Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Supporting Information

Exclusive Enantioselective Recognition of Glucopyranosides by Inherently Chiral Hemicryptophane Hosts.

Olivier Perraud,^a Alexandre Martinez^a and Jean-Pierre Dutasta*^a

^aLaboratoire de Chimie, CNRS, École Normale Supérieure de Lyon, 46, Allée d'Italie, F-69364 Lyon 07, France. alexandre.martinez@ens-lyon.fr; jean-pierre.dutasta@ens-lyon.fr

Content	Page
I/ General information	2
II/ Job's plots	3
Figure S1. Job's plot of 1 with OctaGlc.	3
Figure S2. Job's plot of 1 with Oct β Glc.	3
III/ ¹ H NMR titrations	4
Figure S3. Illustration of the evolution of ¹ H NMR spectra during titrations	4
Figure S4. Titration curve of M -1 with Oct α Glc.	5
Figure S5. Titration curve of M -1 with Oct β Glc.	5
Figure S6. Titration curve of <i>P</i> -1 with OctαGlc.	6
Figure S7. Titration curve of RRR- <i>M</i> -2 with OctαGlc.	6
Figure S8. Titration curve of RRR- <i>M</i> -2 with OctβGlc.	7
Figure S9. Titration curve of SSS- <i>P</i> - 2 with OctβGlc.	7
Figure S10. Titration curve of SSS-M-2 with OctaGlc.	8
Figure S11. Titration curve of SSS- M -2 with Oct β Glc.	8

I/ General information

Material and methods

Hemicryptophanes 1 and 2 was synthesized and resolved according to previous literature.¹⁻³ Solvents used were of commercial grade, $CDCl_3$ was stored over molecular sieves. ¹H NMR spectra were recorded at 298 K on a Bruker Avance 500 MHz spectrometer. ¹H NMR chemical shifts δ are reported in ppm referenced to the protonated residual solvent signal.

¹H NMR continuous variation methods (Job's plot)

Stock solutions (5.0 mM in CDCl₃) of **1** and each of the guests were prepared and mixed in NMR tubes in different ratios. In this way, relative concentrations α were varied continuously but their sum was kept constant (5.0 mM). ¹H NMR spectra were recorded for each sample and values of host's chemical shift δ_{obs} were measured. Job's plots were obtained by plotting $(\delta_{obs} - \delta_{free})\alpha$ versus α , where δ_{free} is the chemical shift of the proton in the uncomplexed host. The stoichiometry of the complexes was obtained from the value of the molar fraction α which corresponds to a maximum of the curve: a 1:1 complexation is obtained for $\alpha_{max} = 0.5$.

¹H NMR titrations

Solutions of hosts (between 0.5 and 2.0 mM in CDCl₃, 500 μ L) were titrated in NMR tubes with 10 μ L aliquots of concentrated solutions (between 6.3 and 22.5 mM in CDCl₃) of guests. The shifts $\Delta\delta$ of the hosts' protons signals were measured after each addition and plotted as a function of the guest/host ratio. Association constants K_{ass} were obtained by nonlinear least-squares fitting of these plots using WinEQNMR2 program.⁴

¹ P. Dimitrov-Raytchev, O. Perraud, C. Aronica, A. Martinez, J.-P. Dutasta, J. Org. Chem. 2010, 75, 2099-2102.

² A. Gautier, J.-C. Mulatier, J. Crassous, J.-P. Dutasta, Org. Lett. 2005, 7, 1207-1210.

³ O. Perraud, P. Dimitrov-Raytchev, A. Martinez, J.-P. Dutasta *Chirality*, 2010, **22**, 885–888.

⁴ M. J. Hynes, J. Chem. Soc. Dalton Trans. **1993**, 311-312.

II/ Job's plots

Figure S1. Job's plot of 1 with OctaGlc. The chemical induced shifts $\Delta\delta$ of the H₁ and H₂ protons of 1 were measured, α is the molar ratio of 1.

Figure S2. Job's plot of 1 with Oct β Glc. The chemical induced shifts $\Delta\delta$ of the H₁ and H₂ protons of 1 were measured, α is the molar ratio of 1.

III/¹H NMR titrations

Figure S3. Illustration of the evolution of ¹H NMR spectra during titrations: this figure is focused on the NCH₂'s NMR signal used to calculate K_{ass} for the titration of RRR-*M*-**2** with OctβGlc (0; 0.45; 0.9; 1.35; 1.8; 2.25; 2.7; 3.38; 4.05; 4.95; 5.85; 6.75 equivalents from bottom to top).

Figure S4. Titration curve of *M*-1 (c = 0.7 mM) with Oct α Glc (c = 6.3 mM). The chemical induced shifts $\Delta\delta$ of the H₁ and H₂ protons of *M*-1 were measured and plotted as a function of the ratio [Oct α Glc]/[*M*-1]. K_{ass} = 216 ± 15 M⁻¹.

Figure S5. Titration curve of *M*-1 (c = 0.7 mM) with Oct β Glc (c = 10.0 mM). The chemical induced shifts $\Delta\delta$ of the H₁ and H₂ protons of *M*-1 were measured and plotted as a function of the ratio [Oct β Glc]/[*M*-1]. K_{ass} = 64 ± 6 M⁻¹.

Figure S6. Titration curve of *P*-1 (c = 0.5 mM) with OctaGlc (c = 7.2 mM). The chemical induced shifts $\Delta\delta$ of the H₁ and H₂ protons of *P*-1 were measured and plotted as a function of the ratio [OctaGlc]/[*M*-1]. K_{ass} = 31 ± 5 M⁻¹.

Figure S7. Titration curve of RRR-*M*-**2** (c = 2.0 mM) with OctaGlc (c = 11.6 mM). The chemical induced shifts $\Delta\delta$ of the NCH₂ protons of RRR-*M*-**2** were measured and plotted as a function of the ratio [OctaGlc]/[RRR-*M*-**2**]. **Z**_{ass} = 123 ± 3 M⁻¹.

Figure S8. Titration curve of RRR-*M*-**2** (c = 2.0 mM) with Oct β Glc (c = 22.5 mM). The chemical induced shifts $\Delta\delta$ of the NCH₂ protons of RRR-*M*-**2** were measured and plotted as a function of the ratio [Oct β Glc]/[RRR-*M*-**2**]. **K**_{ass} = 226 ± 2 M⁻¹.

Figure S9. Titration curve of SSS-*P*-**2** (c = 1.4 mM) with Oct β Glc (c = 20.0 mM). The chemical induced shifts $\Delta\delta$ of the NCH₂ protons of SSS-*P*-**2** were measured and plotted as a function of the ratio [Oct β Glc]/[SSS-*P*-**2**]. K_{ass} = 115 ± 8 M⁻¹.

Figure S10. Titration curve of SSS-*M*-**2** (c = 0.5 mM) with OctaGlc (c = 6.9 mM). The chemical induced shifts $\Delta\delta$ of the NCH₂ protons of SSS-*M*-**2** were measured and plotted as a function of the ratio [OctaGlc]/[SSS-*M*-**2**]. K_{ass} = 115 ± 4 M⁻¹.

Figure S11. Titration curve of SSS-*M*-**2** (c = 0.5 mM) with Oct β Glc (c = 20.0 mM). The chemical induced shifts $\Delta\delta$ of the NCH₂ protons of SSS-*M*-**2** were measured and plotted as a function of the ratio [Oct β Glc]/[SSS-*M*-**2**]. K_{ass} = 184 ± 5 M⁻¹.