Amalgamating at the Molecular Level. Study of the Strong Closed-Shell Au(I)…Hg(II) interaction.

José M. López-de-Luzuriaga,*^a Miguel Monge,^a M. Elena Olmos,^a David Pascual^a and Tania Lasanta^a

^a Departamento de Química, Universidad de La Rioja, Grupo de Síntesis Química de La Rioja, UA-CSIC. Complejo Científico-Tecnológico, 26004-Logroño, SPAIN.

ELECTRONIC SUPPLEMENTARY INFORMATION

Experimental Section.

General. All reactions were carried out under dry and deoxygenated argon atmosphere using Schlenk techniques. All solvents were distilled. $[Hg(C_6F_5)_2]$ was prepared according to literature methods.¹

Instrumentation. Infrared spectra were recorded in the 4000-200 cm⁻¹ range on a Perkin-Elmer FT-IR Spectrum 1000 spectrophotometer, using Nujol mulls between polyethylene sheets. ¹H, and ¹⁹F and ³¹P{¹H} NMR spectra were recorded on a Bruker Avance 400 in chloroform solutions. Chemical shifts are quoted relative to SiMe₄ (¹H external), CFCl₃ (¹⁹F external) and H₃PO₄ 85% (³¹P external).

Synthesis of $[Au(C_6F_5)PMe_3]$ 1: To a dichloromethane solution (30 mL) of the $[Au(C_6F_5)(tht)]$ (0.4 g, 0.88 mmol) was added 1M THF solution of PMe₃ (0.88ml, 0.88 mmol). The reaction mixture was stirred for 30 min at room temperature. Evaporation of the solvent under vacuum and addition of *n*-hexane gave rise to complex **1** as a white solid in 54% yield. ¹⁹F NMR (282 MHz, CDCl₃), δ -116.5 (m,2F, F_o), -158.6 (t, ³J_{F-F}=20 Hz, 1F, F_p), -162.5 (m, 2F, F_m). ¹H NMR (300 MHz, CDCl₃), δ 1.61 ppm (d). ³¹P NMR (121.5 MHz, CDCl₃), δ 3.28 ppm (s). FT-IR (Nujol mulls): v = 1502, 954.5, 786 cm⁻¹ (Au-C₆F₅). Anal. Calcd for (C₉H₉AuF₅P): C, 24.56; H, 2.06%. Found: C, 24.16; H, 2.05%.

Synthesis of $[Au(C_6F_5)PMe_3]_2[Hg(C_6F_5)_2]$ 2: To a dichloromethane solution (30 mL) of $[Hg(C_6F_5)_2]$ (0.122 g, 0.227 mmol) was added $[Au(C_6F_5)_2PMe_3]$ (0.200 g, 0.454 mmol). The reaction mixture was stirred for 30 min at room temperature. Evaporation of the solvent under vacuum and addition of *n*-hexane gave rise to complex **2** as a white solid in 87% yield. ¹⁹F NMR (282 MHz, CDCl₃), δ -119.7(m,³J_{F-Hg} = 414 Hz, 4F, F_o, Hg-C₆F₅), -150.6(m, 2F, F_p, Hg-C₆F₅), -159.0 (m, 4F, F_m, Hg-C₆F₅), -116.6 (m, 4F, F_o, Au-

C₆F₅), -158.6(t, ${}^{3}J_{F-F}$ =20 Hz, 2F, F_p, Au-C₆F₅), -162.5 ppm (m, 4F, F_m, Au-C₆F₅). ${}^{1}H$ NMR (300 MHz, CDCl₃), δ 1.6 ppm (d). ${}^{31}P$ NMR (121.5 MHz, CDCl₃), δ 3.3 ppm (s). FT-IR (Nujol mulls): v = 1500, 960, 787 cm⁻¹ (Au-C₆F₅), v = 1637, 1371 and 805 cm⁻¹ (Hg-C₆F₅). Anal. Calcd for (C₃₀H₁₈Au₂F₂₀HgP₂): C, 25.47; H, 1.28%. Found: C, 25.42; H, 1.28%.

Computational details.

All calculations were performed using the Gaussian 09 suite of programs² using DFT/B3LYP,³ Hartree-Fock and MP2⁴ levels of theory

The interaction energy between ionic counterparts at Hartree-Fock (HF) and MP2 levels of theory was obtained according to equation:

$$\Delta E = E_{AB}^{(AB)} - E_A^{(AB)} - E_B^{(AB)} = V(R)$$

a counterpoise correction for the basis-set superposition error $(BSSE)^5$ on ΔE was thereby performed. We fitted the calculated points using a four-parameter equation, which had been previously used⁶ to derive the Herschbach-Laurie relation:⁷

$$\Delta E = V(R) = Ae^{-BR} - CR^{-r}$$

Basis Sets. The 19-valence electron (VE) quasirelativistic (QR) pseudopotential (PP) of Andrae⁸ was employed for gold together with two f-type polarization functions (exponents: 0.2, 1.19).⁹ Similarly, the 20-valence valence electron (VE) quasirelativistic (QR) pseudopotential (PP) of Andrae⁸ was employed for mercury together with two f-type polarization functions (exponents: 0.545, 1.58).¹⁰

The atoms F, P, and C were treated by Stuttgart pseudopotentials,¹¹ including only the valence electrons for each atom. For these atoms double-zeta basis sets of ref 10 were

used, augmented by d-type polarization functions.¹² For the H atom, a double-zeta, plus a p-type polarization function was used.¹³

and angles (°) for model systems A, B and C at the MP2 equilibrium distances. M-M Hg-Cipso Au-C Au-P Hg-C C-Au-P C-Hg-C 3.186 3.288 179.96 Complex 2 2.085 2.288 2.091 176.81

2.063

2.058

2.058

2.356

2.346

2.346

2.119

2.112

-

177.39

180.0

180.0

177.85

180.0

-

Table S1. Main structural parameters for complex 1 and DFT optimized distances (Å)

References.	

Model A

Model B

Model C

3.098

3.011

3.009

3.176

3.469

[1] Deacon, G. B.; Cosgriff, J. E.; Lawrenz, E. T.; Forsyth, C. M.; Wilkinson, D. L. in Synthetic Methods of Organometallic and Inorganic Chemistry (Herrmann/Brauer). Ed. Herrmann, W. A. Thieme, New York, 1997, vol 6 (vol. Ed. Edelmann), p. 48-51.

[2] Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A.
F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,
T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,
G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;

Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

[3] a) Parr, R. G.; Yang, W. *Density-functional theory of atoms and molecules*; Oxford University Press: New York, 1989. b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785.

[4] a) Møller, C.; Plesset, M.S. Phys. Rev. 1934, 46, 618. b) Hehre, W.J.; Radom, L.;

Schleyer, P.v.R.; Pople, J.A. *Ab Initio Molecular Orbital Theory*; John Wiley: New York, 1986.

[5] Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.

[6] Pyykkö, P. Chem. Rev. 1997, 97, 597.

[7] Herschbach, D. R.; Laurie, V. W. J. Chem. Phys. 1961, 35, 458.

[8] Andrae, D.; Häusserman, U.; Dolg, M.; Stoll, H.; Preuss, H. *Theor. Chim. Acta* 1990, 77, 123.

[9] Pyykkö, P.; Runeberg, N.; Mendizabal, F. Chem. Eur. J. 1997, 3, 1451.

[10] Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408.

[11] Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 80, 1431.

[12] Huzinaga, S. *Gaussian Basis Sets for Molecular Calculations*; Elsevier: Amsterdam, 1984; p16.

[13] Huzinaga S. J. Chem. Phys. 1965, 42, 1293.

GEOMETRIES IN XYZ FORMAT FOR THE MODEL SYSTEMS AT THE MP2

EQUILIBRIUM DISTANCES

MODEL A

Нд	0.0000000	0.0000000	0.0000000
С	2.11886200	0.0000000	0.0000000
С	2.85041100	1.18003900	0.0000000
С	2.84797000	-1.17729400	-0.07983400
С	4.23966700	1.20647600	-0.06902200
С	4.23569500	-1.20475600	-0.15309100
С	4.93398200	0.00086400	-0.14489900
С	-2.11733400	-0.02496800	0.07525100
С	-2.83457500	-1.21125200	0.02711200
С	-2.86255400	1.14630500	0.09575000
С	-4.22361500	-1.25551500	0.00362200
С	-4.25359600	1.15592600	0.07623500
С	-4.93560501	-0.05822000	0.03097600
F	2.19724100	-2.36345300	-0.11203400
F	4.90020201	-2.35891701	-0.23677900
F	6.26139300	-0.00032900	-0.21438800
F	4.90840000	2.35700300	-0.07285900
F	2.20293600	2.35852400	0.03926000
F	-2.22829700	2.33258100	0.10629800
F	-4.93582300	2.29841500	0.09074600
F	-6.26454100	-0.07551200	0.00895400
F	-4.87679401	-2.41785100	-0.05065300
F	-2.17112400	-2.38965300	-0.02264100
Н	1.09655390	-3.94938158	-2.06171432
P	-0.02148910	-3.37203957	-2.72752631
Au	-0.04321410	-1.02434657	-2.92343131
Н	-0.05167610	-4.16495557	-3.91101931
Н	-1.09006809	-3.96396456	-1.99642131
С	-0.05999110	1.03709043	-3.00136731
С	-1.24539610	1.76997743	-2.99093531
С	1.11410790	1.78751343	-3.03064831
С	-1.28029810	3.16088743	-3.00118231
F	-2.42971510	1.12991843	-2.94237331
С	1.12796590	3.17878843	-3.04179431
F	2.30874091	1.16507443	-3.02227431
С	-0.08147110	3.86922943	-3.02703631
F	-2.43936510	3.81892643	-2.97490031
F	2.27735090	3.85402843	-3.05471431
F	-0.09147810	5.19905443	-3.03357831

MODEL B

Hg	0.0000000	0.0000000	0.00000000
С	2.11186100	0.00000000	0.0000000
С	2.84219400	1.18278500	0.0000000
С	2.84219400	-1.18278500	0.0000000
С	4.23311799	1.20711900	0.0000000
С	4.23311799	-1.20711900	0.0000000
С	4.92933200	-0.0000000	0.0000000
С	-2.11186100	0.0000000	-0.0000000

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

С	-2.84219400	-1.18278499	-0.0000000
С	-2.84219400	1.18278500	-0.0000000
С	-4.23311800	-1.20711899	0.0000000
С	-4.23311800	1.20711900	-0.0000000
С	-4.92933200	-0.0000000	-0.0000000
F	2.19530800	-2.36169100	0.0000000
F	4.90276699	-2.35835999	0.0000000
F	6.25759400	-0.0000000	0.0000000
F	4.90276699	2.35835999	-0.0000000
F	2.19530800	2.36169100	0.0000000
F	-2.19530800	2.36169100	-0.0000000
F	-4.90276700	2.35836000	-0.0000000
F	-6.25759400	-0.0000000	-0.0000000
F	-4.90276700	-2.35835999	-0.0000000
F	-2.19530800	-2.36169100	0.0000000
Н	1.09220600	-3.34269084	-2.36485772
P	0.0000000	-2.66658884	-2.98413872
Au	-0.0000000	-0.32028685	-2.99391672
Н	-0.01471200	-3.34830185	-4.23632572
Н	-1.08228000	-3.33536384	-2.34063772
С	0.0000000	1.73753716	-3.00249272
С	-1.17863700	2.47787116	-2.99456872
С	1.17905200	2.47714716	-3.01707772
С	-1.21431900	3.88779315	-2.99839472
F	-2.37057400	1.84906316	-2.98009072
С	1.20351500	3.86869116	-3.02397672
F	2.37068000	1.84759616	-3.02537272
С	0.0000000	4.56880215	-3.01429172
F	-2.35867000	4.57905415	-2.98798372
F	2.35992300	4.53951916	-3.03824572
F	0.00002700	5.90239716	-3.01997672

MODEL C

Au	0.0000000	0.0000000	0.0000000
С	2.05784100	0.0000000	0.0000000
С	2.84072600	1.15084100	0.0000000
С	2.75379400	-1.20527700	0.01892100
С	4.23215100	1.12375200	0.01721300
С	4.14342300	-1.28052600	0.03650100
С	4.88699300	-0.10411300	0.03557300
P	-2.34632200	-0.0000000	0.0000000
F	2.25596100	2.36495500	-0.01734000
F	4.94545700	2.25454100	0.01635300
F	6.21959400	-0.15317800	0.05220000
F	4.77147501	-2.46066700	0.05415100
F	2.08113000	-2.37313900	0.02069200
Н	-3.02281199	0.55890400	1.12379400
Н	-3.02500000	0.69120700	-1.04650200
Н	-3.01777400	-1.25535000	-0.07702300
P	-0.38307727	-2.69392098	2.74910113
Au	-0.36605127	-0.35528998	2.95631113
Н	0.73144173	-3.23453798	2.09673613
Н	-0.42841027	-3.38799998	3.96409013
Н	-1.47183427	-3.20465298	2.03232913
С	-0.35837727	1.70382202	3.14089613
С	0.81881173	2.44584302	3.14988513
С	-1.53150627	2.44191502	3.26577513

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

С	0.84827373	3.83189202	3.27389413
F	2.01072274	1.82293802	3.03459913
C	-1.55341427	3.82780902	3.39244013
F	-2.72690928	1.81489602	3.26840713
C	-0.35064026	4.52747802	3.39628213
F	2.00620771	4.50335306	3.27744766
F	-2.70766227	4.49528402	3.51022913
F	-0.34702326	5.85716702	3.51662713