Supplementary Information for:

Expanded Redox Accessibility via Ligand Substitution in an Octahedral Fe₆Br₆ Cluster

T. David Harris, Qinliang Zhao, Raúl Hernández Sánchez, and Theodore A. Betley*

Department of Chemistry and Chemical Biology Harvard University, Cambridge, Massachusetts 02138 USA. E-mail: betley@chemistry.harvard.edu

Chem. Commun.

Table of Contents

Experimental Section.	S3
Figure S1: Mössbauer spectrum for 1.	S5
Figure S2: Crystal packing diagram of 1.	S6
Figure S3: Crystal structure of $[({}^{H}L)_{2}Fe_{6}Br_{6}]^{2-}$, as observed in 2 .	S7
Table S1: Selected interatomic distances (Å) for 1.	S8
Table S2: Selected interatomic angles (°) for 1.	S9
Table S3: Selected interatomic distances (Å) for 2.	S10
Table S4: Selected interatomic angles (°) for 2.	S11

Experimental Section

General Considerations. Manipulations involving metal complexes were carried out using standard glove-box techniques under a dinitrogen atmosphere unless otherwise noted. Glassware was oven-dried for a minimum of 10 h and cooled in an evacuated antechamber prior to use in the dry box. Acetonitrile and diethyl ether was dried and deoxygenated on a Glass Contour System (SG Water USA, Nashua, NH) and stored over 4 Å molecular sieves (Strem) prior to use. Anhydrous DMF was purchased from Sigma Aldrich and degassed via three freeze-pump-thaw cycles prior to use. Water was purified using a Barnstead NANOpure Diamond Water Purifier. The compounds (^HL)₂Fe₆ and [(^HL)₂Fe₆(NCMe)₆](PF₆)₄ were prepared as described previously.¹ All other reagents were purchased from commercial vendors and used without further purification unless explicitly stated.

(^HL)₂Fe₆Br₆ (1). Solid [Cp₂Fe](PF₆) (0.288 g, 0.869 mmol) was added to a stirred mixture of (Bu₄N)Br (0.154 g, 0.478 mmol) and (^HL)₂Fe₆ (0.0800 g, 0.0724 mmol) in MeCN (15 mL). After stirring for 24 h, the resulting dark solid precipitate was collected on a medium-porosity fritted glass funnel. The residue was washed with successive aliquots of MeCN (5 × 8 mL) and Et₂O (3 × 8 mL), then dried under vacuum, to give 1 (0.102 g, 88%) as a dark brown powder. Anal. Calcd. for C₄₆H₄₈Br₆Fe₆N₁₂: C, 34.89; H, 3.05; N, 10.61%. Found: C, 34.95; H, 3.12; N, 10.61%.

Crystallization of 1. In air, a saturated aqueous solution (ca. 0.5 mL) of KBr was added to a Wako 4.970 mm thick 8 in. borosilicate NMR tube. A 1:1 mixture of MeCN/H₂O (ca. 0.5 mL) was then carefully layered on top of the KBr solution. A 2.6 mM solution (ca. 0.5 mL) of $[(^{H}L)_{2}Fe_{6}(NCMe)_{6}](PF_{6})_{4}$ and $[Cp_{2}Fe](PF_{6})$ in MeCN was carefully layered on top of the MeCN/H₂O mixture. Upon standing for 2 weeks, black plate-like crystals of 1 formed from the layering.

 $(Ph_4P)_2[(^{H}L)_2Fe_6Br_6]\cdot 2DMF$ (2). A saturated solution of $(Ph_4P)Br$ in DMF (8 mL) was added to a solution of $[(^{H}L)_2Fe_6(NCMe)_6](PF_6)_4$ (0.072 g, 0.037 mmol) in DMF (8 mL). The resulting dark solution was allowed to stand. Over the course of 12 h, a dark amorphous solid precipitated from solution. Additionally, a few dark block-shaped crystals of 2 also formed from solution. Crystals of 2 have thus far only been obtained in this one isolated instance. X-Ray Structure Determinations. Single crystals suitable for X-ray analysis were coated with deoxygenated Paratone-N oil and mounted on Kaptan loops. Data were collected at 100 K on an APEX II CCD or APEX II DUO single crystal diffractometer. Neither of the crystals showed significant decay during data collection. Raw data were integrated and corrected for Lorentz and polarization effects using Bruker APEX2 v. 2009.1.² Absorption corrections were applied using SADABS.³ Space group assignments were determined by examination of systematic absences, E-statistics, and successive refinement of the structures. The program PLATON⁴ was employed to confirm the absence of higher symmetry for any of the crystals. The positions of the heavy atoms were determined using direct methods using the program SHELXTL.⁵ Subsequent cycles of least-squares refinement followed by difference Fourier syntheses revealed the positions of the remaining non-hydrogen atoms. Non-hydrogen atoms were added in idealized positions.

Magnetic Susceptibility Measurements. Magnetic data for 1 were collected using a Quantum Design MPMS-5S SQUID magnetometer. Measurements for were obtained for a powder restrained in a polyethylene bag within a gelatin capsule. Dc magnetic susceptibility measurements were collected in the temperature range 5-300 K under an applied dc field of 1 T. All data were corrected for core diamagnetism of the sample, estimated using Pascal's constants, in addition to contributions from the sample holder.

Other Physical Measurements. Elemental analyses were performed by Complete Analysis Laboratories, Inc., Parsippany, New Jersey or Robertson Microlit Laboratories, Madison, New Jersey.

Fig. S1 Zero-field Mössbauer spectrum for **1**, collected at 100 K. Black squares correspond to experimental data, and red solid line corresponds to fit.

Fig. S2 Crystal packing diagram for 1, as viewed along the a (upper) and c (lower) axes. Orange, maroon, gray, and blue ellipsoids represent Fe, Br, C, and N atoms, respectively; H atoms are omitted for clarity.

Fig. S2 Crystal structure of $[({}^{H}L)_{2}Fe_{6}Br_{6}]^{2-}$, as observed in **2**. Orange, maroon, gray, and blue ellipsoids (50% probability level) represent Fe, Br, C, and N atoms, respectively; H atoms are omitted for clarity. Periphery of $[{}^{H}L]^{6-}$ ligand is shown transparent to aid visualization of the octahedral Fe₆ core.

C1—C2	1.516 (7)	Fe1—Fe1 ⁱ	2.6782 (17)
C2—C1 ⁱ	1.516 (7)	Fe1—Fe1 ⁱⁱ	2.6782 (17)
C2—C1 ⁱⁱ	1.516 (7)	Fe1—Fe1 ⁱⁱⁱ	2.7478 (16)
С2—С3	1.531 (15)	Fe1—Fe1 ^{iv}	2.7478 (16)
C4—C5 ⁱⁱ	1.395 (9)	Fe1—N1 ⁱⁱ	1.973 (5)
C4—C9 ⁱⁱ	1.392 (9)	Fe1—N1	2.015 (5)
C5—C4 ⁱ	1.395 (9)	Fe1—N2	1.922 (6)
С5—С6	1.399 (9)	Fe1—N2 ⁱⁱⁱ	1.972 (5)
C6—C7	1.398 (11)	N1—C1	1.476 (8)
С7—С8	1.391 (11)	N1—C5	1.443 (8)
С8—С9	1.381 (10)	N1—Fe1 ⁱ	1.973 (5)
C9—C4 ⁱ	1.392 (9)	N2—C4	1.413 (8)
Fe1—Br1	2.4454 (12)	N2—Fe1 ^{iv}	1.972 (5)

Table S1 Selected Interatomic Distances (Å) for 1.

Symmetry code(s): (i) -*x*+*y*+1, -*x*+1, *z*; (ii) -*y*+1, *x*-*y*, *z*; (iii) *y*+1/3, -*x*+*y*+2/3, -*z*+2/3; (iv) *x*-*y*+1/3, *x*-1/3, -*z*+2/3.

C1—C2	1.516 (7)	Br1—Fe1—Fe1 ⁱ	135.85 (4)	N1—Fe1—Fe1 ⁱⁱⁱ	90.65 (15)
C2—C1 ⁱ	1.516 (7)	Br1—Fe1—Fe1 ⁱⁱ	138.14 (4)	N1 ⁱⁱ —Fe1—Fe1 ^{iv}	91.56 (15)
C2—C1 ⁱⁱ	1.516 (7)	Br1—Fe1—Fe1 ⁱⁱⁱ	131.82 (4)	N1—Fe1—Fe1 ^{iv}	136.95 (15)
C2—C3	1.531 (15)	Br1—Fe1—Fe1 ^{iv}	133.89 (4)	N1 ⁱⁱ —Fe1—N1	95.1 (3)
C4—C5 ⁱⁱ	1.395 (9)	Fe1 ⁱ —Fe1—Fe1 ⁱⁱ	60.0	N2—Fe1—Br1	88.68 (16)
C4—C9 ⁱⁱ	1.392 (9)	Fe1 ⁱ —Fe1—Fe1 ⁱⁱⁱ	60.83 (2)	N2 ⁱⁱⁱ —Fe1—Br1	87.53 (16)
C5—C4 ⁱ	1.395 (9)	Fe1 ⁱⁱ —Fe1—Fe1 ⁱⁱⁱ	90.0	N2—Fe1—Fe1 ⁱ	135.46 (16)
С5—С6	1.399 (9)	Fe1 ⁱ —Fe1—Fe1 ^{iv}	90.0	N2 ⁱⁱⁱ —Fe1—Fe1 ⁱ	93.23 (16)
С6—С7	1.398 (11)	Fe1 ⁱⁱ —Fe1—Fe1 ^{iv}	60.83 (2)	N2—Fe1—Fe1 ⁱⁱ	87.60 (17)
С7—С8	1.391 (11)	Fe1 ⁱⁱⁱ —Fe1—Fe1 ^{iv}	58.33 (4)	N2 ⁱⁱⁱ —Fe1—Fe1 ⁱⁱ	134.01 (16)
С8—С9	1.381 (10)	N1 ⁱⁱ —Fe1—Br1	89.66 (15)	N2—Fe1—Fe1 ⁱⁱⁱ	92.24 (17)
C9—C4 ⁱ	1.392 (9)	N1—Fe1—Br1	88.71 (15)	N2 ⁱⁱⁱ —Fe1—Fe1 ⁱⁱⁱ	44.38 (16)
Fe1—Br1	2.4454 (12)	N1 ⁱⁱ —Fe1—Fe1 ⁱ	94.32 (15)	N2—Fe1—Fe1 ^{iv}	45.85 (16)
N1—C1—C2	116.5 (6)	N1—Fe1—Fe1 ⁱ	47.14 (15)	N2 ⁱⁱⁱ —Fe1—Fe1 ^{iv}	84.69 (17)
C1 ⁱ —C2—C1 ⁱⁱ	111.9 (4)	Fe1—Fe1 ⁱ	2.6782 (17)	N2—Fe1—N1 ⁱⁱ	83.3 (2)
C1 ⁱ —C2—C1	111.9 (4)	Fe1—Fe1 ⁱⁱ	2.6782 (17)	N2 ⁱⁱⁱ —Fe1—N1 ⁱⁱ	171.6 (2)
C1 ⁱⁱ —C2—C1	111.9 (4)	Fe1—Fe1 ⁱⁱⁱ	2.7478 (16)	N2—Fe1—N1	177.0 (2)
C1 ⁱ —C2—C3	106.9 (5)	Fe1—Fe1 ^{iv}	2.7478 (16)	N2 ⁱⁱⁱ —Fe1—N1	92.7 (2)
C1 ⁱⁱ —C2—C3	106.9 (5)	Fe1—N1 ⁱⁱ	1.973 (5)	N2—Fe1—N2 ⁱⁱⁱ	88.69 (4)
C1—C2—C3	106.9 (5)	Fe1—N1	2.015 (5)	C1—N1—Fe1 ⁱ	121.5 (4)
C5 ⁱⁱ —C4—N2	114.5 (6)	Fe1—N2	1.922 (6)	C1—N1—Fe1	117.1 (4)
C9 ⁱⁱ —C4—C5 ⁱⁱ	121.3 (6)	Fe1—N2 ⁱⁱⁱ	1.972 (5)	C5—N1—C1	108.6 (5)
C9 ⁱⁱ —C4—N2	124.2 (6)	N1—C1	1.476 (8)	C5—N1—Fe1 ⁱ	109.0 (4)
C4 ⁱ —C5—C6	119.2 (6)	N1—C5	1.443 (8)	C5—N1—Fe1	114.6 (4)
C4 ⁱ —C5—N1	114.9 (6)	N1—Fe1 ⁱ	1.973 (5)	Fe1 ⁱ —N1—Fe1	84.4 (2)
C6—C5—N1	125.8 (6)	N2—C4	1.413 (8)	C4—N2—Fe1	111.6 (4)
C7—C6—C5	119.0 (7)	N2—Fe1 ^{iv}	1.972 (5)	C4—N2—Fe1 ^{iv}	119.6 (4)
C8—C7—C6	121.1 (7)	N1 ⁱⁱ —Fe1—Fe1 ⁱⁱ	48.49 (15)	Fe1—N2—Fe1 ^{iv}	89.8 (2)
C9—C8—C7	119.9 (7)	N1—Fe1—Fe1 ⁱⁱ	93.32 (15)		
C8—C9—C4 ⁱ	119.4 (7)	N1 ⁱⁱ —Fe1—Fe1 ⁱⁱⁱ	138.29 (15)		

 Table S2 Selected Interatomic Angles (°) for 1.

Symmetry code(s): (i) -*x*+*y*+1, -*x*+1, *z*; (ii) -*y*+1, *x*-*y*, *z*; (iii) *y*+1/3, -*x*+*y*+2/3, -*z*+2/3; (iv) *x*-*y*+1/3, *x*-1/3, -*z*+2/3.

Fe1—N4	1.930 (2)	C14—C15	1.384 (5)	N3—C31	1.434 (3)	N1S—C2S	1.397 (7)
Fe1—N6	1.979 (2)	C14—H14A	0.9500	N3—C5	1.478 (4)	P1—C61	1.786 (3)
Fe1—N1	1.987 (2)	C15—C16	1.386 (4)	N3—Fe2 ⁱ	1.992 (2)	P1—C71	1.793 (3)
Fe1—N2	2.017 (2)	C15—H15A	0.9500	N4—C16	1.408 (4)	P1—C51	1.796 (3)
Fe1—Br1	2.4908 (5)	C21—C26	1.400 (4)	N4—Fe3 ⁱ	1.978 (2)	P1—C41	1.799 (3)
Fe1—Fe3	2.7457 (6)	C21—C22	1.405 (4)	N4—H4B	0.9300	C41—C42	1.387 (5)
Fe1—Fe2 ⁱ	2.7486 (6)	C22—C23	1.386 (5)	N5—C26	1.410 (4)	C41—C46	1.400 (5)
Fe1—Fe3 ⁱ	2.7613 (6)	C22—H22A	0.9500	N5—H5C	0.9300	C42—C43	1.397 (5)
Fe1—Fe2	2.7683 (6)	C23—C24	1.390 (5)	N6-C36	1.408 (4)	C43—C44	1.377 (6)
Fe2—N6	1.936 (2)	C23—H23A	0.9500	N6—H6A	0.9300	C44—C45	1.382 (6)
Fe2—N5	1.981 (2)	C24—C25	1.396 (5)	C1—C2	1.548 (4)	C45—C46	1.391 (5)
Fe2—N3 ⁱ	1.992 (2)	C24—H24A	0.9500	C1—H1A	0.9800	C51—C52	1.401 (4)
Fe2—N1 ⁱ	2.013 (2)	C25—C26	1.390 (4)	C1—H1B	0.9800	С52—С53	1.384 (5)
Fe2—Br2	2.5171 (5)	С25—Н25А	0.9500	C1—H1C	0.9800	C53—C54	1.380 (5)
Fe2—Fe1 ⁱ	2.7486 (6)	C31—C36 ⁱ	1.393 (4)	C2—C4	1.511 (4)	C54—C55	1.392 (5)
Fe2—Fe3 ⁱ	2.7587 (6)	C31—C32	1.398 (4)	С2—С3	1.511 (4)	C55—C56	1.393 (5)
Fe2—Fe3	2.7629 (6)	С32—С33	1.388 (4)	C2—C5	1.517 (4)	C61—C62	1.376 (5)
Fe3—N5	1.932 (2)	С32—Н32А	0.9500	С3—НЗА	0.9900	C61—C66	1.400 (5)
Fe3—N4 ⁱ	1.978 (2)	C33—C34 ⁱ	1.394 (4)	С3—Н3В	0.9900	C62—C63	1.393 (5)
Fe3—N2	1.994 (2)	С33—Н33А	0.9500	C4—H4A	0.9900	C63—C64	1.380 (6)
Fe3—N3	2.023 (2)	C34—C35	1.391 (4)	С4—Н4С	0.9900	C64—C65	1.368 (5)
Fe3—Br3	2.5040 (5)	C34—C33 ⁱ	1.394 (4)	C5—H5A	0.9900	C65—C66	1.381 (5)
Fe3—Fe2 ⁱ	2.7587 (6)	C34—H34A	0.9500	C5—H5B	0.9900	C71—C72	1.390 (4)
Fe3—Fe1 ⁱ	2.7613 (6)	C35—C36	1.389 (4)	C11—C16	1.395 (4)	C71—C76	1.399 (4)
N1-C11	1.438 (4)	С35—Н35А	0.9500	C11—C12	1.398 (4)	С72—С73	1.387 (4)
N1—C3	1.485 (4)	C36—C31 ⁱ	1.393 (4)	C12—C13	1.384 (5)	C73—C74	1.385 (4)
N1—Fe2 ⁱ	2.013 (2)	O1S—C1S	1.150 (8)	C12—H12A	0.9500	C74—C75	1.382 (5)
N2-C21	1.434 (4)	N1S—C1S	1.251 (7)	C13—C14	1.384 (5)	C75—C76	1.381 (5)
N2—C4	1.473 (4)	N1S—C3S	1.378 (6)	C13—H13A	0.9500		

 Table S3 Selected Interatomic Distances (Å) for 2.

Symmetry code(s): (i) -x+1, -y, -z.

Fel—N6	1.979 (2)	C14—H14A	0.9500
Fe1—N1	1.987 (2)	C15—C16	1.386 (4)
Fe1—N2	2.017 (2)	C15—H15A	0.9500
Fe1—Br1	2.4908 (5)	C21—C26	1.400 (4)
Fe1—Fe3	2.7457 (6)	C21—C22	1.405 (4)
Fe1—Fe2 ⁱ	2.7486 (6)	C22—C23	1.386 (5)
Fe1—Fe3 ⁱ	2.7613 (6)	C22—H22A	0.9500
Fe1—Fe2	2.7683 (6)	C23—C24	1.390 (5)
Fe2—N6	1.936 (2)	С23—Н23А	0.9500
Fe2—N5	1.981 (2)	C24—C25	1.396 (5)
Fe2—N3 ⁱ	1.992 (2)	C24—H24A	0.9500
Fe2—N1 ⁱ	2.013 (2)	C25—C26	1.390 (4)
Fe2—Br2	2.5171 (5)	С25—Н25А	0.9500
Fe2—Fe1 ⁱ	2.7486 (6)	C31—C36 ⁱ	1.393 (4)
Fe2—Fe3 ⁱ	2.7587 (6)	C31—C32	1.398 (4)
Fe2—Fe3	2.7629 (6)	C32—C33	1.388 (4)
Fe3—N5	1.932 (2)	С32—Н32А	0.9500
Fe3—N4 ⁱ	1.978 (2)	C33—C34 ⁱ	1.394 (4)
Fe3—N2	1.994 (2)	С33—Н33А	0.9500
Fe3—N3	2.023 (2)	C34—C35	1.391 (4)
Fe3—Br3	2.5040 (5)	C34—C33 ⁱ	1.394 (4)
Fe3—Fe2 ⁱ	2.7587 (6)	C34—H34A	0.9500
Fe3—Fe1 ⁱ	2.7613 (6)	C35—C36	1.389 (4)
N1—C11	1.438 (4)	С35—Н35А	0.9500
N1—C3	1.485 (4)	C36—C31 ⁱ	1.393 (4)
N1—Fe2 ⁱ	2.013 (2)	O1S—C1S	1.150 (8)
N2—C21	1.434 (4)	N1S—C1S	1.251 (7)
N2—C4	1.473 (4)	N1S—C3S	1.378 (6)
N3—C31	1.434 (3)	N1S—C2S	1.397 (7)
N3—C5	1.478 (4)	P1—C61	1.786 (3)
N3—Fe2 ⁱ	1.992 (2)	P1—C71	1.793 (3)
N4—C16	1.408 (4)	P1—C51	1.796 (3)
N4—Fe3 ⁱ	1.978 (2)	P1—C41	1.799 (3)
N4—H4B	0.9300	C41—C42	1.387 (5)

Table S4 Selected Interatomic Angles (°) for 2.

N5—C26	1.410 (4)	C41—C46	1.400 (5)
N5—H5C	0.9300	C42—C43	1.397 (5)
N6—C36	1.408 (4)	C43—C44	1.377 (6)
N6—H6A	0.9300	C44—C45	1.382 (6)
C1—C2	1.548 (4)	C45—C46	1.391 (5)
C1—H1A	0.9800	C51—C52	1.401 (4)
C1—H1B	0.9800	С52—С53	1.384 (5)
C1—H1C	0.9800	С53—С54	1.380 (5)
C2—C4	1.511 (4)	C54—C55	1.392 (5)
С2—С3	1.511 (4)	C55—C56	1.393 (5)
C2—C5	1.517 (4)	C61—C62	1.376 (5)
С3—НЗА	0.9900	C61—C66	1.400 (5)
С3—Н3В	0.9900	C62—C63	1.393 (5)
C4—H4A	0.9900	C63—C64	1.380 (6)
C4—H4C	0.9900	C64—C65	1.368 (5)
С5—Н5А	0.9900	C65—C66	1.381 (5)
С5—Н5В	0.9900	С71—С72	1.390 (4)
C11—C16	1.395 (4)	С71—С76	1.399 (4)
C11—C12	1.398 (4)	С72—С73	1.387 (4)
C12—C13	1.384 (5)	С73—С74	1.385 (4)
C12—H12A	0.9500	С74—С75	1.382 (5)
C13—C14	1.384 (5)	С75—С76	1.381 (5)
C13—H13A	0.9500	C11—N1—C3	108.3 (2)
N4—Fe1—N6	89.77 (10)	C11—N1—Fe1	108.14 (18)
N4—Fe1—N1	83.04 (10)	C3—N1—Fe1	120.49 (19)
N6—Fe1—N1	172.68 (10)	C11—N1—Fe2 ⁱ	115.63 (18)
N4—Fe1—N2	177.55 (10)	C3—N1—Fe2 ⁱ	116.28 (17)
N6—Fe1—N2	91.58 (10)	Fe1—N1—Fe2 ⁱ	86.81 (10)
N1—Fe1—N2	95.55 (10)	C21—N2—C4	108.6 (2)
N4—Fe1—Br1	88.41 (7)	C21—N2—Fe3	108.51 (19)
N6—Fe1—Br1	88.88 (7)	C4—N2—Fe3	120.53 (18)
N1—Fe1—Br1	89.53 (7)	C21—N2—Fe1	115.09 (18)
N2—Fe1—Br1	89.58 (7)	C4—N2—Fe1	116.5 (2)
N4—Fe1—Fe3	135.51 (7)	Fe3—N2—Fe1	86.39 (9)
N6—Fe1—Fe3	92.67 (7)	C31—N3—C5	108.5 (2)
N1—Fe1—Fe3	93.43 (7)	C31—N3—Fe2 ⁱ	108.52 (18)
N2—Fe1—Fe3	46.46 (7)	C5—N3—Fe2 ⁱ	121.14 (19)

Br1—Fe1—Fe3	136.03 (2)	C31—N3—Fe3	114.92 (18)
N4—Fe1—Fe2 ⁱ	87.27 (7)	C5—N3—Fe3	115.75 (18)
N6—Fe1—Fe2 ⁱ	134.31 (7)	Fe2 ⁱ —N3—Fe3	86.81 (9)
N1—Fe1—Fe2 ⁱ	47.00 (7)	C16—N4—Fe1	110.66 (19)
N2—Fe1—Fe2 ⁱ	93.24 (7)	C16—N4—Fe3 ⁱ	120.05 (19)
Br1—Fe1—Fe2 ⁱ	136.52 (2)	Fe1—N4—Fe3 ⁱ	89.90 (10)
Fe3—Fe1—Fe2 ⁱ	60.277 (16)	C26—N5—Fe3	110.68 (19)
N4—Fe1—Fe3 ⁱ	45.75 (7)	C26—N5—Fe2	118.87 (18)
N6—Fe1—Fe3 ⁱ	86.13 (7)	Fe3—N5—Fe2	89.84 (10)
N1—Fe1—Fe3 ⁱ	89.82 (7)	C36—N6—Fe2	110.77 (18)
N2—Fe1—Fe3 ⁱ	136.39 (7)	C36—N6—Fe1	118.96 (19)
Br1—Fe1—Fe3 ⁱ	133.81 (2)	Fe2—N6—Fe1	90.00 (10)
Fe3—Fe1—Fe3 ⁱ	90.096 (18)	C4—C2—C3	113.0 (2)
Fe2 ⁱ —Fe1—Fe3 ⁱ	60.191 (15)	C4—C2—C5	112.7 (3)
N4—Fe1—Fe2	93.37 (7)	C3—C2—C5	112.1 (3)
N6—Fe1—Fe2	44.37 (7)	C4—C2—C1	105.9 (2)
N1—Fe1—Fe2	137.18 (7)	C3—C2—C1	106.2 (3)
N2—Fe1—Fe2	89.02 (7)	C5—C2—C1	106.3 (2)
Br1—Fe1—Fe2	133.15 (2)	N1—C3—C2	116.1 (2)
Fe3—Fe1—Fe2	60.140 (15)	N2—C4—C2	116.1 (2)
Fe2 ⁱ —Fe1—Fe2	90.303 (17)	N3—C5—C2	116.0 (2)
Fe3 ⁱ —Fe1—Fe2	59.853 (16)	C16—C11—C12	118.9 (3)
N6—Fe2—N5	90.29 (10)	C16—C11—N1	115.2 (3)
N6—Fe2—N3 ⁱ	82.85 (10)	C12—C11—N1	125.8 (3)
N5—Fe2—N3 ⁱ	173.07 (10)	C13—C12—C11	119.9 (3)
N6—Fe2—N1 ⁱ	177.60 (10)	C12—C13—C14	120.5 (3)
N5—Fe2—N1 ⁱ	91.75 (10)	C15—C14—C13	120.2 (3)
N3 ⁱ —Fe2—N1 ⁱ	95.08 (10)	C14—C15—C16	119.6 (3)
N6—Fe2—Br2	88.85 (7)	C15—C16—C11	120.8 (3)
N5—Fe2—Br2	88.44 (7)	C15—C16—N4	124.5 (3)
N3 ⁱ —Fe2—Br2	90.40 (7)	C11—C16—N4	114.7 (3)
N1 ⁱ —Fe2—Br2	89.96 (7)	C26—C21—C22	118.4 (3)
N6—Fe2—Fe1 ⁱ	134.95 (7)	C26—C21—N2	115.2 (3)
N5—Fe2—Fe1 ⁱ	92.42 (7)	C22—C21—N2	126.4 (3)
N3 ⁱ —Fe2—Fe1 ⁱ	93.15 (7)	C23—C22—C21	120.2 (3)
N1 ⁱ —Fe2—Fe1 ⁱ	46.20 (7)	C22—C23—C24	120.7 (3)
Br2—Fe2—Fe1 ⁱ	136.16 (2)	C23—C24—C25	119.8 (3)

N6—Fe2—Fe3 ⁱ	87.02 (7)	C26—C25—C24	119.4 (3)
N5—Fe2—Fe3 ⁱ	133.88 (7)	C25—C26—C21	121.3 (3)
N3 ⁱ —Fe2—Fe3 ⁱ	47.07 (7)	C25—C26—N5	123.8 (3)
N1 ⁱ —Fe2—Fe3 ⁱ	92.46 (7)	C21—C26—N5	114.9 (3)
Br2—Fe2—Fe3 ⁱ	137.44 (2)	C36 ⁱ —C31—C32	118.9 (3)
Fe1 ⁱ —Fe2—Fe3 ⁱ	59.810 (15)	C36 ⁱ —C31—N3	115.1 (2)
N6—Fe2—Fe3	93.10 (7)	C32—C31—N3	126.0 (3)
N5—Fe2—Fe3	44.36 (7)	C33—C32—C31	120.2 (3)
N3 ⁱ —Fe2—Fe3	136.72 (7)	C32—C33—C34 ⁱ	120.4 (3)
N1 ⁱ —Fe2—Fe3	89.23 (7)	C35—C34—C33 ⁱ	119.7 (3)
Br2—Fe2—Fe3	132.73 (2)	C36—C35—C34	119.8 (3)
Fe1 ⁱ —Fe2—Fe3	60.132 (15)	C35—C36—C31 ⁱ	121.0 (3)
Fe3 ⁱ —Fe2—Fe3	89.794 (18)	C35—C36—N6	124.0 (3)
N6—Fe2—Fe1	45.63 (7)	C31 ⁱ —C36—N6	115.0 (2)
N5—Fe2—Fe1	86.29 (7)	C1S—N1S—C3S	117.2 (7)
N3 ⁱ —Fe2—Fe1	89.61 (7)	C1S—N1S—C2S	122.9 (8)
N1 ⁱ —Fe2—Fe1	135.78 (7)	C3S—N1S—C2S	119.8 (6)
Br2—Fe2—Fe1	134.04 (2)	C61—P1—C71	109.47 (14)
Fe1 ⁱ —Fe2—Fe1	89.697 (17)	C61—P1—C51	108.56 (15)
Fe3 ⁱ —Fe2—Fe1	59.947 (16)	C71—P1—C51	107.26 (15)
Fe3—Fe2—Fe1	59.524 (15)	C61—P1—C41	106.82 (15)
N5—Fe3—N4 ⁱ	89.44 (10)	C71—P1—C41	112.66 (14)
N5—Fe3—N2	83.17 (10)	C51—P1—C41	112.00 (15)
N4 ⁱ —Fe3—N2	172.53 (10)	O1S—C1S—N1S	142.6 (11)
N5—Fe3—N3	177.67 (10)	C42—C41—C46	120.5 (3)
N4 ⁱ —Fe3—N3	91.92 (10)	C42—C41—P1	121.3 (3)
N2—Fe3—N3	95.44 (10)	C46—C41—P1	118.1 (3)
N5—Fe3—Br3	88.94 (7)	C41—C42—C43	119.5 (4)
N4 ⁱ —Fe3—Br3	87.89 (7)	C44—C43—C42	119.9 (4)
N2—Fe3—Br3	90.88 (7)	C43—C44—C45	120.7 (3)
N3—Fe3—Br3	89.22 (7)	C44—C45—C46	120.4 (4)
N5—Fe3—Fe1	87.87 (7)	C45—C46—C41	119.0 (4)
N4 ⁱ —Fe3—Fe1	133.94 (7)	C56—C51—C52	120.5 (3)
N2—Fe3—Fe1	47.15 (7)	C56—C51—P1	120.2 (2)
N3—Fe3—Fe1	92.54 (7)	C52—C51—P1	119.1 (3)
Br3—Fe3—Fe1	137.98 (2)	C53—C52—C51	119.3 (3)
N5—Fe3—Fe2 ⁱ	135.71 (7)	C54—C53—C52	120.7 (3)

N4 ⁱ —Fe3—Fe2 ⁱ	92.60 (7)	C53—C54—C55	120.0 (3)
N2—Fe3—Fe2 ⁱ	93.44 (8)	C54—C55—C56	120.3 (3)
N3—Fe3—Fe2 ⁱ	46.12 (7)	C55—C56—C51	119.1 (3)
Br3—Fe3—Fe2 ⁱ	135.34 (2)	C62—C61—C66	119.9 (3)
Fe1—Fe3—Fe2 ⁱ	59.913 (16)	C62—C61—P1	120.0 (3)
N5—Fe3—Fe1 ⁱ	93.12 (7)	C66—C61—P1	119.9 (3)
N4 ⁱ —Fe3—Fe1 ⁱ	44.35 (7)	C61—C62—C63	119.8 (4)
N2—Fe3—Fe1 ⁱ	136.88 (7)	C64—C63—C62	119.6 (4)
N3—Fe3—Fe1 ⁱ	89.17 (7)	C65—C64—C63	121.0 (4)
Br3—Fe3—Fe1 ⁱ	132.11 (2)	C64—C65—C66	119.7 (3)
Fe1—Fe3—Fe1 ⁱ	89.904 (18)	C65—C66—C61	119.9 (3)
Fe2 ⁱ —Fe3—Fe1 ⁱ	60.201 (15)	C72—C71—C76	120.1 (3)
N5—Fe3—Fe2	45.80 (7)	C72—C71—P1	120.1 (2)
N4 ⁱ —Fe3—Fe2	85.96 (7)	C76—C71—P1	119.7 (2)
N2—Fe3—Fe2	89.64 (7)	C73—C72—C71	119.6 (3)
N3—Fe3—Fe2	136.19 (7)	С74—С73—С72	120.1 (3)
Br3—Fe3—Fe2	134.28 (2)	С75—С74—С73	120.5 (3)
Fe1—Fe3—Fe2	60.336 (15)	C76—C75—C74	119.9 (3)
Fe2 ⁱ —Fe3—Fe2	90.206 (18)	C75—C76—C71	119.8 (3)
Fe1 ⁱ —Fe3—Fe2	59.677 (16)		

Symmetry code(s): (i) -x+1, -y, -z.

References.

- (1) Q. Zhao, T. D. Harris and T. A. Betley, submitted for publication.
- (2) APEX2 v.2009; Bruker Analytical X-Ray Systems, Inc: Madison, WI, 2009.
- (3) Sheldrick, G. M. SADABS, Version 2.03; Bruker Analytical X-Ray Systems, Inc: Madison, WI, 2000.
- (4) Spek, A. L. *PLATON, A Multipurpose Crystallographic Tool*; Utrecht University, Utrecht, The Netherlands, 2010.
- (5) Sheldrick, G. M. SHELXTL, Version 6.12; Bruker Analytical X-Ray Systems, Inc: Madison, WI, 2000.