Sodium and barium cation-templated synthesis and cation-induced molecular pirouetting of a pyridine *N*-oxide containing [2]rotaxane

Supplementary Information

Laura M. Hancock and Paul D. Beer*

Inorganic Chemistry Laboratory, Department of Chemistry University of Oxford South Parks Road, Oxford, OX1 3QR (UK) Fax: (+44) 01865-272690 E-mail: paul.beer@chem.ox.ac.uk

PART I: SYNTHESIS AND CHARACTERISATION	S1
Experimental Details	S1
¹ H and ¹³ C Spectra of compound 2 and 4	S5
Compound 2	S5
Compound 4	S6
PART II: SULFATE ABSTRACTION OF BARIUM CATIONS	S7
PART III: REFERENCES	S7

PART I: SYNTHESIS AND CHARACTERISATION

General Considerations. Commercially available solvents and chemicals were used without further purification unless stated. Where dry solvents were used, they were degassed with nitrogen, dried by passing through an MBraun MPSP-800 column and then used immediately. Water was deionized and microfiltered using a Milli-Q Millipore machine.

¹H and ¹³C spectra were recorded on a Varian Mercury-VX 300 spectrometer and AVII 500 (for ¹³C cryoprobe). Mass spectrometry was carried out on a Bruker micrOTOF spectrometer.

The synthesis of macrocycle 1,¹ stopper 3,¹ S1 (5-(methoxycarbonyl)nicotinic acid),² and stopper S2³ are reported elsewhere. Compound S5 and pyridine *N*-oxide precursor were prepared according to Schemes S1 and S2 respectively.

Experimental Details

Scheme S1. Synthesis of Compound S5.

Scheme S2. Synthesis of pyridine N-oxide precursor 2.

S3:

5-(methoxycarbonyl)nicotinic acid (S1) (0.2 g, 1.11 mmol) was suspended in dry CH₂Cl₂ (30 mL), oxalyl chloride (0.19 mL, 2.22 mmol) and DMF (cat.) were added, and the mixture stirred under N_{2(g)} for 1 h until homogenous. The solvent was removed *in vacuo*, the residue dissolved in dry CH₂Cl₂ (20 mL) and added dropwisely to a solution of S2 (0.52 g, 1.16 mmol), Et₃N (0.28 mL, 2.0 mmol) and DMAP (cat.) in dry CH₂Cl₂ (30 mL). The resulting solution was stirred for 1 h, washed with 10% HCl_(aq) (2 × 50 mL) and H₂O (2 × 50 mL), dried over anhydrous MgSO₄ and the solvent removed *in vacuo*. The resulting brown oil was purified by column chromatography (silica; 95:5 CH₂Cl₂: MeOH) to yield an oily cream coloured solid (0.60 g, 89%).

¹**H NMR** (300MHz, CDCl₃) δ : 9.34-9.62 (2H, m, pyridine H^2 & H^6), 8.78 (1H, t, 4J = 2.1 Hz, pyridine H^4), 8.05 (1H, br s, ArN*H*), 7.55 (2H, d, 3J = 8.9 Hz, Ar*H*NH), 7.11 – 7.28 (17H, m, Ar*H*), 4.02 (3H, s, CH₃), 1.31 (18H, s, 'Bu); ¹³**C NMR** (300MHz, CDCl₃) δ : 164.9, 162.8, 152.9, 151.9, 148.5, 146.9, 144.3, 143.5, 135.9, 134.9, 131.9, 131.1, 130.6, 127.3, 125.8, 124.3, 119.3, 63.8, 34.3, 33.3; **HRMS (ESI)**: *m/z* calc. for C₄₁H₄₂N₂O₃ [M + Na]⁺: 633.3088; found 633.3091.

S4:

S3 (1.81 g, 2.96 mmol) was dissolved in 1:1 THF/H₂O (50 mL), KOH (0.196 g, 3.5 mmol) was added, and the solution stirred for 16 h. 10% citric $acid_{(aq)}$ was added until the solution was pH = 7, and the aqueous mixture extracted with CH₂Cl₂ (3 x 50 mL). The combined organic layers were dried over anhydrous MgSO₄, and the solvent removed *in vacuo*. The resulting sticky brown solid was recrystallized from CHCl₃ to give an off-white solid (1.77 g, 100%).

¹**H NMR** (300MHz, *d*₆-DMSO) δ: 11.70 (1H, s, COO*H*), 10.63 (1H, s, ArN*H*), 9.27 (1H, d, ⁴*J* = 2.0 Hz, pyridine H^2), 9.21 (1H, d, ⁴*J* = 2 Hz, pyridine H^6), 8.74 (1H, t, ⁴*J* = 2 Hz, pyridine H^4), 7.68 (2H, d, ³*J* = 8.8 Hz, Ar*H*NH), 7.10 – 7.34 (17H, m, Ar*H*), 1.26 (18H, s, *t*Bu); ¹³**C NMR** (300MHz, *d*₆-DMSO) δ: 165.8, 163.1, 152.3, 147.9, 146.9, 143.6, 142.5, 136.4, 136.0, 130.7, 130.4, 130.1, 127.7, 126.4, 125.8, 124.5, 119.6, 34.9, 31.1; **HRMS (ESI)**: *m*/*z* calc. for C₄₀H₄₀N₂O₃ [M – H]⁺: 596.2966; found: 595.2980. **S5:**

4,4'-bis(azidomethyl)biphenyl (**S5**) (300 mg, 1.14 mmol) was dissolved in 1:1 Et₂O/EtOAc (10 mL), 5% $HCl_{(aq)}$ (20 mL) was added and the biphasic mixture cooled to 0 °C. A solution of Ph₃P (295 mg, 1.13 mmol) in 1:1 Et₂O/EtOAc (10 mL) was added dropwise over 30 min, and the solution stirred for 18 h at RT. The precipitate was collected by vacuum filtration and washed with 1:1 Et₂O/EtOAc (2 × 50 mL). The resulting solid was suspended in CH₂Cl₂, 10% NaOH (aq) added and the biphasic mixture stirred for 30 min until all solid had dissolved. The organic layer was separated, washed with H₂O (2 × 50 mL), dried over MgSO₄, and the solvent removed *in vacuo* to give a white waxy solid (100 mg, 37%).

¹**H NMR** (300 MHz, CD₃OD) δ : 7.59 – 7.66 (4H, m, Ar*H*), 7.42 (4H, d, ³*J* = 8.2 Hz, Ar*H*), 4.40 (2H, s, C*H*₂N₃), 3.83 (2H, s, C*H*₂NH₂); ¹³**C NMR** (75.5 MHz, CD₃OD) δ : 142.6, 141.9, 140.3, 135.9, 129.8, 128.9, 128.1, 128.0, 55.1, 46.2. **HRMS (Probe FI)** calculated for C₁₄H₁₄N₄ [M]⁺: 238.1218; found 238.1212.

S6:

S4 (192 mg, 1.06 mmol) was suspended in dry CH_2Cl_2 (20 mL), then oxalyl chloride (0.190 mL, 2.12 mmol) and DMF (cat.) were added. The mixture was stirred for 1 h until all solid had dissolved. The solvent was removed *in vacuo*, then redissolved in dry CH_2Cl_2 (15 mL) and added dropwise to a solution of compound S5 (253 mg, 1.06 mmol) and Et_3N (0.42 mL, 3 mmol) in CH_2Cl_2 (20 mL). The resulting solution was stirred for 1 h, washed with 10 % $HCl_{(aq)}$ (2 x 50 mL) and H_2O (2 x 50 mL), dried over anhydrous MgSO₄, and the solvent removed *in vacuo*. The resulting brown oil was purified by column chromatography (silica; 95:5 CH₂Cl₂/MeOH) giving an oily orange solid (306 mg, 72 %).

¹**H NMR** (300 MHz, CDCl₃) δ: 9.34 (1H, s, pyridine H^2), 9.26 (1H, s, pyridine H^6), 8.69 (1H, s, pyridine H^4), 7.61 (4H, d, ${}^{3}J$ = 8.2 Hz, Ar*H*), 7.47 (2H, d, ${}^{3}J$ = 8.2 Hz, Ar*H*), 7.41 (2H, d, ${}^{3}J$ = 8.2 Hz, Ar*H*), 6.61 (1H, br s, N*H*), 4.72 (2H, d, ${}^{3}J$ = 5.9 Hz, NHC*H*₂), 4.40 (2H, s, C*H*₂N₃), 3.99 (3H, s, OC*H*₃); ¹³C NMR

(75.5 MHz, CDCl₃) δ: 164.9, 164.4, 153.0, 151.9, 140.5, 140.2, 136.7, 135.7, 134.6, 129.8, 128.7, 128.6, 127.6, 127.5, 125.9, 54.5, 52.7, 44.0; **HRMS (ESI)** *m/z* calc.for C₅₄H₅₂N₆O₂ [M + Na]⁺: 839.4044; found: 839.4038.

Pyridine *N*-oxide axle precursor (2):

Compound **S5** (0.198 g, 0.24 mmol) and NaHCO₃ (1.03 g, 7.26 mmol) were dissolved in 1:1 2butanone/H₂O (50 mL) and a saturated solution of Oxone[®] (0.446 g, 0.726 mmol) in H₂O (3 mL) was added dropwisely. The solution was stirred vigorously for 2 h before addition of NaCl (1.70 g, 29.0 mmol) and extraction with CHCl₃ (3 × 50 mL). The organic layer was dried over anhydrous MgSO₄ and the solvent removed *in vacuo* to give a white solid (0.196 g, 97%).

¹**H NMR** (300MHz, CDCl₃) δ (ppm): 9.71 (1H, s, ArHN*H*), 8.88 (1H, s, pyridine H⁶), 8.84 (1H, s, pyridine H²), 8.38 (2H, br s, CH₂N*H* & pyridine H^4), 7.63 (2H, d, 3J = 8.8 Hz, Ar*H*NH), 7.55 (2H, d, 3J = 8.2 Hz, biphenyl ArH), 7.15 – 7.35 (19H, m, stopper Ar*H*), 4.53 (2H, d, 3J = 4.7 Hz, C*H*₂NH), 4.35 (2H, s, C*H*₂N₃), 1.36 (18H, s, ^tBu*H*) ¹³**C NMR** (75.5 MHz, CDCl₃) δ (ppm): 162.0, 160.4, 148.5, 146.9, 144.5, 143.5, 140.2, 139.8, 136.3, 135.0, 134.5, 133.6, 131.8, 131.0, 130.6, 128.6, 128.3, 127.4, 127.3, 127.2, 125.8, 124.3, 119.5, 63.8, 54.4, 44.0, 34.3, 31.3. **HRMS (ESI)**: *m/z* calc. for C₅₄H₅₂N₆O₃ [M + Na]⁺: 855.3993; found: 855.3994.

Calixdiquinone N-oxide rotaxane (4):

General procedure: calixdiquinone macrocycle **1** (30 mg, 0.0285 mmol), compound **2** (24 mg, 0.0285 mmol), and stopper **3** (14 mg, 0.0285 mmol) were dissolved in degassed CH_2Cl_2 (20 mL), (a solution of $M(ClO_4)_x$ (0.0285mmol) in) CH_3CN (0.25 mL) was added and the solution stirred for 15 min. DIPEA (5 μ L, 0.0293 mmol) and $Cu(CH_3CN)_4PF_6$ (2 mg, 0.0054 mmol) were added and the solution stirred under N_2 for 16 h. The solvent was removed *in vacuo* and the crude material purified by preparative TLC (silica; 1:1 acetone/hexane & CH_3CN \rightarrow 93:7 CH₃CN/MeOH) to obtain a yellow solid.

Without cation: Neat CH₃CN added i.e. no M(ClO₄)_x, giving a yield of 10% (7 mg).

With Barium: M = Ba x = 2, giving a yield of 28% (18 mg). N.B. $Ba(ClO_4)_2$ mostly suspended throughout reaction

With Sodium: M = Na, x = 1, giving a yield of 50% (34 mg).

¹**H NMR** (300MHz, CDCl₃) δ (ppm): 9.12 (1H, s, axle ArHN*H*), 8.68 (2H, s, pyridine H^6 & isophthalamide H^2), 8.54 (1H, s, pyridine H^2), 8.52 (1H, t, ${}^{3}J = 5.6$ Hz, axle CH₂N*H*), 8.39 (2H, br s, macrocycle NH), 8.23 (2H, dd, ${}^{3}J = 7.9$ Hz, ${}^{4}J = 1.9$ Hz, isophthalamide H^4 & H^6), 8.03 (1H, s, pyridine H^4), 7.92 (2H, d, ${}^{3}J = 8.8$ Hz, Ar*H*NH), 7.64 (1H, s, triazole, C*H*), 7.59 (2H, d, ${}^{3}J = 7.5$ Hz, biphenyl Ar*H*), 7.50 (2H, d, ${}^{3}J = 8.2$ Hz, biphenyl Ar*H*), 7.37 – 7.41 (4H, m, biphenyl Ar*H*), 7.06 – 7.29 (31H, m, isophthalamide H^5 & stopper Ar*H*), 6.85 (2H, d, ${}^{3}J = 8.8$ Hz, Ar*H*OCH₂), 6.55 – 6.56 (4H, m, calix Ar*H*), 6.50 (4H, d, ${}^{3}J = 9.1$ Hz, hydroquinone Ar*H*), 6.32 – 6.37 (8H, m, calix & hydroquinone Ar*H*), 5.60 (2H,

s, axle OCH₂), 5.17 (2H, s, CH₂N), 4.59 (2H, d, ${}^{3}J = 5.6$ Hz, axle CH₂NH), 4.29 (2H, d, ${}^{2}J = 12.9$ Hz, calix CH₂), 4.21 (2H, t, ${}^{3}J = 8.7$ Hz, macrocycle CH₂), 4.09 (2H, d, ${}^{2}J = 12.9$ Hz, calix CH₂) 3.96 – 3.99 (2H, m, macrocycle CH₂), 3.89 – 3.94 (6H, m, macrocycle CH₂), 3.82 – 3.85 (2H, m, macrocycle CH₂), 3.71 – 3.77 (4H, m, macrocycle CH₂), 2.92 (2H, ${}^{2}J = 12.9$ Hz, calix CH₂), 2.73 (2H, ${}^{2}J = 12.9$ Hz, calix CH₂), 1.32 (18H, s, axle ^{*t*}Bu), 1.29 (18H, s, axle ^{*t*}Bu), 0.95 (18H, s, calix ^{*t*}Bu); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 187.9, 187.5, 185.0, 184.9, 167.9, 167.8, 161.6, 159.4, 156.4, 153.3, 152.8, 152.0, 149.0, 148.7, 148.2, 148.0, 147.5, 147.3, 147.0, 145.0, 144.4, 144.1, 143.5, 141.3, 140.9, 140.3, 140.2, 139.7, 137.9, 136.2, 134.1, 134.0, 132.5, 132.2, 132.1, 131.8, 131.4, 131.2, 130.9, 130.8, 129.5, 129.4, 129.2, 129.0, 128.0, 127.7, 127.7, 127.5, 127.0, 126.3, 125.9, 125.4, 125.3, 124.9, 124.7, 124.5, 124.4, 122.9, 118.7, 115.4, 114.2, 113.5, 74.4, 67.7, 67.0, 634.0, 63.7, 62.3, 54.2, 53.7, 43.4, 41.0, 34.6, 34.5, 34.2, 31.6, 31.6, 31.4 HRMS (ESI): *m/z* calc. for C₁₅₄H₁₅₄N₈O₁₆ [M + Na]⁺: 2395.1414; found 2395.1450

¹H and ¹³C spectra of Compounds 2 and 4

Compound 2

Figure S1. ¹H NMR spectrum of 2 (CDCl₃, 300 MHz, 293 K)

Figure S2. ¹³C NMR spectrum of 2 (CDCl₃, 75.5 MHz, 293 K)

Figure S3. ¹H NMR spectrum of 4 (CDCl₃, 300 MHz, 293 K)

Figure S4. ¹³C NMR spectrum of 4 (CDCl₃, 125 MHz, 293 K)

PART II: SULFATEABSTRACTION OF BARIUM CATION

Figure S5. Partial ¹H NMR spectra in 5:1 CDCl₃/CD₃CN of (a) rotaxane 4, (b) rotaxane 4 + 1 eq. Ba(ClO₄)₂ and (c) rotaxane 4 + 1 eq. Ba(ClO₄)₂ + 1 eq. (TBA)₂SO₄.

PART III: REFERENCES

- 1. A. V. Leontiev, C. A. Jemmett and P. D. Beer, *Chem. Eur. J.*, 2011, 17, 816-825.
- 2. K. M. Broadus and S. R. Kass, J. Am. Chem. Soc., 2000, 122, 9014-9018.
- 3. H. W. Gibson, S.-H. Lee, P. T. Engen, P. Lecavalier, J. Sze, Y. X. Shen and M. Bheda, *J. Org. Chem.*, 1993, **58**, 3748-3756.