Supporting Information

Fe₂O₃-supported nano-gold catalyzed one-pot synthesis of N-alkylated anilines from nitroarenes and alcohols

Qiling Peng, Yan Zhang, Feng Shi^{*}, Youquan Deng

Centre for Green Chemistry and Catalysis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China *corresponding author: Tel.: +86-931-4968142; Fax: +86-931-4968116; E-mail: fshi@licp.cas.cn

- 1. Materials and Methods
- 2. Chlorine concentration measurement
- 3. Catalyst preparation
- 4. Table S2. ICP-AES and BET data of various catalysts
- 5. General procedure for the reaction of nitrobenzene with d7-benzyl alcohol
- 6. General procedure for the H-D exchange reaction between aniline and D_2O
- 7. Fig. S2. XRD patterns of the catalysts in the experiments.
- 8. XPS spectra of catalyst samples
- 9. HRTEM images of the catalyst samples
- 10.GC-MS spectra of compounds observed by GC-MS
- 11. Compounds characterization and NMR spectra

1. Materials and Methods

All solvent and chemicals were obtained commercially and were used as received. NMR spectra were measured using a Bruker ARX 400 or ARX 100 spectrometer at 400 MHz (¹H) and 100 MHz (¹³C). All spectra were recorded in CDCl₃ and chemical shifts (δ) are reported in ppm relative to tetramethylsilane referenced to the residual solvent peaks. Mass spectra were in general recorded on an HP 6890/5973 GC-MS. High-resolution TEM analysis was carried out on a JEM 2010 operating at 200 KeV. The catalyst samples after pretreatment were dispersed in methanol, and the solution was mixed ultrasonically at room temperature. A part of solution was dropped on the grid for the measurement of TEM images. Scanning electron microscopy (SEM) was performed with a Hitachi S4800 with a cold FEG (Field Emission Gun). The setup was equipped with an Energy Dispersive X-ray system EDAX Genesis 4.52. Samples were mounted on Al-holder with conducting carbon tape. XRD measurements are conducted by a STADI P automated transmission diffractometer (STOE) equipped with an incident beam curved germanium monochromator selecting Cu Kal radiation and a 6° position sensitive detector (PSD). The XRD patterns are scanned in the 2θ range of 10-50°. For the data interpretation the software WinXpow (STOE) and the database of Powder Diffraction File (PDF) of the International Centre of Diffraction Data (ICDD) were used. The XPS measurements were performed with a VG ESCALAB 210 instrument provided with a dual Mg/Mg anode X-ray source, a hemispherical capacitor analyser and a 5 keV Ar⁺ ion-gun. All spectra were recorded using non-monochromatic Mg Ka (1253.6 eV) radiation. Nitrogen adsorption-desorption isotherms were measured at 77 K using Micromeritics 2010 instrument. The pore-size distribution was calculated by Barrett, Joyner and Halenda (BJH) method from desorption isotherm. The Ag and Mo contents of the catalysts were measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES), using an Iris advantage Thermo Jarrel Ash device.

2. Chlorine concentration measurement

The Cl⁻ ion concentration was tested at 25 °C through potentialstatic scanning on a CHI660D or electrochemical workstation. A Cl⁻ ion electrode was used as a working electrode and a platinum wire and an Ag/AgCl electrode were used as counter and reference electrodes respectively. Before analysis, a series of Cl⁻ ion standard solutions including 2.0 ppm, 4.0 ppm, 8.0 ppm, 40.0 ppm,

200.0 ppm and 400.0 ppm were prepared using NaCl as the Cl⁻ ion source. The potentialstatic scanning was carried out at interval of 0.1s for 1 min in the standard solutions, and the corresponding average potential value (mV) was obtained, which were repeated three times. The calibrated results were shown in Table S1 and Fig. S1. The electrode system was calibrated with a 5.0 ppm standard solution and the chlorine determination could be carried out through potentialstatic scanning when the error bar is less than 0.5%.

Concentration	Average Potential (standard deviation)/mV		
2.0 ppm	253.0 (8.0) mV		
4.0 ppm	237.0 (9.8)mV		
8.0 ppm	222.7 (7.6)mV		
40.0 ppm	187.7 (2.3)mV		
200.0 ppm	150.0 (2.0)mV		
400.0 ppm	131.7 mV (1.2mV)		

Table S1. The results for Cl⁻ ion standard solutions and corresponding potentials

Fig. S1. The linearity of Cl⁻ ion standard solutions and corresponding potentials

3. Catalyst preparation

General procedure for the preparation of Fe₂O₃

An aqueous solution (16 mL) of Fe(NO₃)₃·9H₂O (13.00 mmol, 5.24 g) was drop wise added into 75 mL Na₂CO₃ solution (0.47 M) under vigorous stirring in 0.5 h, then ultrasonic washed for 1 h and centrifuged (10000 rpm for 10 min). The recovered precipitate was redispersed in 1000 mL distilled water and further ultrasonic washed for 1 h. Then the resulting slurry was calcined at 350 °C in static air. The temperature was ramped from room temperature at a rate of 8.75 °C/min to the final temperature, which was maintained for 5 h. In the end, \sim 1.00 g brown Fe₂O₃ catalyst was obtained.

General procedure for the preparation of Au/Fe₂O₃

Au/Fe₂O₃ catalysts were prepared by co-precipitation method. Aqueous solution (16 mL) of Fe(NO₃)₃·9H₂O (13.00 mmol, 5.24 g) and 0.63 mL, 1.02 mL, 1.47 mL, or 2.10 mL HAuCl₄·4H₂O (1g/10mL) were mixed and added into 75 mL Na₂CO₃ solution (0.47 M) under vigorous stirring in 0.5 h, then ultrasonic washed for 1 h and centrifuged (10000 rpm for 10 min). The recovered precipitates were redispersed in 330 mL, 500 mL, 700 mL and 1000 mL distilled water respectively and further ultrasonic washed for 1 h to remove residual chlorine. The operation was repeated till the remaining Cl⁻ ion concentration was less than 6 ppm. Then the resulting slurries were calcined at 350 °C in static air. The temperature was ramped from room temperature at a rate of 8.75 °C/min to the final temperature, which was maintained for 5 h. In the end, four different Au loading of \sim 1.00 g black Au/Fe₂O₃ catalysts were obtained and denoted as 1.8wt% Au/Fe₂O₃, 4.3wt% Au/Fe₂O₃, 6.3wt% Au/Fe₂O₃ and 9.1wt% Au/Fe₂O₃ respectively.

The catalysts Au/CeO₂, Au/Co₃O₄, Au/NiO, Pd/Fe₂O and Ru/Fe₂O₃ were prepared with the same procedure.

Sample	Loading	Surface area	Pore volume	BET average pore
	(wt %)	(m^2/g)	(cm^3/g)	diameter (Å)
Fe ₂ O ₃	0	135.2	0.354	110.2
Au/Fe ₂ O ₃	1.8	85.6	0.291	136.0
Au/Fe ₂ O ₃	4.3	73.6	0.278	151.4
Au/Fe ₂ O ₃	6.3	97.8	0.375	153.2
Au/Fe ₂ O ₃	9.1	129.8	0.304	93.5
Au/CeO ₂	4.6	77.4	0.055	28.6
Au/CoO	2.8	95.4	0.495	207.4
Au/NiO	2.5	128.1	0.210	65.4
Pd/Fe ₂ O ₃	3.6	162.0	0.423	104.4
Ru/Fe ₂ O ₃	2.9	101.0	0.335	132.7

4. Table S2. ICP-AES and BET data of various catalysts

5. General procedure for the reaction of nitrobenzene with d7-benzyl alcohol

I. 0.1 mmol (12.3 mg) nitrobenzene, 1.0 mmol (115.0 mg) d_7 -benzyl alcohol and 20 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube. Then, it was reacted at 160 °C under argon atmosphere for 1 h. After it was cooled to room temperature, the reaction mixture was dissolved in acetone and analyzed by GC-MS.

II. 0.1 mmol (12.3 mg) nitrobenzene, 1.0 mmol (115.0 mg) d_7 -benzyl alcohol and 20 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube. Then, it was reacted at 160 °C under argon atmosphere for 2h. After it was cooled to room temperature, the reaction mixture was dissolved in acetone and analyzed by GC-MS.

6. General procedure for the H-D exchange reaction between aniline and D₂O

25.0 mmol (500.0 mg) D_2O , 12.5 mmol (1164.0 mg) aniline and 50 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 160 °C under argon atmosphere for 2.5 h. Then, the reaction mixture was dissolved in acetone after it was cooled to room temperature and analyzed by GC-MS.

7. Fig. S2. XRD patterns of the catalysts in the experiments.

Fig. S2a. XRD patterns of the catalyst samples

Fig. S2b. XRD patterns of 9.1wt% Au/Fe₂O₃ after being used for 2 times

8. XPS spectra of catalyst samples

Fig. S3a. XPS spectra of the Fe₂O₃

Fig. S3b. XPS spectra of the 1.8 wt % Au/Fe₂O₃

Fig. S3c. XPS spectra of the 4.3 wt % Au/Fe₂O₃

Fig. S3d. XPS spectra of the 6.3 wt % Au/Fe₂O₃

Fig. S3e. XPS spectra of the 9.1wt % Au/Fe₂O₃

Fig. S3f. XPS spectra of the 4.6wt % Au/CeO₂

Fig. S3h. XPS spectra of the 2.5wt % Au/NiO

Fig. S3i. XPS spectra of the 3.6wt % Pd/Fe₂O₃

9. HRTEM images of the catalyst samples

Fig. S4. TEM images of the catalysts

Fig. S5a. GC-MS spectra of substances produced from the reaction of d₇-benzyl alcohol (115.0 mg,1.0 mmol), nitrobenzene (12.3 mg, 0.1 mmol) and 20 mg 9.1wt % Au/Fe₂O₃ at 160

°C for 1h

Fig. S5c. MS spectra of aniline

Fig. S6a. GC-MS spectra of all substances produced from the reaction of d₇-benzyl alcohol (115.0 mg, 1.0 mmol), nitrobenzene (12.3 mg, 0.1 mmol) and 20 mg 9.1wt % Au/Fe₂O₃ at 160 °C for 2h

Fig. S6b. MS spectra of d₆- benzaldehyde

Fig. S6d. MS spectra of d₆-N-(2-phenylethylidene) aniline

Fig. S6e. MS spectra of d7-N-benzylaniline

Fig. S7. Ion selective MS spectra of H-D exchange reaction between aniline and D₂O

11. Compounds characterization and NMR spectra Synthesis of *N*-Benzyl aniline

Nitrobenzene (246.2 mg, 2 mmol), benzyl alcohol (1081.4 mg, 10 mmol) and 100 mg 9.1wt % Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 160 °C under Argon atmosphere for 17 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine/petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.207). Following the procedure above, *N*-benzyl aniline was obtained as a yellow solid (346 mg, Isolated yield = 94%, mp = 34 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.15-7.45 (m, 7H), δ 6.55-6.80 (m, 3H), δ 4.32 (s, 2H), δ 4.02 (s, 1H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 148.12, 139.40, 129.25, 128.62, 127.49, 127.21, 117.53, 112.80, 48.29. *m/z* (rel. int.) 183(56), 182(21), 106(17), 91(100), 77(20), 65(20), 51(11).

Synthesis of N-(pyridin-2-ylmethyl) aniline

Nitrobenzene (246.2 mg, 2 mmol), pyridin-2-ylmethanol (2182.6 mg, 20 mmol) and 200 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted under Argon atmosphere at 160 °C for 9 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 25/1/50, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.387). Following the procedure above, *N*-(pyridin-2-ylmethyl) aniline was obtained as a white solid (340 mg, Isolated yield = 92%, mp = 52 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 8.50-8.70 (d, 1H), δ 7.60-7.70 (t, 1H), δ 7.25-7.40 (d, 1H), δ 7.05-7.25 (m, 3H), δ 6.60-6.80 (m, 3H), δ 4.48 (s, 2H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 158.49, 149.20, 147.87, 136.64, 129.24, 122.09, 121.58, 117.58, 113.03, 49.28. *m/z* (rel. int.) 185(10), 184(74), 183(50), 107(23), 106(100), 105(13), 80(23), 79(19), 78(14), 77(37), 65(15), 51(18), 39(12).

Synthesis of N-benzyl-4-chloroaniline

Cl² 1-Chloro-4-nitro-benzene (315.1 mg, 2 mmol), benzyl alcohol (1189.5 mg, 11 mmol) and 100 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 150 °C under Argon atmosphere for 24 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.162). Following the procedure above, *N*-benzyl-4-chloroaniline was obtained as a yellow solid (370 mg, Isolated yield = 85%, mp = 43 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.20-7.40 (m, 5H), δ 7.05-7.15 (m, 2H), δ 6.50-6.60 (m, 2H), δ 4.30 (s, 2H), δ 4.21 (s, 1H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 146.52, 138.84, 129.05, 128.68, 127.42, 127.37, 122.20, 113.97, 48.37. *m/z* (rel. int.) 217(34), 91(100), 65(12).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Synthesisof 4-chloro-N-(2-methylbenzyl) aniline

Cl⁻ 1-Chloro-4-nitro-benzene (315.1 mg, 2 mmol), 2-methyl benzyl alcohol (1342.9 mg, 11 mmol) and 100 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 150 °C under Argon atmosphere for 24 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.207). Following the procedure above, 4-chloro-*N*-(2-methylbenzyl) aniline was obtained as a yellow solid (375 mg, Isolated yield = 81%, mp = 40 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.00-7.40 (m, 6H), δ 6.50-6.60 (m, 2H), δ 4.24 (s, 2H), δ 4.35 (s, 3H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 146.20, 136.31, 136.13, 130.46, 129.06, 128.19, 127.60, 126.17, 122.87, 114.13, 46.61, 18.88. *m/z* (rel. int.) 231(28), 105(100), 104(33), 79(11), 77(15).

Synthesis of 4-chloro-N-(4-isopropylbenzyl) aniline

Cl² 1-Chloro-4-nitro-benzene (315.1 mg, 2 mmol), (4-Isopropyl-phenyl)-methanol (1652.4 mg, 11 mmol) and 100 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 150 °C under Argon atmosphere for 26 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.216). Following the procedure above, 4-chloro-*N*-(4-isopropylbenzyl) aniline was obtained as a yellow solid (472 mg, Isolated yield = 91%, mp = 41 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.00-7.30 (m, 6H), δ 6.50-6.60 (m, 2H), δ 4.25 (s, 2H), 4.10 (s, 1H), δ 2.80-3.00 (m, 1H), δ 1.20-1.30 (d, 6H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 148.11, 146.62, 136.13, 129.02, 127.52, 126.72, 122.01, 113.89, 48.12, 33,77, 23.99. *m/z* (rel. int.) 260(25), 259(100), 134(34), 133(99), 118(22), 117(45), 115(17), 105(50), 91(33).

Synthesis of 4-chloro-N-(pyridin-2-ylmethyl) aniline

Cl⁻¹-Chloro-4-nitro-benzene (315.1 mg, 2 mmol), pyridin-2-ylmethanol (2182.6 mg, 20 mmol) and 200 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 160 °C under Argon atmosphere for 9 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 25/1/50, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.315). Following the procedure above, 4-chloro-*N*-(pyridin-2-ylmethyl) aniline was obtained as a white solid (394 mg, Isolated yield = 90%, mp = 85 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 8.50-8.60 (d, 1H), δ 7.60-7.70 (t, 1H), δ 7.10-7.40 (m, 4H), δ 6.50-6.65 (m, 2H), δ 4.85 (s, 1H), δ 4.42 (s, 2H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 157.79, 149.16, 146.34, 136.66, 129.01, 122.19, 121.54, 114.05, 49.12. *m/z* (rel. int.) 218(79), 217(44), 142(31), 141(12), 140(100),

139(14), 111(14), 107(18), 93(13), 92(13), 91(11), 80(28), 79(25), 78(14), 77(11), 75(16), 65(17), 52(11), 51(13), 39(12).

Synthesis of N-benzylbiphenyl-2-amine

2-Nitro-biphenyl (398.4 mg, 2 mmol), benzyl alcohol (1081.4 mg, 10 mmol)

and 100 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 160 °C under Argon atmosphere for 19 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/80, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.928). Following the procedure above, *N*-benzylbiphenyl-2-amine was obtained as a white solid (514 mg, Isolated yield = 99%, mp = 86 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.10-7.50 (m, 12H), δ 6.70-6.85 (m, 2H), δ 4.33(s, 2H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 139.12, 130.27, 129.33, 128.94, 128.70, 128.56, 127.33, 127.23, 127.17, 118.03, 111.89, 48.52. *m/z* (rel. int.) 259(100), 258(36), 182(14), 180(40), 166(11), 167(40), 166(11), 152(13), 106(13), 91(65), 65(10).

Synthesis of 4-methoxy-N-octylaniline

1-Methoxy-4-nitro-benzene (306.3 mg, 2 mmol),

octan-1-ol (2604.6 mg, 20 mmol) and 250 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 180 °C under Argon atmosphere for 24 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/200, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.474). Following the procedure above, 4-methoxy-*N*-octylaniline was obtained as a yellow liquid (418 mg, Isolated yield = 89%). ¹H NMR (400MHz, CDCl₃, ppm): δ 6.75-6.80 (m, 2H), 6.55-6.65 (m, 2H), δ 3.74 (s, 3H), δ 3.43 (s, 1H), δ 3.00-3.10 (m, 2H), δ 1.55-1.65 (m, 2H), δ 1.25-1.40 (m, 10H), δ 0.85-0.90 (m, 3H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 151.99, 142.68, 114.83, 114.09, 55.78, 45.06, 31.80, 29.61, 29.41, 29.23, 27.17, 22.63, 14.06. *m/z* (rel. int.) 235(23), 136(100).

Synthesis of *N*, *N*-dibenzylaniline

Nitrobenzene (246.2 mg, 2 mmol), benzyl alcohol (2162.8 mg, 20 mmol) and 200 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 160 °C under Argon atmosphere for 15 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.513). Following the procedure above, *N*, *N*-dibenzylaniline was obtained as a yellow solid (526 mg, Isolated yield = 96%, mp = 68 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.00-7.40 (m, 12H), δ 6.60-6.80 (m, 3H), δ 4.66 (s, 4H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 149.08, 138.53, 129.20, 128.62, 126.87, 126.65, 116.70, 112.42, 54.18. *m/z* (rel. int.) 273(44), 196(18), 182(18), 181(12), 104(10), 92(10), 91(100), 77(22), 65(14).

Synthesis of N, N-dibenzyl-4-methylaniline

1-Methyl-4-nitro-benzene (275 mg, 2 mmol), benzyl alcohol (2162.8 mg,

20 mmol) and 200 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 170 °C under Argon atmosphere for 17 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.504). Following the procedure above, *N*, *N*-dibenzyl-4-methylaniline was obtained as a white solid (544 mg, Isolated yield = 95%, mp = 52 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.20-7.40 (m, 10H), δ 6.95-7.00 (m, 2H), δ 6.60-6.70 (m, 2H), δ 4.61 (s, 4H), δ 2.22 (s, 3H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 146.99, 138.83, 129.70, 128.55, 126.67, 125.82, 112.63, 54.39, 20.19. *m/z* (rel. int.) 287(56), 210(19), 196(17), 195(20), 194(12), 118(10), 91(100), 65(17).

Synthesis of N, N-dibenzyl-2-methylaniline

1-Methyl-2-nitro-benzene (275 mg, 2 mmol), benzyl alcohol (2162.8 mg, 20

mmol) and 200 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 160 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.273). Following the procedure above, *N*, *N*-dibenzyl-2-methylaniline was obtained as a white solid (486 mg, Isolated yield = 85%, mp = 42 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.10-7.40 (m, 11H), δ 7.00-7.10 (t, 1H), δ 6.90-7.00 (m, 2H), δ 4.07 (s, 4H), δ 2.45 (s, 3H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 149.85, 138.54, 134.01, 131.06, 128.66, 128.11, 126.85, 126.04, 123.44, 122.42, 56.84, 18.53. *m/z* (rel. int.) 287(31), 210(12), 196(34), 195(11), 194(11), 118(18), 91(100), 65(19).

Synthesis of N, N-dibenzyl-4-methoxyaniline

1-Methoxy-4-nitro-benzene (306.3 mg, 2 mmol), benzyl alcohol (2162.8 mg, 20 mmol) and 200 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 160 °C under Argon atmosphere for 8 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.255). Following the procedure above, *N*, *N*-dibenzyl-4-methoxyaniline was obtained as a white solid (547 mg, Isolated yield = 90%, mp = 85 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.00-7.50 (m, 10H), δ 6.50-7.00 (m, 4H), δ 4.57 (s, 4H), δ 3.72 (s, 3H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 151.63, 143.78, 138.97, 128.54, 126.87, 126.80, 114.69, 114.42, 55.70, 55.09. *m/z* (rel. int.) 303(90), 226(11), 213(13), 212(81), 211(13), 196(12), 168(17), 134(19), 104(10), 92(16), 91(100), 77(16), 65(22).

Synthesis of N, N-bis(4-isopropylbenzyl)-4-methylaniline

1-Methyl-4-nitro-benzene (275 mg, 2 mmol), (4-Isopropyl-phenyl)-methanol (3004.4 mg, 20 mmol) and 200 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 170 °C under Argon atmosphere for 24 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.446). Following the procedure above, *N*, *N*-bis (4-isopropylbenzyl)-4-methylaniline was obtained as a white solid (627 mg, Isolated yield = 84%, mp = 51 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 6.95-7.30 (m, 10H), δ 6.60-6.80 (m, 2H), δ 4.55-4.65 (m, 4H), δ 2.85-2.95 (m, 2H), δ 2.20-2.30 (m, 3H), δ 1.20-1.30 (d, 12H). ¹³C NMR (100MHz, CDCl₃, ppm): δ 147.41, 136.31, 129.73, 126.65, 125.61, 112.60, 54.08, 33.79, 24.08, 20.25. *m/z* (rel. int.) 371(50), 237(21), 134(11), 133(100), 118(28), 117(22), 105(30), 91(32).

Synthesis of N, N-bis (4-chlorobenzyl) aniline

Nitrobenzene (246.2 mg, 2 mmol), (4-Chloro-phenyl)-methanol

(2851.6 mg, 20 mmol) and 250 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 170 °C under Argon atmosphere for 15 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh;

Rf = 0.336). Following the procedure above, *N*, *N*-bis (4-chlorobenzyl) aniline was obtained as a white solid (646 mg, Isolated yield = 94%, mp = 123 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.10-7.35 (m, 10H), δ 6.60-6.80 (m, 3H), δ 4.58 (s, 4H). ¹³C NMR (100MHz, CDCl₃, ppm): δ 136.75, 132.70, 129.34, 128.81, 128.77, 128.09, 117.48, 112.79, 53.81. *m/z* (rel. int.) 341(23), 127(33), 125(100), 89(14), 77(19).

Synthesis of N, N-dibenzyl-4-chloroaniline

Cl⁻ 1-Chloro-4-nitro-benzene (315.1 mg, 2 mmol), benzyl alcohol (2162.8 mg, 20 mmol) and 200 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 160 °C under Argon atmosphere for 15 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.356). Following the procedure above, *N*, *N*-dibenzyl-4-chloroaniline was obtained as a yellow solid (497 mg, Isolated yield = 81%, mp = 98 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.00-7.40 (m, 12H), δ 6.60-6.80 (m, 2H), δ 4.64 (s, 4H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 137.92, 128.99, 128.72, 127.09, 126.62, 113.83, 54.61. *m/z* (rel. int.) 307(30), 216(11), 91(100), 65(12).

Synthesis of N-benzyl-N-(4-methoxybenzyl) aniline

Benzyl-phenyl-amine (366.5 mg, 2 mmol), (4-Methoxy-phenyl)-

methanol (2763.2 mg, 20 mmol) and 200 mg 9.1wt% Au/Fe₂O₃ were added into a 25 mL pressure tube and reacted at 170 °C under Argon atmosphere for 20 h. The crude mixture was purified by column chromatograph (Et₂O / triethylamine / petroleum ether = 1/1/100, v/v/v; Silica Gel: 200-300 mesh; Rf = 0.194). Following the procedure above, *N*-benzyl-*N*-(4-methoxybenzyl) aniline was obtained as a white solid (590 mg, Isolated yield = 97%, mp = 54 °C). ¹H NMR (400MHz, CDCl₃, ppm): δ 7.10-7.40 (m, 9H), δ 6.60-6.90 (m, 5H), δ 4.62 (s, 2 H), 4.59 (s, 2H), δ 3.78-3.80 (d, 3H); ¹³C NMR (100MHz, CDCl₃, ppm): δ 158.60, 149.21, 138.69, 130.42, 129.17, 128.57, 127.85, 126.81, 126.65, 116.66, 114.01, 112.53, 55.24, 53.99, 53.58. *m/z* (rel. int.) 303(19), 121(100), 91(16), 77(12).

100204-1-PenJL-CMMR(3)

220 200 180 160 140 120 100 80 60 40 20 0 ppm

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

220 200 180 160 140 120 100 80 50 40 20 0 ppm