Supplementary Informations

Preparation of donor-acceptor type organic dyes bearing various electron-withdrawing groups for dye-sensitized solar cell application

Youhei Numata, Islam Ashraful, Yasuhiro Shirai and Liyuan Han*

Photovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan

General

All chemicals and reagents were used as received from chemical companies without further purification. Anhydrous-solvents were degassed by Ar bubbling for 20 min. before use. p(N,N)-diphenylamino)phenylmethyl triphenylphosphonium bromide was synthesized according to the reported method.¹ Column chromatography was performed using with Wakogel-C300 as a stationary phase. UV-Vis-NIR spectra were measured in acetonitrile solution using UV-3600 UV-VIS-NIR Spectrophotometer (SHIMADZU). Photoluminescence spectra were measured using with a F-7000 Fluorescent spectrometer (HITACHI High-Technologies Corporation). Work functions of the dyes adsorbed onto TiO_2 film was measured using with AC-3E Photoemission yield spectrometer (RIKEN KEIKI). The ¹H⁻ and ¹³C-NMR measurements were performed by a DRX-600 spectrometer (Bruker BioSpin). Incident photon-to-current conversion efficiency spectra were measured by a CEP-200BX spectrometer (Bunko Keiki). The *I-V* curves were obtained by a WXS-90S-L2 Super solar simulator (WACOM). Photovoltaic parameters are obtained by the measurements on two different cells of each dye.

Preparation

2-Bromo-5-{*p*-(*N*,*N*-diphenylamino)stylyl}thiophene (1)

A suspension of p-(N,N-diphenylamino)phenylmethyl triphenylphosphonium bromide (5.0 g, 9.975 mmol) in anhydrou-THF (50 mL) was cooled to -78 °C under Ar atmosphere. To the suspension, 2.0 M lithium diisopropylamide n-pentane solution (6.0 mL, 11.969 mmol) was slowly added and the mixture was stirred at the temperature for 1 hours. Then, a solution of 5-bromothiophene-2-carbaldehyde (1.2 mL, 9.975 mmol) in anhydrous-THF (10 mL) was slowly added and stirred for further 1 h keeping the temperature. Then, the reaction mixture was warmed up to room temperature and stirred for overnight. The reaction mixture was dried over anhydrous MgSO₄, and the solvent was evaporated under reduced pressure. The residue was purified by silica-gel column chromatography with mixture of CH₂Cl₂/*n*-hexane (1:2 *v*/*v*) as an eluent to give **1** (3.4 g, 92 %) as a bright yellow solid. ¹H-NMR (600 MHz, CD₂Cl₂): δ 7.31-7.33 (d, 2H), 7.28-7.25 (t, 4H), 7.09-7.08 (d, 4H), 7.06-7.05 (t, 2H), 7.03 (s, 1H), 7.00-6.99 (d, 2H), 6.96-6.95 (d, 1H), 6.79-6.77 (m, 2H); ¹³C-NMR (150 MHz, CD₂Cl₂): 148.10, 147.84, 145.44, 131.02, 130.88, 129.72, 128.75, 127.58, 126.15, 125.09, 123.66, 123.52, 119.71, 110.69; Anal. calcd for C₂₄H₁₈BrNS: C, 66.67; H, 4.20; N, 3.24. Found: C, 66.77; H, 4.25; N, 3.21.

$5'-\{4-(N, N-diphenylamino)stylyl\}-2, 2'-bithiophene-5-carbaldehyde (2)$

To a suspension of 1 (2.0 g, 5.428 mmol), 2-bromothiophene-5-boronic acid (1.02 g, 6.513 mmol) and K_2CO_3 (3.0 g) in a mixture of anhydrous-toluene (30) mL) and anhydrous-MeOH (20 mL), a solution of [Pd(dba)₂] (156 mg, 0.271 mmol) and XantPhos (156 mg, 0.271 mmol) in anhydrous-toluene (6 mL) and anhydrous-MeOH (4 mL) was added. The mixture was warmed up to 85 °C and refluxed for overnight. To the reaction mixture, brine was added and extracted with CH₂Cl₂. The organic layer was dried over anhydrous MgSO₄, and the solvent was removed under reduced pressure. The residue was purified by silica-gel column chromatography with CH_2Cl_2/n -hexane (1:1 v/v) as eluent to give 2 (1.47 g, 59 %) as an vivid orange solid. ¹H-NMR (600 MHz, CDCl₃): δ 9.85 (s, 1H), 7.67 (d, 1H), 7.35-7.33 (d, 2H), 7.29-7.26 (m, 5H), 7.23 (d, 1H), 7.12-7.11 (d, 4H), 7.07-7.06 (d, 1H), 7.05-7.03 (m, 4H), 6.98-6.97 (d, 1H), 6.92-6.89 (d, 1H); ¹³C-NMR (150 MHz, CD₂Cl₂): 182.73, 148.30, 147.77, 147.23, 145.68, 141.95, 137.86, 134.26, 130.69, 129.83, 129.74, 127.77, 127.25, 127.23, 125.19, 124.46, 123.78, 123.33, 119.58; Anal. calcd for C₂₉H₂₁NOS₂: C, 75.13; H, 4.56; N, 2.83. Found: C, 75.20; H, 4.63; N, 2.83.

p-Nitrophenylacetic acid tert-butyldimethylsilyl ester (5a)

A mixture of *p*-nitrophenyl acetic acid (1.0 g, 5.510 mmol), pyridine (0.9 mL, 11.042 mmol), *tert*-butyldimethylsilylchloride (1.66 mg, 11.042 mmol) and N,N-dimethylaminopyridine (34 mg, 0.276 mmol) in THF (30 mL) was stirred at 0 °C for overnight. The suspension was extracted with diethylether and water, and then, the organic layer was dried over anhydrous MgSO₄. The solvent was removed under reduced pressure. The residual clear oil was

purified by silica-gel column chromatography with ethyl acetate/*n*-hexane (1:4, v/v) as eluent to give **3a** (1.2 g, 73 %) as a pale yellow crystal. ¹H-NMR (600 MHz, CDCl₃): δ 8.13-8.11 (d, 1H), 7.60-7.58 (t, 1H), 7.47-7.45 (t, 1H), 7.36-7.35 (d, 1H), 4.02 (s, 2H), 0.85 (s, 9H), 0.26 (s, 6H); ¹³C-NMR (150 MHz, CD₂Cl₂): 170.59, 142.72, 130.84, 123.90, 43.12, 25.55, 17.87, -4.80; Anal. calcd for C₁₄H₂₁NO₄Si: C, 56.92; H, 7.17; N, 4.74. Found: C, 56.86; H, 7.16; N, 4.74.

o-Nitrophenylacetic acid tert-butyldimethylsilyl ester (3b)

3b was obtained by similar method with **3a** using *o*-nitrophenylacetic acid instead of *p*-nitrophenylacetic acid as a pale yellow solid (74 %). ¹H-NMR (600 MHz, CD₂Cl₂): δ 8.09-8.07 (d, 1H), 7.62-7.60 (t, 1H), 7.48-7.46 (t, 1H), 7.37-7.36 (d, 1H), 4.00 (s, 1H), 0.84 (s, 9H), 0.24 (s, 6H); ¹³C-NMR (150 MHz, CD₂Cl₂): 170.25, 149.23, 133.92, 133.74, 131.04, 128.81, 125.42, 41.73, 25.51, -3.47; Anal. calcd for C₁₄H₂₁NO₄Si: C, 56.92; H, 7.17; N, 4.74. Found: C, 57.03; H, 7.24; N, 4.69.

3,3,3-Trifluoropropanoic acid *tert*-butyldimethylsilyl ester (3c)

3c was obtained by similar method with **3a** using 3,3,3-trifluoropropanoic acid instead of *p*-nitrophenylacetic acid as colorless needles (78 %). (This compound sublimes even at room temperature under atmospheric pressure.) ¹H-NMR (600 MHz, CD₂Cl₂): δ 3.23-3.17 (q, 2H), 0.94 (s, 9H), 0.30 (s, 6H); ¹³C-NMR (150 MHz, CD₂Cl₂): 164.43, 126.89-121.41, 41.62-41.02, 25.45, 17.83, -3.46; MS spectrum and elemental analysis could not be performed because of sample sublimation.

 $(E)-2-(p\text{-nitrophenyl})-3-[5'-\{4-(N,N\text{-diphenylamino})\text{stylyl}\}-2,2'-\text{bithiophen-5-yl}]acrylic acid (p-NO_2Ph)$

A solution of **2** (50 mg, 0.108 mmol), **3a** (48 mg, 0.162 mmol), and piperidine (2 μ L, 0.022 mmol) in CH₃CN (20 mL) was stirred at 85 °C for 96 h. Then, to the solution, tetra-*n*-butylammonium fluoride trihydrate (51 mg, 0.162 mmol) and trifluoroacetic acid (0.1 mL) was added and stirred at 85 °C overnight. After cooling to room temperature, to the solution, diluted hydrochloric acid was added. The solution was extracted with CH₂Cl₂ and

the organic layer was dried over anhydrous MgSO₄. The solvent was removed by rotary-evaporator, and the residue was purified by the silica-gel column chromatography with CH₂Cl₂/AcOH (100:1, v/v) as eluent to give p-NO₂Ph (26 mg, 38 %) as dark red solid. ¹H-NMR (600 MHz, DMSO- d_6): δ 8.36-8.34 (d, 2H), 8.05 (s, 1H), 7.60-7.59 (d, 2H), 7.47-7.44 (m, 3H), 7.34-7.31 (t, 4H), 7.26-7.22 (m, 2H), 7.23-7.22 (d, 1H), 7.09-7.06 (m, 3H), 7.04-7.03 (d, 4H), 6.93-6.92 (d, 2H), 6.88-6.86 (d, 1H), (Proton of CO₂H could not be observed); ¹³C-NMR (150 MHz, DMSO- d_6): 172.46, 167.61, 147.97, 147.47, 147.29, 143.76, 143.48, 141.97, 137.17, 136.41, 133.94, 133.76, 132.11, 130.88, 130.09, 128.89, 128.10, 127.98, 126.60, 124.83, 124.47, 124.28, 123.93, 123.03, 120.14; Anal. calcd for C₃₇H₂₆N₂O₄S₂: C, 70.91; H, 4.18; N, 4.47. Found: C, 70.80; H, 4.51; N, 3.97.

 $(E)-2-(o\text{-nitrophenyl})-3-[5'-\{4-(N,N\text{-diphenylamino})\text{stylyl}\}-2,2'-\text{bithiophen-5-y}|]acrylic acid (o-NO_2Ph)$

A solution of 2 (50 mg, 0.108 mmol), 3b (48 mg, 0.162 mmol), and piperidine $(2 \mu L, 0.022 \text{ mmol})$ in CH₃CN (20 mL) was stirred at 85 °C for 96 h. Then, to the solution, tetra-*n*-butylammonium fluoride trihydrate (51 mg, 0.162 mmol) and trifluoroacetic acid (0.1 mL) was added and stirred at 85 °C for 96 h. After cooling to room temperature, to the solution, diluted hydrochloric acid was added. The solution was extracted with CH₂Cl₂ and the organic layer was dried over anhydrous $MgSO_4$. The solvent was removed by rotary-evaporator, and the residue was purified by the silica-gel column chromatography with $CH_2Cl_2/AcOH$ (100:1, v/v) as eluent to give o-NO₂Ph (6 mg, 9 %) as dark red solid. ¹H-NMR (600 MHz, CD₂Cl₂-d₆): δ 8.30-8.29 (d, 1H), 7.99 (s, 1H), 7.89-7.86 (t, 1H), 7.82-7.79 (t, 1H), 7.56-7.54 (d, 1H), 7.51-7.50 (d, 1H), 7.47 (s, 1H), 7.46-7.45 (d, 2H), 7.34-7.31 (t, 4H), 7.28 (d, 1H), 7.26-7.23 (d, 1H), 7.10-7.06 (m, 3H), 7.05-7.03 (d, 4H), 6.92-6.91 (d, 2H), 6.89-6.86 (d, 1H) (Proton of CO₂H could not be observed); ¹³C-NMR (150 MHz, $CD_2Cl_2 \cdot d_6$): 167.07, 148.72, 147.47, 147.29, 143.68, 141.54, 140.27, 136.63, 135.29, 133.94, 133.57, 131.15, 131.01, 130.89, 130.10, 128.86, 128.32, 128.16, 128.10, 128.01, 126.33, 125.58, 124.83, 124.38, 123.94, 123.03, 120.15.

 (\mathbb{Z}) -2-trifluoromethyl-3- $[5'-{4-(N,N-diphenylamino)stylyl}-2,2'-bithiophen-5-$

yl]acrylic acid (CF_3)

A solution of 2 (50 mg, 0.108 mmol), 3c (39 mg, 0.162 mmol), and piperidine $(2 \mu L, 0.022 \text{ mmol})$ in CH₃CN (20 mL) was stirred at 85 °C for 96 h. Then, to the solution, tetra-*n*-butylammonium fluoride trihydrate (51 mg, 0.162 mmol) and trifluoroacetic acid (0.1 mL) was added and stirred at 85 °C overnight. After cooling to room temperature, to the solution, diluted hydrochloric acid was added. The solution was extracted with CH₂Cl₂ and the organic laver was dried over anhydrous MgSO₄. The solvent was removed by rotary-evaporator, and the residue was purified by the silica-gel column chromatography with $CH_2Cl_2/AcOH$ (100:1, v/v) as eluent to give 5d (19 mg, 30 %) as dark red solid. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 7.90 (s, 1H), 7.81-7.80 (d, 1H), 7.50-7.49 (d, 2H), 7.46-7.44 (dd, 2H), 7.34-7.32 (t, 4H), 7.30 (s, 1H), 7.19-7.18 (d, 1H), 7.10-7.07 (t, 2H), 7.06-7.04 (d, 4H), 6.99-6.96 (d, 1H), 6.94-6.93 (d, 2H) (Proton of CO_2H could not be observed); ¹³C-NMR (150 MHz, DMSO-d₆): 163.89, 147.00, 146.71, 145.69, 143.96, 142.17, 133.47, 132.69, 130.27, 129.53, 128.74, 127.61, 126.66, 124.28, 123.50, 123.39, 122.46, 119.58 (Three peaks could not be observed due to the coupling between fluorine atoms); Anal. calcd for C₃₂H₂₂F₃NO₂S₂: C, 67.00; H, 3.87; N, 2.44. Found: C, 66.73; H, 3.97; N, 2.36.

Cell Fabrication

The DSC devices were fabricated as follows. A 22 µm main transparent layer with ca. 20 nm sized titania particles and a 6 µm scattering layer with ca. 400 nm sized titania particles were screen printed on the fluorine-doped tin oxide (FTO) conducting glass substrate. Coating of the titania film was carried out by immersing in 3×10^{-4} M acetonitrile/tert-butyl alcohol (1/1, v/v solution of sensitizers for 45 h. Deoxycholic acid (20 mM) was added into the dye solution as a coadsorbant to prevent aggregation of the dye molecules. The dye adsorbed titania film was clipped with a platinized FTO glass used as counter electrode. Finally, the sandwich-type solar cell could be obtained after the injection of electrolyte consisting of 0.6 an mM 1-methyl-3-propylimidazolium iodide, 0.1 mM LiI, 0.2mM tert-butylpyridine and 0.05 mM I_2 in acetonitrile.

DFT Calculation

Geometry optimization and Molecular orbital distributions of three dyes were performed using B3LYP functional and 6-31G (d,p) basis set implemented in the Gaussian 09 program package.²

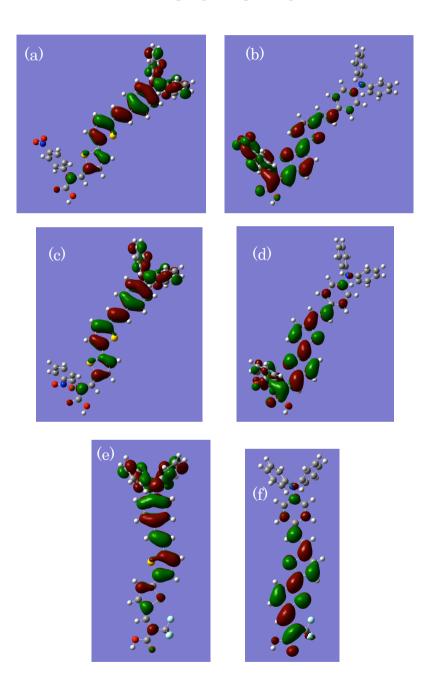


Figure S1. HOMO and LUMO distributions of three dyes. HOMO (a) and LUMO (b) of *p*-NO₂Ph, HOMO (c) and LUMO (d) of *o*-NO₂Ph, and HOMO (e) and LUMO (f) of CF₃, respectively.

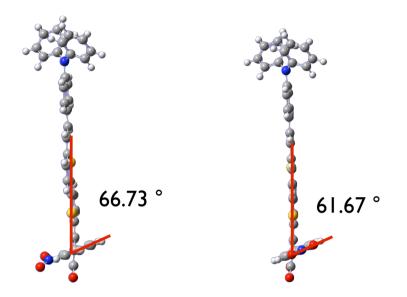


Figure S2. Side views of the optimized structures of o-NO₂Ph (left) and p-NO₂Ph (right) parallel to π -plane of the bithiophene units and torsion angles between π -conjugate planes of EWGs and C=C bond.

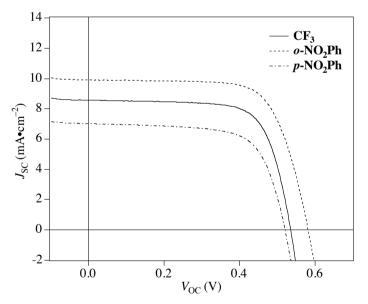


Figure S3. *J*-*V* curves of the DSC with three dyes.

Entry	cell No.	$J_{\rm SC}$ / mA•cm ⁻²	$V_{\rm OC}$ / V	FF	η / %
CF ₃	1	8.522	0.536	0.712	3.25
	2	8.569	0.536	0.715	3.28
o-NO ₂ Ph	1	9.910	0.582	0.703	4.05
	2	9.481	0.572	0.721	3.91
<i>p</i> -NO ₂ Ph	1	6.737	0.525	0.689	2.44
	2	7.030	0.521	0.685	2.51

Table S1. Photovoltaic parameters of DSCs based on the new dyes.

Measurements were performed under AM 1.5 irradiation on the DSC devices with 0.25 cm² active surface area defined by a metal mask. J_{SC} , short circuit current; V_{OC} , open circuit voltage; *FF*, fill factor; η , conversion efficiency.

References

1) C. Teng, X. Yang, C. Yuan, C. Li, R. Chen, H. Tian, S. Li, A. Hagfeldt and L. Sun, *Org. Lett.*, 2009, **11**, 5542.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.