## **Supplementary information**

## Efficient White Light Emission by Upconversion in $Yb^{3+}$ -, $Er^{3+}$ - and $Tm^{3+}$ - doped $Y_2BaZnO_5$

Isabelle Etchart <sup>*ab*</sup>, Mathieu Bérard <sup>*b*</sup>, Marine Laroche <sup>*b*</sup>, Arnaud Huignard <sup>*b*</sup>, Ignacio Hernández <sup>*c*</sup>, William P. Gillin <sup>*c*</sup>, Richard J. Curry <sup>*d*</sup>, Anthony K. Cheetham <sup>*a*</sup>

| Host <sup>ref</sup>                                                                  | Dopants                                            | Excitation conditions                                       | CIE<br>colour<br>coord. | η <sub>UC</sub> (%) |
|--------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------|---------------------|
| Transparent oxyfluoride glass ceramic embedded with $YF_3$ nanocrystals <sup>6</sup> | $Yb^{3+}Er^{3+}Tm^{3+}$                            | 976 nm pulsed laser (2 ps, 15 nJ, 2W/mm <sup>2</sup> )      | x = 0.310<br>y = 0.359  | 0.1%                |
| Y <sub>2</sub> O <sub>3</sub> nanocrystals <sup>7</sup>                              | $Yb^{3+}Er^{3+}Tm^{3+}$                            | 976 nm cw laser (down to 100 mW/mm <sup>2</sup> )           | x = 0.320<br>y = 0.340  |                     |
| Lu <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub> nanocrystals <sup>8</sup>            | $Yb^{3+}Er^{3+}Tm^{3+}$                            | 980 nm cw laser (down<br>to 34 mW/mm <sup>2</sup> )         | x = 0.270<br>y = 0.338  |                     |
| Transparent oxyfluoride glass ceramic embedded with $YF_3$ nanocrystals <sup>9</sup> | $Yb^{3+}Ho^{3+}Tm^{3+}$                            | 976 nm pulsed laser (2 ps, 15 nJ, 2W/mm <sup>2</sup> )      | x = 0.351<br>y = 0.306  | 0.2%                |
| Fluorolead germanate glass <sup>10</sup>                                             | Yb <sup>3+</sup> Ho <sup>3+</sup> Tm <sup>3+</sup> | 975 nm cw laser (16<br>W/mm <sup>2</sup> )                  | x = 0.344<br>y = 0.364  |                     |
| Tellurite glass <sup>11</sup>                                                        | $Yb^{3+}Er^{3+}Pr^{3+}$                            | 980 nm cw laser<br>(3.4x10 <sup>6</sup> W/mm <sup>2</sup> ) | x = 0.310<br>y = 0.335  |                     |

Table S1. Compositions, excitation conditions, colour coordinates and upconversion efficiencies of white light emitting materials reported in the literature.

## **Upconversion efficiency definition:**

$$\eta_{UC} = \frac{P_{em}}{P_{abs}^{IR}} = \frac{P_{em}}{P_{inc}^{IR} - P_{not\,abs}^{IR}}$$
(Eq. 1)

Where  $P_{em}$  is the power of the upconversion light emitted in the 380-780 nm range,  $P_{inc}^{IR}$  is the incident power in the near-infrared (integrated over the 950-1000 nm range),  $P_{abs}^{IR}$  is the power of the fraction of incident light that has been absorbed by the sample, and  $P_{notabs}^{IR}$  is the power of the fraction of incident light that has not been absorbed by the sample.



Fig. S1. Rietveld refinement based upon the X-ray powder diffraction pattern of  $Y_2BaZnO_5$ :  $Yb^{3+}(10\%),Er^{3+}(0.3\%),Tm^{3+}(1\%)$ . The cell parameters are: a = 12.3283(2) A, b = 5.7056(1) A and c = 7.0646(1) A (ICSD 87082). This X-Ray powder diffraction pattern was measured using a theta-theta diffractometer (Bruker D8), equipped with a Cu K $\alpha$  source (generator: 40 kV and 40 mA), a scintillation detector with pulse height analysis, and a variable knife-edge collimator for high resolution X-ray diffractometry.



Fig. S2. Typical particle size distribution of white emitting *a*)  $Y_2BaZnO_5:Yb^{3+}(10\%),Er^{3+}(0.3\%),Tm^{3+}(1\%)$ , and *b*)  $Y_2BaZnO_5:Yb^{3+}(10\%),Er^{3+}(0.4\%)$  (4.8% w/w) +  $Y_2BaZnO_5:Yb^{3+}(10\%),Tm^{3+}(0.25\%)$  (95.2% w/w). Both the number mean and volume mean sizes are presented. The measurements were performed using a *Coulter LS 230* particle size analyser, under recirculating conditions in an isopropanol suspension.



Fig. S3. Typical emission spectra of white emitting *a*)  $Y_2BaZnO_5:Yb^{3+}(10\%),Er^{3+}(0.3\%),Tm^{3+}(1\%)$ , and *b*)  $Y_2BaZnO_5:Yb^{3+}(10\%),Er^{3+}(0.4\%)$  (4.8% w/w) +  $Y_2BaZnO_5:Yb^{3+}(10\%),Tm^{3+}(0.25\%)$  (95.2% w/w) under 977 nm excitation (~90 mW/mm<sup>2</sup>). The colour coordinates corresponding to these white emitting samples are *a*) *x* = 0.299, *y* = 0.298 and *b*) *x* = 0.306, *y* = 0.313.