 85.2, 63.5, 53.2, 52.4, 49.2, 40.4, 21.3, 20.9, 17.5 ppm; IR (neat) v/cm⁻¹ 2995, 2952, 2932, 2827, 1753, 1752, 1596, 1515, 1435, 1337, 1274, 1252, 1153, 1101, 1037; MS (EI, 70 eV) m/z (%): 475 [M⁺] (0.06), 91 (100); HRMS calcd for C₂₄H₂₉NO₇S: 475.1665, found: 475.1667.

15. (3S*, 5R*)-dimethyl 5-(4-bromophenyl)-3-methoxy-3-methyl-1tosylpyrrolidine-2,2-dicarboxylate (3c).

The reaction of aziridine **1c** (187.3 mg, 0.4 mmol), (77 μ L, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf) $_3(10.7 \text{ mg},$

0.02 mmol) in DCM (4 mL) was carried out at r.t. for 3 h to afford **3c** (146.8 mg) in 68% yield, white solid. m.p. 130-132 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.43 (d, *J* = 7.2 Hz, 2 H), 7.13 (d, *J* = 7.2 Hz, 2 H), 6.99 (d, *J* = 8.0 Hz, 4 H), 5.48 (d, *J* = 10.4 Hz, 1 H), 3.92 (s, 3 H), 3.87 (s, 3 H), 2.76 (dd, *J* = 13.6, 10.4 Hz, 1 H), 2.65 (s, 3 H), 2.32 (s, 3 H), 2.18 (d, *J* = 13.6 Hz, 1 H), 1.35 (s, 3 H). ¹³C NMR (100MHz, CDCl₃): δ = 168.44, 166.49, 143.11, 140.30, 137.14, 130.49, 129.11, 128.54, 128.11, 120.19, 88.83, 85.19, 62.85, 53.23, 52.50, 49.13, 40.24, 21.30, 17.24 ppm.IR (neat) *v*/cm⁻¹ 2961, 2923, 2852, 1752, 1731, 1596, 1488, 1459, 1435, 1412, 1333, 1196, 1153; MS (EI, 70 eV) m/z (%): 543 [M⁺] (0.17), 91 (100); HRMS calcd for C₂₃H₂₆BrNO₇S: 541.0593, found: 541.0594.

16. Dimethyl 3-ethoxy-5-phenyl-1-tosylpyrrolidine-2,2-dicarboxylate(4)

The reaction of aziridine **1a** (155.7 mg, 0.4 mmol), vinyl ethyl ether (77 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 1 h to afford **4** (140.2 mg) in 80% yield, colorless oil, Major isomer: ¹H NMR (400 MHz, CDCl₃): δ = 7.28 (d, *J* = 7.6 Hz, 2 H), 6.99- 7.09 (m, 3 H), 6.94 (d, *J* = 7.2 Hz, 2 H), 6.89 (d, *J* = 7.6 Hz, 2 H), 5.30 (d, *J* = 9.6 Hz, 1 H), 4.53 (dd, *J* = 10.8, 6.8 Hz, 1 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 3.57- 3.66 (m, 1 H), 3.32-3.42 (m, 1 H), 2.64 (q, *J* = 11.2 Hz, 1 H), 2.21 (s, 3 H), 2.06 (dd, *J* = 12.0, 6.8 Hz, 1 H), 1.03 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR

(100 MHz, CDCl₃): δ = 169.5, 167.0, 142.9, 141.1, 137.3, 128.4, 128.3, 127.9, 127.1, 126.3, 83.8, 76.6, 66.9, 62.1, 53.2, 52.9, 39.8, 21.3, 15.1 ppm.

Minor isomer ¹H NMR (400 MHz, CDCl₃): $\delta = 7.23$ (d, J = 7.6 Hz, 2 H), 7.12 (d, J = 7.6 Hz, 2 H), 6.91-7.02 (m, 3 H), 6.84 (d, J = 8.0 Hz, 2 H), 5.35 (d, J = 9.2 Hz, 1 H), 4.21 (d, J = 4.8 Hz, 1 H), 3.85 (s, 3 H), 3.80 (s, 3 H), 3.25 (q, J = 6.8 Hz, 2 H), 2.80-2.89 (m, 1 H), 2.20 (s, 3 H), 2.00 (d, J = 13.6 Hz, 1 H), 0.87 (t, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9$, 166.5, 142.6, 140.7, 137.6, 128.3, 128.1, 128.0, 127.6, 126.8, 85.0, 81.6, 65.3, 64.6, 53.4, 52.6, 39.2, 21.3, 14.8 ppm.IR (neat) ν/cm^{-1} 2981, 2950, 2872, 1751, 1733, 1600, 1495, 1439, 1337, 1287, 1237, 1152, 1118, 104 ; MS (EI, 70 eV) m/z (%): 461 [M⁺] (0.01), 91 (100); HRMS calcd for C₂₃H₂₇NO₇S: 461.1508, found: 461.1507.

17. Dimethyl 3-(4-methoxyphenyl)-5-phenyl-1-tosylpyrrolidine-2,2dicarboxylate (5).

The reaction of aziridine **1a** (155.7 mg, 0.4 mmol), 1-methoxy-4vinylbenzene (107.3 mg, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 3 h to afford **5** (146.0 mg) in 73% yield, colorless oil, minor isomer: ¹H NMR (400 MHz, CDCl₃): δ = 7.44 (d, *J* = 8.0 Hz, 2 H), 7.22-7.30 (m, 1 H), 6.96-7.18 (m, 8 H), 6.79 (d, *J* = 7.6 Hz, 2 H), 5.53 (d, *J* = 8.8 Hz, 1 H), 4.08 (dd, *J* = 14.0, 7.5 Hz, 1 H), 3.86 (s, 3 H), 3.74 (s, 3 H), 3.62 (s, 3 H), 3.22 (dd, *J* = 22.4, 13.2 Hz, 1 H), 2.28 (s, 3 H), 1.96 (dd, *J* = 12, 6 Hz, 1 H); Major isomer: ¹H NMR (400 MHz, CDCl₃): δ = 7.22-7.30 (m, 1 H), 6.96-7.18 (m, 8 H), 6.89 (d, *J* = 8.0 Hz, 2 H), 6.83 (d, *J* = 8.0 Hz, 2 H), 5.05 (dd, *J* = 10.4, 5.6 Hz, 1 H), 4.19 (dd, *J* = 13.2, 6.0 Hz , 1 H), 3.97 (s, 3 H), 3.76 (s, 3 H), 3.46 (s, 3 H), 2.41-2.60 (m, 3 H), 2.28 (s, 3 H); For two isomer: ¹³C NMR (100 MHz, CDCl₃): δ = 169.2, 169.0, 168.1, 167.6, 159.2, 159.1, 142.9, 142.3, 141.3, 137.9, 137.4, 137.2, 129.6, 129.0, 128.8, 128.3, 128.1, 128.04, 127.95, 127.8, 127.73, 127.65, 127.1, 126.8, 126.2, 126.0, 113.6, 113.4, 78.8, 78.3, 65.1, 63.2, 55.0, 54.9, 53.1, 52.8, 52.6, 52.6, 52.2, 51.0, 40.4, 39.0, 21.2 ppm; IR (neat) *v*/cm⁻¹ 2961, 2919, 2850, 1760, 1726, 1612, 1599, 1515, 1458, 1431, 1338, 1258, 1215, 1182, 1137, 1095, 1033; MS (EI, 70 eV) m/z (%): 523 [M⁺] (1.07), 91 (100), HRMS calcd for C₂₈H₂₉NO₇S: 523.1665, found: 523.1668.

18. (4aR*,5R*,7aS*)-dimethyl 6-(4-nitrophenylsulfonyl)-5-phenyl hexa-hydropyrano[3,2-c]pyrrole-7,7(7aH)-dicarboxylate (7).

The reaction of aziridine **6** (173.6 mg, 0.4 mmol), 3,4-dihydro-2*H*pyran (73 µL, 0.8 mmol), 150 mg of activated 4Å M.S. and 5 mol % Y(OTf)₃ (10.7 mg, 0.02 mmol) in DCM (4 mL) was carried out at r.t. for 2 h to afford **7** (176.3 mg) in 85% yield, white solid. m.p.233-235 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.0 Hz, 2 H), 7.72 (d, *J* = 8.0 Hz, 2 H), 7.04-7.18 (m, 3 H), 6.77- 6.88 (m, 2 H), 5.55 (d, *J* = 8.8 Hz, 1 H), 4.02-4.10 (m, 1 H), 3.97 (s, 6 H), 3.82 (d, *J* = 11.2 Hz, 1 H), 3.31 (t, *J* = 12.0 Hz, 1 H), 2.79-2.90 (m, 1 H), 1.77 (d, *J* = 12,4 Hz, 1 H), 1.58-1.69 (m, 1 H), 1.47 (d, *J* = 15.2 Hz , 1 H), 0.57- 0.70 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.9$, 166.7, 149.4, 145.6, 136.3, 129.6, 128.3, 127.7, 126.7, 122.8, 83.9, 75.9, 69.3, 65.5, 53.9, 53.8, 43.4, 25.0, 24.6 ppm. IR (neat) ν/cm^{-1} 2949, 2920, 2868, 2851, 1754, 1741, 1690, 1604, 1526, 1436, 1349, 1252, 1164, 1148, 1120, 1090, 157, 1021. MS (EI) m/z (%): 445 [M⁺- 59] (100),445 (100).

The structure of **2a**:

The structure of **3a**:

0=

Ph,,

Enantioenriched 3a

Peak	RetTime	Туре	Width	Ar	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	웅
1	12.817	BV	0.5909	2435.	54419	63.1	L8680	78.4693
2	15.744	VB	0.8162	668.	27539	12.1	L8184	21.5307
Total	ls :			3103.	81958	75.3	36864	

Enantioenriched 21

reak	RetTime	туре	Width	AI	rea	Heig	gnu	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	8.128	BB	0.3681	1446.	96594	59.2	20626	20.5098
2	16.434	BB	1.0586	5608.	03955	80.2	23457	79.4902

Totals :

7055.00549 139.44082

する	400047770008 0 000040	000
6 L	M M M M M M M M M M M M M M M M M M M	705
$\infty \infty$	0 7700077 N 7700000000000	000
• •		• • •
വവ	44MMMMMMNNNN N	$\circ \circ \circ$
\bigvee		
	5.394	5.394 5.372 5.372 5.372 4.000 3.949

	-						
This journ	al is (c) The	Royal Society	of Chemistry 2011	0 10	r 9	о н v	4

00		0708070	9	Ь	400
• •		$\infty \cup M \cup \bigcup \infty$	4	\leftarrow	000
0 0	00100010		•	•	
0 0	4 M M N N N N N	の て て の い の 4	\sim	\sim	- 1 4 Ω 4 1 - 1 - 1 - - - - - - - - - - - - -
\leftarrow	$\vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash$	001113	Сl	4	$\square \square \square$
\setminus /					\mathbf{Y}

 	 	 		 		 	 	·····		

000000000

271307300

4 M O O O O L L

00000017

 $\zeta \zeta$

.

	•	ω	ц)		U	01	ц)	01	ц)	
96)	\sim	∞	ഹ	\sim	$^{\circ}$	0	σ	0	
•	•	•	•	•	•	•	•	•	•	
00 40)	$^{\circ}$	9	ப	\sim	∞	∞	\sim	\sim	
99)	4	$^{\circ}$	$^{\circ}$	$^{\circ}$	\sim	\sim	\sim	\sim	
\leftarrow	1	\neg	\neg	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	-	
$\langle \rangle$		\langle	$\langle \langle$	\langle	$\langle \langle$	\langle	L	2	/	

00	000070000	0 7 0 0 M 7 N	4 H	\sim	м Н Ф
• •		0000000	40	0	0 U U
0 0	7 7 8 8 1 2 0 M		• •	•	
00	4 M M M N N N N	Wレレのひの4	$\infty \infty$	\sim	トウト
\dashv \dashv	$\vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash$	007773	വവ	4	$\square \square \square$
\backslash /			\bigvee		\searrow /

n de lite de la constante en ser esta de la filise esta medido de a dese de la deserva de la serva de la serva Na filis de la constante de la constante en serva de la serva d	ng ng balan dina kana kata kata kata kata kata kata ka		d de se weldt beskelde jen stelle bei ne gewyne yn gewyne gewyne da tri gwyn yw gewene d	sa ata ya shi da ba a sha kara	de for plan v. P. vil for	a para da incensi da anti da an	ing in the state of the state o	lasterik (n. st. en de sede en terreterie) en terreterie		and Localdes are reducible references friger are references	ablenda di Lida una lata kundistana bata Parte nganangan persona pertengan per
200 190 180 170	160 150 140	130 120) 110 10) 90	80	70 60	50	40	30 2) 10	0 ppm

лілоногіг	Ч О	MOM A A A MOM A A A A A A A A
00000000000000000000000000000000000000	00	80HW404JU6000000H4JU8H0040H040
440010077	$\sim \sim$	000000000000000000000000000000000000000
	• •	
00011111	വവ	444666666666666666666666666666666666666
	\bigvee	

Br Ts N. CO₂Me CO₂Me **2c**

8 K O 9 C O 0 0 C 0 0 C 0 0 4 K 4 K 4	55 41	96	95 26 26
	• •	•	• • •
40004/W	мм	\sim	サウト
8 7 7 7 7 8	വവ	4	$\square \square \square$
	\bigvee		\searrow /

لوي الحريق من المراجع ا	enteg a ta bada balan batarikan darat				- Alfordina (1999)		26) bilottaraekus						e compilation de las Merce	, yuli sa daba ƙwa	u shi itala ata ya
200 190 180	170 160	150 140	130	120	110	100	 90	80	 70	 60	 ••••••••••••••••••••••••••••••••••••••	 20	11444447777777777777777777777777777777		тттт ттттт тта

$\circ \circ \circ \circ \circ \circ \circ \circ$	4 7	DLACACCCCCCCCCC	0 0 0 0
431074219	Ч О	$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0 1 4 1 0
00000000000	4 M	000000000000000000000000000000000000	0000
	• •		• • • •
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	വവ	A A A W W W W W W W W	$\circ \circ \circ \circ$
	\bigvee		

Supplementary Material (ESI) for Chemical Communications
This is used in (a) The Devial Osciety of Ohemsistery 0044

This journal is (c) The	Royal Society of Ch	nemisti	ry 2011					
6 C1 ``	് ഗന്ശ	4	N 0 N 1					
2 4	$\neg \neg \neg$	ß	0770 0770	$M M \otimes O M M$	S	0 1	9	00
• •	• • •	•	• • • •	0 M 0 M $-$	∞	5 7	0	040
0 0	94 M	9	00 1 00 00	· · · · ·	•	• •	•	• • •
00	44	\sim	$\square \square \square \square$	0 L O L O L O	\sim	m m	\sim	L 4 U
\leftarrow	$\dashv \dashv \dashv$	\leftarrow	$\dashv \dashv \dashv \dashv$	0 1 1 1 1 0	9	വവ	4	$\circ \circ \circ$
	$\langle \rangle$		\leq			\bigvee		\mathbf{Y}

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 2	71 50	0 0	2 0 2 2 2 2 2
	•	••	•	• • •
0 L L O L O	∞	$\infty \infty$	\sim	ц 4 С
87773	9	വവ	4	$\Sigma \Sigma \Sigma$
		\backslash		$\langle \rangle$

14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 -1-1-1-1	tay desped for the state of the state					neg ang bar ang	and any planetic and a large part of the	a tugaka ya kata ya kata kata kata kata kata	Mary Lappical System			the other products the product of the	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		-	n by he provide the special states produced
170	160	150	140	130	120	110	100	90	80	70	 60	50	40	30	20	ppm

	VIV.	~(1/4c	- m	γ.ψ.		14.	644	
	ഥ	\sim	∞	9	\circ	\sim	\sim	ப
4	4	\sim	0	\circ	∞	∞	\sim	\sim
•	•	•	•	•	•	•	•	•
	\sim	\sim	9	9	9	9	9	9

 $\circ \circ$

32 30

• •

പ്പ

11

This journal is (c) The Royal Society of Chemistry 2011

\sim	0,		~	L .	L .	\	`	`	цц,	0,
0	0	0	0	\sim	9	0	9	$^{\circ}$	\leftarrow	വ
•	•		٠	•	•	•	•	•	•	•
∞	9	C	V	\sim	9	$^{\circ}$	∞	∞	∞	9
9	9	~	1	$^{\circ}$	$^{\circ}$	$^{\circ}$	\sim	\sim	\sim	\sim
\leftarrow	\leftarrow	r	Η	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
	/		\langle	$\langle \langle \rangle$	$\langle \rangle$		\langle	\downarrow	/	/

И М О В О И О В Н М О О М О	47	20	111 832 88
	•	•	
4779004	\sim	\sim	0 7 7 0
8 7 7 7 7 8	С	4	$\square \square \square \square$

0100071HM 44000000 0000111 ι J

oyal Society of Chemistry	′ <u>20</u> 1	1 ₀	\leftarrow	σ	0	\leftarrow	\leftarrow	\sim	
0 0	\sim	9	$^{\circ}$	\leftarrow	\sim	\leftarrow	\sim	0	
• •	•	•	•	•	•	•	•	•	
0 0	\sim	\sim	\sim	4	∞	∞	9	ഹ	
00	4	4	$^{\circ}$	$^{\circ}$	\sim	\sim	\sim	\sim	
\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	
\backslash /			\langle	$\langle \rangle$	\langle	\backslash	/	/	

1000 1000 104 10 10 10 10 10 10 10 10 10 10 10 10 10	48	30	555 010 304 010 30
	•	•	
4 7 7 9 9 9 4	\sim	\sim	ЧИФФО
8 1 1 1 1 8	Ъ	4	$\square \square \square \square \square \square \square$

e	Ro	yad	Soc	iety	œ	Gbe	nnis	try	201	m	ഗ	(\sim	0
	$^{\circ}$	∞	9	\leftarrow	$^{\circ}$	∞	\sim	ഹ	\leftarrow	σ	\sim	(9	4
	4	\sim	\sim	\sim	σ	∞	∞	∞	∞	\sim	\sim	[-	\sim
	•	•	•	•	•	•	•	•	•	•	•		•	•
	\sim	\sim	\sim	\sim	9	9	9	9	9	9	9	l	Ω	ഗ
	~		\sim		$\langle \rangle$	\langle							\setminus	/

72260827 1468022	62 40	8 2	2 2 4 2 9 0 4 9
	• •	•	• • •
M D D D D D M	mm	\sim	し 4 4
8 1 1 1 1 8	വവ	4	$\square \square \square$
	\bigvee		\bigvee /

4 N N O O O O N N 4 0							
0400000000000000000000000000000000000							
44000000000							
000000000111							

5.359 5.337

 $\langle /$

043 032 0132 840 840		2000 2000 2000 2000 2000 2000 2000 200	430 710 679 679 648 648 617
• • • • • •	•••••		
4 4 4 4 0 0 6) M M M M M M M M	1 0 0 H H H H H H H F	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$

600004	с Г	-	0 4 7 0
0 M O V O 0 0	4 Μ	-	ч 20 H
	• •	•	
W Г Г О П О 4	мм	\sim	Ч Ч Ф Q
0011110	വവ	4	$\square \square \square \square$
	\bigvee		

5.336

5.336

4.506

4.506

4.506

4.506

4.506

4.506

4.506

4.506

4.506

4.506

4.507

4.503

4.503

5.5135

5.5235

4.503

5.5235

5.535

5.535

5.535

5.535

5.535

5.535

5.535

5.535

5.535

5.535

5.535

5.535

5.535

5.535

5.535

5.555

5.556

5.5758

5.5758

5.5758

5.5758

5.5758

5.5758

5.5758

5.5758

5.5758

5.5758

5.5758

5.5758

5.5758

5.5758

<t

 \sim	<u> </u>	- U

\bigcirc	\sim	0 M O 0 0
О М О Ф М О Ф И Ф И О М О Ф М О Ф М О Ф И	\sim	00 21 1
	•	
477000400	\sim	ちちてなな
0000017770	4	コンシュー
		\bigvee / \bigvee

	0		00	
This journal is (c) The Royal Soci	iety of Chemistry 2	0151 ⊔	ററ	81410
4	m i	Γ C	nΟ	0 0 00 H M
•	•	•	• •	
00	9	\sim 1	- [-	00700
0	9	4 (nΜ	$\square \square \square \square \square \square$
, –	\vdash	\leftarrow	\neg	$\neg \neg $
		\langle	\searrow	

Inistorium and the Royal Society of Chemistry 2011	мωм
∞ $+$ ∞ ∞ ∞ $+$ ∞ ∞ ∞ $+$ ∞	0 8 9 0
いりくつつつつののののの	$\square \square \square \square$
00000111111	വവവ

This journal is (c) The Ro	yal Society of Chemistry	y <u>20</u> 11 _m	00 4 M 00 N
----------------------------	--------------------------	-----------------------------	-------------

0 0	\sim	\sim	$^{\circ}$	\sim	0	ഹ	9
• •	•	•	•	•	•	•	•
5 1	L	\sim	\sim	4	∞	9	ഥ
00	4	4	$^{\circ}$	$^{\circ}$	\sim	\sim	\sim
\neg	\vdash	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
$\langle \rangle$					\langle		/

43.17 33.39 25.01 25.01 23.91 23.91 23.70 23.70 23.70 21.62 21.51 21.14 21.14 21.14

200 190 180 170 160 150 140 130	0 120 110 100 90 80 7	0 60 50 40 30	20 10 0 ppm

This journal is (c) The Royal Society of Chemistry 2014 0 0 0 0 0 0 0 0 0 0

00000000000000000000000000000000000000	21	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	•	
477900400	\sim	0770770
000011110	4	\square

ournal is (c) The Royal Society of Ghemistry 2013	<u>с</u> О	~ 0	0 $ 0$ 0 $ 0$ $ 0$	00
0 L O 4 O 4 O 4	6 L	4 00	$H \otimes U \land U \otimes H$	
$\square \square $	4 4	2 00	P = P = Q = Q = Q	\sim
	• •	• •		•
00001111	വ വ	∞	\circ	\leftarrow
	\backslash	\backslash		

This journal is (c) The Royal Society of Chemistry 201

5	9	\leftarrow	4	ഹ	σ	ഹ	$^{\circ}$	Δ
• •	•	•	•	•	•	•	•	•
000	\sim	\leftarrow	\sim	∞	\sim	\sim	\sim	9
00	4	4	$^{\circ}$	\sim	\sim	\sim	\sim	\sim
\neg	H	\leftarrow	\leftarrow	Ч	\leftarrow	\leftarrow	\leftarrow	\leftarrow
\backslash	\langle	$\langle $		$\overline{\ }$	\langle		/	/

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57	13 13 13	37	30 41
	•		•	
0 1 1 2 8	\sim	M M M M M M M M M M	0	して
2 2 7 2 8 8	9	0 U 4	4	- N
		$\langle / /$		

Supplementary Material (ESI) for Chemical Communications					
This journal is (c) The ReyabSocietycof Chemistry 2011	$\sim \sim$	6 1	0 $ 0$ $-$	0	0
LUQU40400	7 7	74	8521741	\sim	0
NNH0000 M	44	2 00		\sim	0
	• •	• •		•	•
000000111	ഗവ	$\infty \infty$	\square	\leftarrow	0
	$\backslash /$	\backslash			

~		~		<i>.</i>	~~~	· /	<u> </u>	\sim	\sim
\sim	ப	ഥ	\leftarrow	ഹ	0	ഹ	\sim	0	4
•	•	•	•	•	•	•	•	•	•
∞	9	\sim	∞	\sim	ഹ	∞	∞	\sim	\sim
9	9	4	$^{\circ}$	\odot	\odot	\sim	\sim	\sim	\sim
-	\leftarrow	-	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	-
	/	ζ	$\langle \rangle$	$\langle \rangle$	/	\langle	$\langle \rangle$	/	/

1 4 0 0 6 8 6 8	50	247 221	00 00	4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	•	• • •	•	
0 1 1 2 8	\sim	M M M M M M M M M M	0	101
88777	9	4 U U	4	$\neg \land \land \dashv$
		$\langle / /$		\searrow /

									I			I				
 ••••••••••••••••••••••••••••••••••••••	100	100	 1.6.0	1 5 0	1 4 0	 1 2 0	1 1 0	1.0.0		·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	 2 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Supplementary Material (ESI) for Chemical Communications			
This journal is (c) The Royal Society of Chemistry 2011	C1 L2	0 0	00000017
4 0 4 0 0 0	0 0	7 10	0070700
キキエロの	4 4	0 00	ててくのとしし
	• •	• •	
0 ノノノノ	വവ	\circ	O O O O O O O O O O
	\searrow	\backslash	

.353

 \leftarrow

This journal is (c) The Royal Society of Chemistry 201, N 0 0 0 0 0 0

IIIIs longriges fres the Bosta Shriping Angentights to II	00	4 7 0 0 4 7 0 0
ろうりろし 200 てらう 4 2	40	4004004m,
00000000000000000000000000000000000000	$\infty \infty$	\square
	• •	
000000111111	വവ	みみみろろろろろ
	\mathbf{n}	

6 N M

This journal is (c) The Royal Spciety of Chemistry 2011 0 7 0 0 0 0

രഗ	000000 0000000
• •	
0 0	0 7 8 8 7 0 7
00	44000000
\leftarrow	$\neg \neg $

00H00	~ 0	о Н	0	\leftarrow	σ
0 U M O U	Ω Ω	0 M	\sim	\sim	[
	• •	• •	•	•	
4 エフフ 9	54	S 3	0		4
00	00	വവ	\sim	\sim	·
	$\langle \rangle$	$\backslash /$			

L

1 ノ

1

1 1

Supplementary Material (ESI) for Chemical Communications и u This journal is (6) The Boyal Society of Chemistry 2011 und nanadon a curran a

ιι J

n nin

L

This journal is (c) The Royal Society of Chemistry 2011	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 7
てらるエアアキンのてらるこ	$\circ \infty$
00000000000000000000000000000000000000	40
	• •
00111111111	വവ
	\searrow

Supplementary Materia This journal is (c) The F	I (ESt)) for Chemical Communications Royal Society of Chemistry 2019 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	83.90 77.32 77.32 76.68 69.27 65.48 65.48 53.86	
			Ph // Ns CO ₂ Me CO ₂ Me
0 190 180 170 160	150 140 130 120 110 100	90 80 70 60 5	0 40 30 20 10 0 ppm