Site Regeneration in the Fischer-Tropsch Reaction: A Synchronized CO Dissociation and C—C Coupling Pathway

Sharan G. Shetty,^a Ionel M. Ciobîcă,^b Emiel J.M. Hensen,^a and Rutger A. van Santen^a*

1. Computational Details

DFT calculations were performed by the VASP code.^{S1} The electronic ground state is calculated by solving the Kohn-Sham equation based on density functional theory. The cut-off energy used for the plane waves is 400 eV. The exchange-correlation functional is expressed by the generalized-gradient approximation (GGA) using the PAW potentials with PBE functionals (PAW-PBE).^{S1,S2} *k*-points sampling was generated by the Monkhorst-Pack procedure with a $5 \times 5 \times 1$ mesh. In the calculations all the degrees of freedom of the systems have been optimized using the conjugate-gradient technique. The reaction paths have been generated by the nudged elastic band (NEB) as implemented in VASP.^{S3} During NEB calculations all the atoms of the images including the transition states have been confirmed by the saddle points obtained from the frequency calculations.

2. Model

The optimized Ru⁽¹¹²¹⁾ surface is shown in Fig. 1 and was modeled using a 2×2 super-cell. The Ru⁽¹¹²¹⁾ surface is modeled with 12 layers slab and 18 layers of vacuum. The same models were also used in our earlier studies.^{S4,S5} For a detailed description on the surface models and the CO dissociation reaction on Ru⁽¹¹²¹⁾ surfaces we refer to our recent work.^{S5} The dipole-dipole interaction between the super-cells has been avoided by adsorption on both sides of the surface retaining a center of inversion. The coverage of the adsorbents is maintained at 25%.

Figure 1. The four layers of the Ru⁽¹¹²¹⁾ surface are shown in blue (first layer), green (second layer), yellow(third layer) and grey (fourth layer).^{S4,S5}

Table 1. Bond lengths of CH and CO in the transition state involved in the reaction on Ru⁽¹¹²¹⁾ surface shown in Figure 1 of the manuscript.

()	0 0 (11)
1.38 ^a	-
-	1.91
	1.38 ^a

^aData from reference S6.

Table 2. Bond lengths of CH, C—C and CO in the transition state involved in the reaction on Ru(1121) surface shown in Figure 2 of the main manuscript.

Reactions	C—H (Å)	C—O (Å)	C—C (Å)
$CH + C+ H \rightarrow CH + CH$	1.40	-	-
$CH+CH \rightarrow CHCH$	-	-	1.64
CH — $CH + CO \rightarrow CH$ — $CH + C + O$	-	1.92	
$CH - CH + H \rightarrow CH - CH_2$	1.41	-	-
$CH - CH_2 + CO \rightarrow CH - CH_2 + C + O$	-	1.88	-

Table 3. Adsorption energy (E_{ads}) of CH_x adsorbates with respect to CH₄ in the gas phase and the zero-point energy (ZPE) corrections on the Ru(**1121**) surface (all energies in kJ/mol).

Adsorbate	E _{ads}	ZPE	ZPE from Ref. S7
СН	-100	35	37
CH ₂	-65	60	62
CH ₃	-63	88	82
CH ₄	-9	191	-

Table 4. Energy barriers for the forward (E_{forw}) and reverse (E_{back}) reaction of the CH_x species (x = 0-3) on the Ru(1121) surface (all energies in kJ/mol).

Reaction	E _{forw}	E _{back}
$C + H \rightarrow CH$	85	72
$\mathrm{CH} + \mathrm{H} \rightarrow \mathrm{CH}_2$	83	48
$\mathrm{CH}_2 + \mathrm{H} \rightarrow \mathrm{CH}_3$	34	32
$CH_3 + H \rightarrow CH_4$	90	36

Table 5. Adsorption energy (E_{ads}) of CO and forward (E_f) and backward (E_b) activation energies of CO dissociation with and without co-adsorbed species (all energies in kJ/mol).

Reaction	$\mathrm{E}_{\mathrm{ads}}$	$\mathrm{E}_{\mathrm{forw}}$	E _{back}
$CO \rightarrow C + O$	-162	65	86
$CH + CO \rightarrow CH + C + O$	-142	70	95
CH — $CH + CO \rightarrow CH$ — $CH + C + O$	-157	62	92
$CH-CH_2 + CO \rightarrow CH-CH_2 + C + O$	-156	63	97

Table 6: Forward (E_{forw}) and backward (E_{back}) energy barriers of C hydrogenation and CH_x — CH_x coupling on Ru(1121) surface (all energies in kJ/mol).

Reactions	E _{forw}	E _{back}
$CH + C + H \rightarrow CH + CH$	88	71
$CH + CH \rightarrow CH$ — CH	44	33
$CH + C \rightarrow CH - C$	142	186
CH — $CH + H \rightarrow CH$ — CH_2	78	12

Figure 2. Reaction path for C hydrogenation and CH—CH coupling reaction. Black and red lines correspond to the forward and reverse barriers respectively. Blue line corresponds to the reaction energy for the diffusion of CH intermediates. $CH^* + CH^*$ correspond to the diffused state.

References

- (S1) (a) G. Kresse, J. Hafner, Phys. Rev. B, 1994, 49, 14251. b) G. Kresse, J. Furthmuller. Comput. Mater. Sci., 1996, 6, 15.
- (S2) (a) P.E. Blochl, Phys. Rev. B, 1994, 50, 17953; (b) G. Kresse, J. Joubert, Phys. Rev. B, 1999, 59, 1758.
- (S3) G. Henkelman, H. Jónsson. J. Chem. Phys., 2000, 113, 9978.
- (S4) S. Shetty, A.P.J. Jansen, R.A. van Santen, J. Phys. Chem. C, 2008, 112, 14027.
- (S5) S. Shetty, A.P.J. Jansen, R.A. van Santen, J. Am. Chem. Soc., 2009, 131, 12874.
- (S6) S. Shetty, A.P.J. Jansen, R.A. van Santen, J. Phys. Chem. C, 2010, 114, 22630.
- (S7) J. Chen, Z-P. Liu, J. Am. Chem Soc. 2008, 130, 7929.