Supplementary Information

Manipulating DNA writhe through varying DNA sequences

Dawei Li*, Zhaoqi Yang, Guanjia Zhao, Yi Long, Bei Lv, Cheng Li, Shuhui Hiew,

Magdeline Tao Ng, Juanjuan Guo, HongKee Tan, Hao Zhang and Tianhu Li

EXTENDED EXPERIMENTAL PROCEDURES

Reagents: T4 DNA ligase, Nuclease BAL-31 and SacI were purchased from New England Biolabs (Ipswich, MA). Topo I was obtained from TopoGEN (Columbus, OH). Duplex linear DNA precursors were provided by Generay Biotech (Shanghai, China).

Preparations of circular DNA

A 50 μ l solution containing 50 mM Tris-HCl, 10 mM MgCl₂, 1 mM ATP, 10 mM dithiothreitol, 500 ng linear DNA and 20 U T4 DNA ligase was incubated at 16 °C for 8 hrs. The obtained circular DNA products were further analyzed using agarose electrophoresis (1.5%).

Reactions of topo I with Circular DNA 1: A solution containing 10 mM Tris-HCl, 150 mM NaCl, 0.1% BSA, 0.1 mM Spermidine, 5% glycerol, 200 ng Circle DNA 1 and 3 U topo I was incubated at 37 °C for 1 hr. The reaction products were further analyzed using agarose electrophoresis (1.5%).

Reactions of SacI with circular DNA: A solution containing 10 mM Bis-Tris-Propane-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, mixtures of linear DNA and circular DNA (200 ng) and 10 U SacI was incubated at 37 $^{\circ}$ C for 1 hr. The reaction products were further analyzed using agarose electrophoresis (1.5%).

AFM studies

Immobilization of DNA samples on micas were carried out following the previously reported procedures.^{S1,S2} AFM images were obtained in Tapping ModeTM on a MultimodeTM AFM (Veeco, Santa Barbara, CA) in connection with a Nanoscope VTM controller. Antimony (n) doped Si cantilevers with nominal spring constants between 20 and 80 N/m were selected. Scan frequency was 1.9 Hz per line and the modulation

amplitude was in a nanometer range. All DNA sample determinations were carried out in air at room temperature.

- * (1) Junctions between the segments that are highlighted in red and in blue represent the points at which adenine-rich and thymine-rich segments alternate between two opposite strands; and
- (2) This linear DNA contains two segments of continuous spaced adenine teacts in its sequence.

Fig. S1. Nucleotide sequences of Linear DNA 1 designed in our studies.

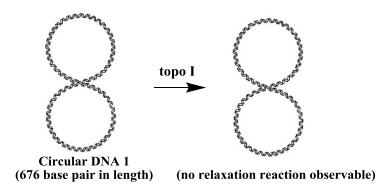
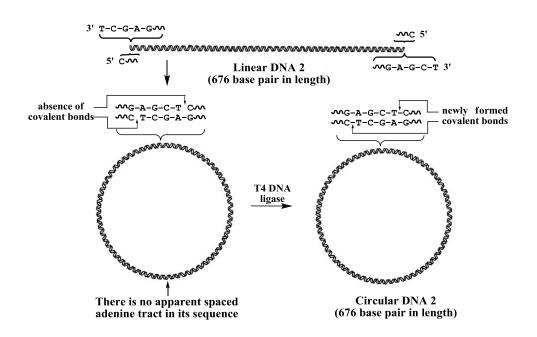



Fig. S2. Diagrammatic illustration of reaction of Circular DNA 1 with topo I.

A

* This linear DNA contains no spaced adenine tract in its sequence.

В

Fig. S3. Synthesis and confirmation of Circular DNA 2 (676 bp in length) from Linear DNA 2 (676 bp in length). (A) Nucleotide sequences of Linear DNA 2; (B) Diagrammatic illustration of synthesis of Circular DNA 2 from Linear DNA 2

CAGTTGGGTAATTTTTAGGGTTTTTCCCAGTTTTGACGTTGTTTTTCGACGGAATTCCCTTTTTACGACTCACTTTTTGCCTTGAC AGTCAACCCATTAAAAATCCCCAAAAGGGTCAAAACTGCAACAAAAAGCTGCCTTAAGGGAAAAATGCTGAGTGAAAAACGGAACTG. 31 TTCTTTTTTATAGGTTTTTGTCATGATTTTAATGGTATCTTTTTCGTCGGTGGCATTTTTCGGGGGTTTTGCGCGGATCCCCTTTTTGTTTATC AAGAAAAATATCCAAAAACAGTACTAAAATTACCATAGAAAAAGCAGCCGCCACCGTAAAAAGCCCCCAAAACGCGCCCTAGGGGAAAAACAAATAC TTTACATCAGGTTTTTTCCGCTCAGCAATGATTTTTGCCCTTTTAGATTTTTCAATGATATTTTTAGGCGTTTTTGACGT AAATGTAGTCCAAAAAAGGCGAGTCGTTACTAAAAACGGGAAAATCTAAAAAGTTACTATAAAAATCCGCAAAAACTGCA ITTTCCGTGTCGCCCTTTTTCCCTTTTTTGCGCATTTTTTCCGCACTTTTTTGCATATATTTTTGGAGTTGTTTTGATCCGTT AAAAGGCACAGCGGGAAAAAAGGGAAAAAACGCGTAAAAAAAGCCCGTGAAAAAACGTATATAAAAAACCTCAACAAAACTAGGCAAA CAGTGCGTTTTTGGCCATTTTGCCTAGTTTTTTGCGTTGCTATTTTTGTTAATTTTTGCCAATTTTCGTATTTTCGCAATTTTCGCAATTTTCGCAATTTTTG GTCACGCAAAAAACCGGTAAAAACGGATCAAAAAAACGCAACGATAAAAAAACAATTAAAAACGGTTAAAAAGCATAAAAGCGATAAAAAC TTTTGACCATTTTTCTTGTTTTGGATGGTTTTCGGCCGTTTTTTGGAGTTGAATTTTACGTCCAGATTTGATTTTCAGTGCGTTTTTG AAAACTGGTAAAAAGAACAAAACCTACCAAAAAGCCGGCAAAAAACCTCAACTTAAAATGCAGGTCTAAACTAAAAGTCACGCAAAAAC \TTTTGCAGTGTTTTTTGCCTCTGCTATTTTTTGTTAATTTTTGCCAATTTTCGAGGTATTTTCGCTATTTTTGGCATTTTTTG \AAAACGTCACAAAAAACGGAGACGATAAAAAACAATTAAAAACGGTTAAAAAGCTCCATAAAAAGCGATAAAAAACCGTAAAAAAC TTTAGTCGTTTTTGGCCATTTTTCCTGTTTTTGCTCACCCATTTTCGCTGGTGCCGAGTTTTTGATGCTTTTTGCAGTTTTGCGCGCGAG AAATCAGCAAAAAACCGGTAAAAAAGGACAAAAACGAGTGGGTAAAAGCGACCACGGCTCAAAAACTACGAAAAAACGTCAAAAACACGTGCTCA YTTTGACATCGGACTGGTTTTCACAGCGGTTTTCAGGCTTTTTGCACAACATTTTTCATGTATTTTGAAGGAGAAGATTTTTGGGCTCAGT \AAACTGTAGCCTGACCAAAAGTGTCGCCAAAAGTCCGAAAAACGTGTTGTAAAAAGTACATAAAACTTCCTCTTCTAAAACCCGAGTCA TTTACGAGCCGGATTTTTGCGGTGTGGGCTTTTGTCCGTTTTCCTGTTTGAGCT 3' Linear DNA 3*

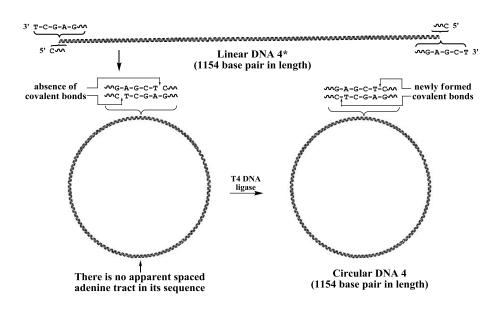
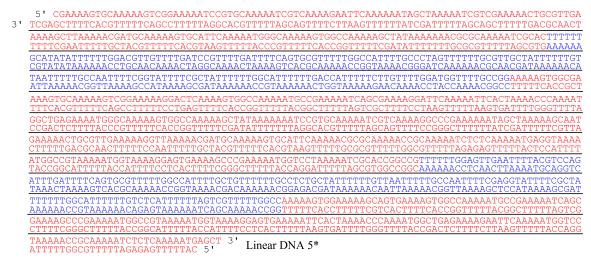

* (1) Continuous spaced adenine tracts occur exclusively in one of the double strands of this linear DNA; and (2) The duplex segments highlighted in blue and green are those that possess high and low degrees of curvatures separately.

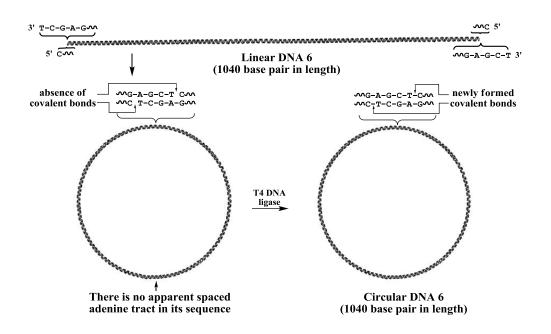
Fig. S4. Nucleotide sequences of Linear DNA 3.


А

- 31 ITAAGTTGTTGCTTCAGAGTTGI TTCTGATTCATGGTATATG AATTCAACAACGAAGT TCAACAAAGACTAAGTACCATATACAACAACAATTACAACAATAACTA AGACAAAGTATA GGTATTAGTAGTTTATCTTGATTCTTGTGATTACGTATTGTTGATGCG GTAATTGTCCTTGGC TATCTTCGTTCGTGTATT CGTATCATTATGA TGATGTGTGTG TTGATATCCTTATTCCTT TGTCGTGTGTTTAT ${\tt CCTTGCTATTCTATGTACTGCTTCGTTGTAGTTCGTTCCTTCATTAGTATCCTTGTCTTCATTAATATGGTATTGATTATCCTGATAT`$ <u>AGAACGATAAGATACATGACGAAGCAACATCAAGCAAGAAGAAGTAATCATAGGAACAGAAGTAATTATA</u> AATAGTTATTGCTGTTTCATTTGTTTCTTGATGTGTGTTATTCTAATTAGTTATTGGTTAATTGGTTGTATCATTGCTTATGCTGAT' TTATCAATAACGACAAAGTAAACAAAGAACTACACACAATAAGATTAATCAATAACCAATTAACCAACATAGTAACGAATACGA GTCGCAAGCTTATGATCTTTAATCTCTTATCGTGTGTTTCGCGTTGTTCCATTGTTCGTCACTTCGTAGATTAGATCTTAGGTTCTTTATCTT <u>CGTTCGAATACTAGAATTAGAGAATAGCACAAAAGCGCAACAAGGTAACAAGCAGTGAAGCATCTAATCTAGAATCCAAGAAATA</u> GTGCTATCCTTCTCTTTGGTTCCGTATGTAATTGGCTTCAGCATTGTTACCTTATTCTGTCCTTCTA CACGATAGGAAGAGAAACCAAGGCATACATTAACCGAAGTCGTAACAATGGAATAAGACAGGAAGAT TGTTGTTGTTGTTAGGCCTCCATT TCTTGTTCTCTGTAGCTCCGCCTACTTTCCTCGCTCTGCTTATCTTGTTGAGCT AGAACAAGAGACATCGAGGCGGGATGAAAGGAGCGAGACGAATAGAACAAC 5' 3' Linear DNA 4*
 - * This linear DNA contains no spaced adenine tract in its sequence.

Fig. S5. Synthesis and confirmation of Circular DNA 4 (1154 bp in length) from Linear DNA 4 (1154 bp in length). (A) Nucleotide sequences of Linear DNA 4; (B) Diagrammatic illustration of synthesis of Circular DNA 4 from Linear DNA 4.

- * (1) Junctions between the segments that are highlighted in red and in blue represent the points at which adenine-rich and thymine-rich segments alternate between two opposite strands; and
- (2) This linear DNA contains four segments of continuous spaced adenine teacts in its sequence.


Fig. S6. Nucleotide sequences of Linear DNA 5.

А

3'	$\frac{5'}{TCGAGATCATAGTCGCAATTAACAGATTAAGTTGAGTAACACCAGAGTTCACAGTCACGAAGTTGTAATTAACGACGACCAGTCAGT$
	${\tt TACGACTCACTTAAGACATTGACTAGAGGATACCAACATAGGTATATAGAACCAATCTAGAGCCATAACTTCGTATAGAATACATTATACGAATGCTGAGGTGAATTCTGTAACTGATCTCCTATGGTTGTATCCATATATCTTGGTTAGAATCTCGGTATTGAAGCATATCTTATGTAATATGCT}$
	AGTTATATAAGATGTCAAACATGAGAATTATTGTTATAGGTTAATGTAATGATAATGATTTCTTAGAAGTCAGATGACACTTTTCAGAG TCAATATATTCTACAGTTTGTACTCTTAATAACAATATCCAATTACATTACTATTATTACTAAAGAATCTTCAGTCTACTGTGAAAAGTCTC
	AAATGTAAGCAGAACACATATTTATTTATTTCTAAATACATTCAAATATGTATCAGCTCATGAGACAATAACCATGATAAATGATTCAATAA TTTACATTCGTCTTGTGTATAAATAAATAAAGATTTATGTAAGTTTATACATAGTCGAGTACTCTGTTATTGGTACTATTTACTAAGTTATT
	TATTGAATTAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCACTTATTCCCTTATAAGCGACTTATTGCCTTCATGTTCCTTTGATCAC ATAACTTAATTTCCTTCTCATACTCATAAGTTGTAAAGGCACAGTGAATAAGGGAATATTCGCTGAATAACGGAAGTACAAGGAAACTAGTG
	CCAGGAATTCTGGTGAAAGTAAGAGATGATGAAGATAAGTTGGGTGAACGAATGGATTACATAGAACTGGATCTCAACAGAGGTAAGTTAAG GGTCCTTAAGACCACTTTCATTCTCTACTACTTCTATTCAACCCACTTGCTTACCTAATGTATCTTGACCTAGAGTTGTCTCCATTCAATTC
	ATTTGCACAACATGAAGGATCATGTAACTAGAATTGATAGAAGGAGAGAGA
	ACAACGATGACTGCAGGAATTAATAGAGCCATAACTTAGTATAGCATACATTATACGAAGTTATCCATGGACTAGTGAGTCGTATTACGTAG TGTTGCTACTGACGTCCTTAATTATCTCGGTATTGAATCATATCGTATGTAATATGCTTCAATAGGTACCTGATCACTCAGCATAATGCATC
	ATTGGAGTAATAATGGTCATAGCTGTTTACTGTATGAAATTGTTATAAGCTCACAATTACACACAACATACGAGCCGGAAGCATAAAGTGTA <u>TAACCTCATTATTACCAGTATCGACAAATGACATACTTTAACAATATTCGAGTGTTAATGTGTGTTGTATGCTCGGCCTTCGTATTTCACAT</u>
	AAGTGAGAGGAATTAACCATGGATCAGGTAAGTGATATCGAAGACTTAACGCTAGAATTCGATAACCTATAGTGAGTCGTATTACATGGTCA TTCACTCTCCTTAATTGGTACCTAGTCCATTCACTATAGCTTCTGAATTGCGATCTTAAGCTATTGGATATCACTCAGCATAATGTACCAGT
	TAGCTGTTCTGGCAGCTCTGACCAATGTCTCAATCAATCTATGATGTTACATTGCACAAGATAAAGGAATATATCATCATGAACAATAACCA <u>ATCGACAAGACCGTCGAGACTGGTTACAGAGTTAGTTAGATACTACAATGTAACGTGTTCTATTTCCTTATATAGTAGTACTTGTTATTGGT</u>
	ACTGTCTGATTACATAAACAGTAATACGAGCT ³ Linear DNA 6* TGACAGACTAATGTATTTGTCATTATGC 5'

* This linear DNA contains no spaced adenine tract in its sequence.

В

Fig. S7. Synthesis and confirmation of Circular DNA 6 (1040 bp in length) from Linear DNA 6 (1040 bp in length). (A) Nucleotide sequences of Linear DNA 6; (B) Diagrammatic illustration of synthesis of Circular DNA 6 from Linear DNA 6.

References for Supplementary Information:

- S1. Y. L. Lyubchenko and L. S. Shlyakhtenko, Methods, 2009, 47, 206-213.
- S2. Y. L. Lyubchenko, A. A. Gall, L. S. Shlyakhtenko, R. E. Harrington, B. L. Jacobs, P. I.

Oden and S. M. Lindsay, J. Biomolec. Struct. Dyn., 1992, 9, 589-606.