Supporting Information

Mixed (Phthalocyaninato)(porphyrinato) Heterometal Complexes with

Sandwich Quadruple-decker Molecular Structure

Hailong Wang,^a Kang Wang,^a Yongzhong Bian,^a Jianzhuang Jiang^{*a} and Nagao

Kobayashi*^b

Experimental Section

The synthesis of [(TClPP)M(III)(Pc)Cd(II)(Pc)M(III)(Pc)] (M = Eu, Y) (1,

2): A mixture of Cd(OAc)₂.2H₂O (5.3 mg, 0.02 mmol), neutral mixed ring rare earth double-decker [(TClPP)M(Pc)] (0.01 mmol), and neutral bis(phthalocyaninato) rare earth compound [(Pc)M(III)(Pc)] (M = Eu, Y) (0.01 mmol) in TCB (4 mL) was heated to reflux under nitrogen for 5 h. After being cooled to room temperature, the volatiles were removed under reduced pressure. The residue was chromatographed on a silica gel column using CHCl₃ as the eluent to give a purple band, which contained mainly the unreacted mixed ring rare earth double-decker [(TClPP)M(Pc)] and a small amount of the quadruple-decker [(Por)M(III)(Pc)Cd(II)(Pc)M(III)(Por)]. Further elution with CHCl₃ gave a blue band containing the unreacted homoleptic bis(phthalocyaninato) rare earth double-decker [M(Pc)₂], which was followed by two blue bands containing the target quadruple-decker complexes [(Por)M(III)(Pc)Cd(II)(Pc)M(III)(Pc)] and [(Pc)M(III)(Pc)Cd(II)(Pc)M(III)(Pc)],mixed respectively. The symmetrical ring quadruple-decker compound [(Por)M(III)(Pc)Cd(II)(Pc)M(III)(Por)] could not be isolated due to its poor stability which decomposed into mixed ring rare earth double-decker [(TClPP)M(Pc)]. Repeated chromatography followed by recrystallization from chloroform and methanol gave the pure sandwich-type mixed (phthalocyaninato)(porphyrinato) 4d-4f heterometal quadruple-decker complexes [(Por)M(III)(Pc)Cd(II)(Pc)M(III)(Pc)] (M = Eu, Y) (1, 2) in the yield of 9-14% together with small amount of [(Pc)M(III)(Pc)Cd(II)(Pc)M(III)(Pc)] (M = Eu, Y), 3-5%.

Single crystals of quadruple-decker compound **1** suitable for X-ray diffraction analysis have been obtained by diffusion of the methanol into a solution of this complex in chloroform. The crystallographical data of **1** has been determined by X-ray diffraction analysis at 100 K using Oxford Diffraction Gemini E system. MS (MALDI-TOF) for **1**: an isotopic cluster peaking at m/z 2704.71 (Calcd. for M⁺ 2704.41). Anal. Calcd. for C₁₄₀H₇₄CdCl₄Eu₂N₂₈·2H₂O·CH₃OH: C 61.08, H 2.91, N 14.15; Found: C 60.87, H 3.02, N 13.73. MS (MALDI-TOF) for **2**: an isotopic cluster peaking at m/z 2578.73 (Calcd. for M⁺ 2578.29). Anal. Calcd. for C₁₄₀H₇₄CdCl₄Y₂N₂₈·H₂O·CHCl₃: C 62.36, H 2.78, N 14.44; Found: C 62.36, H 3.10, N 14.72.

[(TClPP)Eu(III)(Pc)Cd(II)(Pc)Eu(III)(Pc)] (1)in CDCl₃.

Figure S2. ¹H NMR and ¹H-¹H COSY spectra of [(TClPP)Y(III)(Pc)Cd(II)(Pc)Y(III)(Pc)] (2) in CDCl₃.

[(TClPP)Y(III)(Pc)Cd(II)(Pc)Y(III)(Pc)] (2) in CHCl₃.

of

Table S1. ¹H NMR data (δ) and assignments of the sandwich-type mixed (phthalocyaninato)(porphyrinato) quadruple-decker complexes with rare earth and cadmium [(TClPP²⁻)M(III)(Pc²⁻)Cd(II)(Pc²⁻)M(III)(Pc²⁻)] (M = Eu, Y) (1, 2) in CDCl₃.

Compound	Pc1			Pc2	Pc3			
	H^{α}	H^{eta}	H^{α}	H^{eta}	H^{α}	H^{eta}		
1	10.49 (d)	10.12 (d)	9.75 (d)	9.55 (m) ^a	9.55 (m)	8.26 (d)		
2	8.58 (d)	8.51 (d)	8.45 (d)	8.29 (d)	8.10 (d)	7.78 (d)		
Compound	TCIPP							
	H ^{endo-ortho}	H ^{endo-meta}	H ^{exo-ort}	ho H ^{exc}	e-meta	$\mathrm{H}^{\beta\text{-pyrrole}}$		
1	11.21 (d)	8.70 (m)	6.68 (r	n) 4.99) (d)	3.43 (s)		
2	7.61 (d)	7.28 (d) ^b	6.70 (c	l) 5.54	(d)	6.97 (s)		

[a] Overlapped signal between the H^{β} of the Pc2 ring and H^{α} of the Pc3 ring.

[b] Obscured by the strong residual CHCl₃ signal at δ 7.24.

complexes 1 and 2 with their double-decker precursors in $CHCl_3$.							
Compound	abs, $\lambda_{\rm max}/{\rm nm}$						
1	337	416	613	718			
$[(\mathrm{TClPP}^{2^{-}})\mathrm{Eu}(\mathrm{Pc}^{\bullet^{-}})]$	330	409	473	728			
$[(Pc^{2-})Eu(Pc^{-})]$	322	459	605	671			
2	334	412	603	731			
$[(\mathrm{TClPP}^{2^{-}})\mathrm{Y}(\mathrm{Pc}^{\bullet^{-}})]$	332	401	470	732			
$[(Pc^{2-})Y(Pc^{-})]$	319	458	598	663			

Table S2. Comparison in the electronic absorption bands for the mixed (phthalocyaninato)(porphyrinato) rare earth and cadmium quadruple-decker complexes **1** and **2** with their double-decker precursors in CHCl₃.

Table S3. Comparison in the half-wave redox potentials of the mixed (phthalocyaninato)(porphyrinato) rare earth and cadmium quadruple-decker complexes **1** and **2** with their double-decker precursors (V vs SCE) in CH_2Cl_2 containing 0.1 M TBAP.

Compound	Oxd ₄	Oxd ₃	Oxd ₂	\mathbf{Oxd}_1	Red ₁	Red ₂	Red ₃	$\Delta E^{o}_{1/2}$
1	+1.36	+1.18	+0.70	+0.36	-0.66	-1.02	-1.33	1.02
$[(TClPP^{2-})Eu(Pc^{-})]$		+1.69 ^a	+1.39	+0.72	+0.21	-1.28	-1.66 ^a	0.51
$[(Pc^{2-})Eu(Pc^{-})]$			+1.59	+0.55	+0.12	-1.07	-1.29	0.43
2	+1.39	+1.13	+0.68	+0.31	-0.64	-0.98	-1.34	0.95
$[(\mathrm{TClPP}^{2^{-}})\mathrm{Y}(\mathrm{Pc}^{\bullet^{-}})]$		+1.74	+1.41	+0.69	+0.18	-1.28	-1.69 ^a	0.51
$[(Pc^{2-})Y(Pc^{-})]$			+1.61	+0.47	+0.06	-1.11	-1.35	0.41

^a By differential pulse voltammetry with a scan rate of 10 mV s⁻¹.