Electronic Supplementary Information for:

Synthesis of Thiophosphoramidates: Click Chemistry for Phosphates

Milena Trmčić and David R. W. Hodgson*

Department of Chemistry, Science Laboratories, Durham University, South Road, Durham, DH1 3LE, United Kingdom.

Contents

GENERAL PROCEDURES.	2
OPTIMIZATION OF ETHANOLAMINE THIOPHOSPHORYLATION (TABLE 1, ENTRIES 1-4)	2
THIOPHOSPHORYLATION OF BENZYLAMINE (TABLE 1, ENTRY 5)	3
N-THIOPHOSPHORYLATION OF AMINES AND S-METHYLATION OF N-	
THIOPHOSPHORAMIDATES	4
S-ALKYLATION OF N-THIOPHOSPHORAMIDATES	5
NMR SPECTRA	12
TABLE 1. ENTRY 1. ¹ H NMR SPECTRUM	13
TABLE 1, ENTRY 1 ³¹ P NMR SPECTRUM	14
TABLE 1. ENTRY 2 ¹ H NMR SPECTRUM	15
TABLE 1, ENTRY 2 ³¹ P NMR SPECTRUM	16
TABLE 1. ENTRY 3 ¹ H NMR SPECTRUM	17
TABLE 1. ENTRY 3 ³¹ P NMR SPECTRUM	18
TABLE 1. ENTRY 4 ¹ H NMR SPECTRUM	19
TABLE 1, ENTRY 4 ³¹ P NMR SPECTRUM	20
TABLE 1. ENTRY 5 ¹ H NMR SPECTRUM	21
TABLE 1. ENTRY 5 ³¹ P NMR SPECTRUM	22
TABLE 2. ENTRY 1 ¹ H NMR SPECTRUM	23
TABLE 2. ENTRY 1 ³¹ P NMR SPECTRUM	24
TABLE 2, ENTRY 2 ¹ H NMR SPECTRUM	25
TABLE 2. ENTRY 2 ³¹ P NMR SPECTRUM	26
TABLE 2. ENTRY 3 ¹ H NMR SPECTRUM	27
TABLE 2, ENTRY 3 ³¹ P NMR SPECTRUM	28
TABLE 2, ENTRY 4 ¹ H NMR SPECTRUM	29
TABLE 2, ENTRY 4 ³¹ P NMR SPECTRUM	30
TABLE 3, ENTRY 1 ¹ H NMR SPECTRUM	31
TABLE 3, ENTRY 1 ³¹ P NMR SPECTRUM	32
TABLE 3, ENTRY 2 ¹ H NMR SPECTRUM	33
TABLE 3, ENTRY 2 ³¹ P NMR SPECTRUM	34
TABLE 3, ENTRY 3 ¹ H NMR SPECTRUM	35
TABLE 3, ENTRY 3 ³¹ P NMR SPECTRUM	36
TABLE 3, ENTRY 4 ¹ H NMR SPECTRUM	37
TABLE 3, ENTRY 4 ³¹ P NMR SPECTRUM	38
TABLE 3, ENTRY 4 BRACKETS ¹ H NMR SPECTRUM	39
TABLE 3, ENTRY 4 BRACKETS ³¹ P NMR SPECTRUM	40
TABLE 3, ENTRY 5 ¹ H NMR SPECTRUM	41
TABLE 3, ENTRY 5 ³¹ P NMR SPECTRUM	42
TABLE 3, ENTRY 6 ¹ H NMR SPECTRUM	43
TABLE 3, ENTRY 6 ³¹ P NMR SPECTRUM	44
TABLE 3, ENTRY 7 ¹ H NMR SPECTRUM	45
TABLE 3, ENTRY 7 ³¹ P NMR SPECTRUM	46
TABLE 3, ENTRY 8 CRUDE ³¹ P NMR SPECTRUM	47
ANION EXCHANGE CHROMATOGRAM OF TABLE 3, ENTRY 8.	48
TABLE 3, ENTRY 8 $^{1}\mathrm{H}$ NMR spectrum after weak anion exchange chromatography and cation	
EXCHANGE	49

TABLE 3 ENTRY 8 ³¹ P NMR SPECTRUM AFTER WEAK ANION EXCHANGE CHROMATOGRAPHY AND CATION	
FXCHANGE	50
TABLE 3 ENTRY 9 ¹ H NMR SPECTRUM	51
TABLE 3, ENTRY 9 ³¹ P NMP SPECTRUM	52
TABLE 3, ENTRY 1 I NIME SPECTRUM TABLE 2 ENTRY 10 1 H NMP SPECTRUM	52
TABLE 2, ENTRY 10 11 INVIR SPECTRUM TABLE 2, ENTRY 10 31 D NMD ODECTRUM	55
TABLE 3, ENTRY 10 PINNIK SPECIRUM	54
TABLE 3, ENTRY II H NMR SPECTRUM	22
TABLE 3, ENTRY 11 P NMR SPECTRUM	56
TABLE 3, ENTRY 12 ¹ H NMR SPECTRUM	57
TABLE 3, ENTRY 12 ³¹ P NMR SPECTRUM	58
TABLE 3, ENTRY 13 ¹ H NMR SPECTRUM	59
TABLE 3, ENTRY 13 ³¹ P NMR SPECTRUM	60
TABLE 3, ENTRY 14 ¹ H NMR SPECTRUM	61
TABLE 3, ENTRY 14 ³¹ P NMR SPECTRUM	62
TABLE 3, ENTRY 15 ¹ H NMR SPECTRUM	63
TABLE 3, ENTRY 15 ³¹ P NMR SPECTRUM	64
TABLE 3, ENTRY 16 ¹ H NMR SPECTRUM	65
TABLE 3, ENTRY 16 ³¹ P NMR SPECTRUM	66

General procedures.

Reagents were purchased from Aldrich, Acros, Fisher, Apollo Scientific Ltd, Goss Scientific Biosciences. Instruments and Amersham and were used as supplied, except thiophophorylchloride, which was distilled under an atmosphere of nitrogen. Dry dichloromethane and tetrahydrofuran were produced by the solvent drying service within the Chemistry Department, Durham University (Pure Solv MD Solvent Purification System 400, Inovative technology). Measurements of pH were performed using a pre-calibrated (4.00 \pm 0.01, 7.02 \pm 0.01, 10.04 \pm 0.01) HANNA 210 Microprocessor pH meter at 22 °C. For larger sample volumes, a Hanna combination electrode was used, whereas an Orion micro PerpHecT ROSS combination electrode was used for smaller volumes. Lyophilisation was carried out on a Jouan high vacuum system. Mass spectra were acquired on Thermo Electron LTQ and Micromass LCT spectrometers.

Optimization of ethanolamine thiophosphorylation (Manuscript Table 1, entries 1-4)

In order to optimize thiophosphorylation of ethanolamine, several experiments were performed where the number of equivalents of thiophosphoryl chloride was varied.

HO
aq. NaOH

$$(5.0-6.5 \text{ equiv})$$

 $SPCl_3 (1.0-1.3 \text{ equiv})$
 H_2
 $R_N P_S^- + SPO_3^{2-} + other impurities$

Ethanolamine was vigorously stirred with an aqueous solution of 1 M sodium hydroxide (see table 1 for quantities) in a 100 mL round bottomed flask with indentations that aim to ensure turbulent mixing, and the mixture was placed in an ice bath. Thiophosphoryl chloride (ESI Table 1) was dissolved in dry THF (7 mL) was added dropwise to the stirred aqueous mixture over the course of 10 minutes. The mixture was stirred vigorously for 1 h followed by

removal of THF under reduced pressure. The residual aqueous solution was then lyophilised to afford a white powder of crude ethanolamine thiophosphoroamidate. Products were then assessed using integrated ¹H and ³¹P NMR spectra that are presented below.

Main paper Table 1	1 M NaOH			PSCl ₃			ethanolamine	
entry number	mL	mmol	Eq	mL	mmol	Eq	mL	mmol
1	11.5	11.5	5	0.232	2.3	1	0.135	2.3
2	12.6	12.6	5.5	0.255	2.53	1.1	0.135	2.3
3	13.8	13.8	6	0.278	2.76	1.2	0.135	2.3
4	14.95	14.95	6.5	0.301	2.99	1.3	0.135	2.3

ESI Table 1. Quantities of reagents used during ethanolamine thiophosphorylation experiments

The other impurities in the samples were inorganic phosphate and unidentified structures, containing phosphoryl groups. Summary of spectroscopic data (¹H and ³¹P NMR spectra are available on p. 13-20): ¹H NMR (400 MHz; D₂O) δ 3.66 (2 H, t, *J* 5.7, OHC*H*₂), 2.97-2.91 (2 H, m, *CH*₂NH); ³¹P NMR [¹H] (162 MHz; D₂O) δ 44.7 (t, *J* 9.3, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 62.6 (d, ³*J*_{C-P} 8.1, OHC*H*₂), 44.6 (*C*H₂NH); HRMS (ES⁻, *m/z*): calcd for C₂H₇NO₃PS⁻: 155.9889; found: 155.9888.

Thiophosphorylation of benzylamine (Manuscript Table 1, entry 5)

$$\begin{array}{c} \begin{array}{c} \mathsf{Ph} & \underset{(5. \text{ equiv})}{\text{ aq. NaOH}} & \mathsf{PhH}_2C & \mathsf{O}_2O^- \\ & \underbrace{\mathsf{SPCI}_3 (1.0 \text{ equiv})}_{\text{ in THF}} & \mathsf{PhH}_2C & \mathsf{N}_2^- + \mathsf{SPO}_3^{2-} + \underset{\text{impurities}}{\text{ other}} \\ \end{array}$$

Benzylamine (1 Eq. 0.5 mL, 4.6 mmol) was vigorously stirred with an aqueous solution of 1 M sodium hydroxide (22.8 mL) and water (2.96 mL) in a 100 mL round bottomed flask with indentations that aim to ensure turbulent mixing, placed in an ice bath. Thiophosphoryl chloride (1 Eq. 0.464 mL, 4.6 mmol) was dissolved in dry THF (14 mL) and added dropwise to the stirred aqueous mixture over the course of 10 minutes. The mixture was stirred vigorously for 1 h followed by removal of THF under reduced pressure. The residual aqueous solution was then lyophilised, to afford a white powder of crude benzyl thiophosphoroamidate. Summary of spectroscopic data (¹H and ³¹P NMR spectra are available on p. 21-22): ¹H NMR (400 MHz; D₂O) δ 7.39-7.25 (5 H, m, C₆H₅), 3.92 (2 H, d, *J* 6.8, CH₂NH); ³¹P NMR [¹H] (162 MHz; D₂O) δ 43.0 (t, *J* 6.8, NHPS); ¹³C NMR (101 MHz; D₂O) δ 141.3 (d, ³J_{C-P} 12.4, *i*-C₆H₅), 128.8 (*o*-C₆H₅), 128.2 (*m*-C₆H₅), 127.1 (*p*-C₆H₅), 47.1 (CH₂NH); HRMS (ES⁻, *m/z*): calcd for C₇H₉NO₂PS⁻: 202.0097 found 202.0099.

N-Thiophosphorylation of amines and *S*-methylation of *N*-thiophosphoramidates

 $\begin{array}{c} \text{RNH}_2 \xrightarrow{\text{aq. NaOH (5 equiv)}} \text{SPCI}_3 \xrightarrow{\text{SPCI}_3} \text{RHN}^2 \xrightarrow{\text{O}} \xrightarrow{\text{O}} \xrightarrow{\text{Mel}} \text{RHN}^2 \xrightarrow{\text{SMe}} \xrightarrow{\text{SMe}} \text{RHN}^2 \xrightarrow{\text{SMe}} \xrightarrow{\text{SMe}} \xrightarrow{\text{RHN}^2} \xrightarrow{\text{SMe}} \xrightarrow{\text{SMe}} \xrightarrow{\text{RHN}^2} \xrightarrow{\text{SMe}} \xrightarrow{\text{RHN}^2} \xrightarrow{\text{SMe}} \xrightarrow{\text{RHN}^2} \xrightarrow{\text{SMe}} \xrightarrow{\text{RHN}^2} \xrightarrow{\text{SMe}} \xrightarrow{\text{RHN}^2} \xrightarrow{\text{SMe}} \xrightarrow{\text{RHN}^2} \xrightarrow{\text{RHN}^2}$

entry	RNH ₂	Eq	RNH ₂ (µ L)	mmol	<i>N</i> -thio phosphorylation (h)	S-methyl- ation (h)	conversion to N- alkyl S-methylthio phosphoramidate 8, %
1	Ph NH ₂	1.2	300	2.76	0.25	0.25	98 ^{<i>a</i>} ,96 ^{<i>b</i>}
2	/NH ₂	1.2	206	2.76	0.25	0.3	98 ^{<i>a</i>} , 91 ^{<i>b</i>}
3	0NH	1.2	241	2.76	1	1.5	$98^{a}, 92^{b}$
4	HONH2	1	138	2.3	1	4	$92^{a}, 89^{b}$

ESI Table 2. N-Thiophosphorylation of amines and S-methylation of N-thiophosphoramidates

^{*a*} Determined by ³¹P NMR. ^{*b*} Determined by ¹H NMR.

Amine RNH₂ (ESI Table 2) was mixed with sodium hydroxide (5 Eq, 1 M aqueous solution, 11.5 mL, 11.5 mmol) and water (1.48 mL) in a 50 mL round-bottomed flask with indentations in the flask walls that aimed to cause turbulent mixing. Thiophosphoryl chloride (1 Eq, 232 μ L, 2.3 mmol) dissolved in THF (7 mL) was added dropwise to the aqueous mixture over the course of 10 minutes. After vigorous mixing for a prescribed period (ESI Table 2), methyl iodide was added (2 Eq, 286 μ L, 4.6 mmol) and vigorous mixing was continued for a prescribed period (ESI Table 2). Then, ether (ESI and Manuscript Table 2, entries 1 and 4) or chloroform (ESI and Manuscript Table 2, entries 2 and 3) extraction (3 × 30 mL) was performed and the aqueous layer was lyophilised, to afford a white powder. This material was then subjected to NMR and MS analyses that are summarised below (¹H and ³¹P NMR spectra are available p. 23-30).

Table 2, entry 1:

¹H NMR (400 MHz; D₂O) δ 7.38–7.23 (5 H, m, C₆H₅), 3.88 (2 H, d, *J* 10.4, CH₂NH), 1.93 (3 H, d, *J* 12.8, SCH₃); ³¹P NMR [¹H] (283 MHz; D₂O) δ 26.2-25.8 (m, NHPS); ¹³C NMR (176 MHz; D₂O) δ 141.1 (d, ³*J*_{C-P} 8.7, *i*-C₆H₅), 129.0 (*m*-C₆H₅), 128.1 (*o*-C₆H₅), 127.5 (*p*-C₆H₅), 45.7 (CH₂NH), 12.2 (SCH₃); HRMS (ES⁻, *m*/*z*): calcd for C₈H₁₁NO₂PS⁻: 216.0253 found 216.0252.

Table 2, entry 2:

¹H NMR (400 MHz; D₂O) δ 6.03-5.91 (1 H, m CH₂=CH'), 5.26 (1 H, dq, *J* 17.2 and 1.6, CH*H*=CH' where *H* and H' are in a *trans*-relationship), 5.12 (1 H, app dq, *J* 10.2 and 1.6 C*H*H=CH' where *H* and H' are in a *cis*-relationship) 3.47 (2 H, app ddt, *J* 10.9, 5.6 and 1.6, C*H*₂NH), 2.13 (3 H, d, *J* 13.0, SC*H*₃); ³¹P NMR [¹H] (162 MHz; D₂O) δ 27.9-27.4 (m, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 137.4 (d, ³*J*_{C-P} 7.3, CH₂=*C*H), 115.6 (*C*H₂=CH), 44.4 (*C*H₂NH), 12.3 (S*C*H₃); HRMS (ES⁻, *m/z*): calcd for C₄H₉NO₂PS⁻: 166.0097 found 166.0097.

Table 2, entry 3:

¹H NMR (400 MHz; D₂O) δ 3.78-3.74 (4 H, m, O(CH₂)₂), 3.17-3.12 (4 H, m, (CH₂)₂N), 2.23 (3 H, d, *J* 12.8, SCH₃); ³¹P NMR [¹H] (162 MHz; D₂O) δ 25.5-25.0 (m, NPS); ¹³C NMR (101 MHz; D₂O) δ 67.4 (d, ³*J*_{C-P} 7.3, O(CH₂)₂), 45.3 ((CH₂)₂N), 12.0 (d, ²*J*_{C-P} 2.9, SCH₃); HRMS (ES⁻, *m/z*): calcd for C₅H₁₁NO₃PS⁻: 196.0203 found 196.0202.

Table 2, entry 4:

¹H NMR (400 MHz; D₂O) δ 3.57 (2 H, t, *J* 5.6, OHC*H*₂), 2.94-2.87 (2 H, m, *CH*₂NH), 2.05 (3 H, d, *J* 12.4, SC*H*₃); ³¹P NMR [¹H] (162 MHz; D₂O) δ 28.3-27.8 (m, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 62.3 (d, ³*J*_{C-P} 8.1, OHCH₂), 43.5 (*C*H₂NH), 12.1 (S*C*H₃); HRMS (ES⁻, *m/z*): calcd for C₃H₉NO₃PS⁻: 170.0046 found 170.0046.

S-alkylation of N-thiophosphoramidates

Amine (ESI table 3, RNH_2) was mixed with sodium hydroxide (5 Eq, 1 M aqueous solution, 11.5 mL, 11.5 mmol) and water (1.48 mL) in a 50 mL round-bottomed flask with indentations that aim to ensure turbulent mixing. Thiophosphoryl chloride (1 Eq, 0.232 mL, 2.3 mmol) dissolved in THF (7 mL) was added dropwise to the aqueous mixture over the course of 10 minutes. After vigorous mixing for 15 minutes to allow *N*-

thiophosphorylation to take place, an alkylating agent was added (ESI Table 3, alkylating agent) along with additional sodium hydroxide solution (ESI table 3, additional 1 M NaOH) and vigorous mixing was continued for a prescribed period (ESI table 3, *S*-alkylation time). Then, ether (3×30 mL, ESI Table 2, entries 1-11) or chloroform (3×30 mL, entries 12-16) extraction was performed and the aqueous layer was lyophilised. The crude material was then subjected to ¹H and ³¹P analyses to assess conversion levels (ESI table 3, conversion to *N*-alkyl thiophosphoramidate), and these spectra are available below (p. 31-46 and 51-66). Entry 8 was treated in a different manner, described in the table legend, and associated spectra are also available (p. 47-50).

Main paper Table 3 entry number	RNH2 (mL)	Alkylating agent (mL)	Additional 1 M NaOH (mL)	<i>S</i> -alkylation time (h) ^a	conversion to <i>N</i> -alkyl S-alkyl thio- phosphoramidate (%)
1	Ph NH ₂ 1.2 Eq, 0.300	вг ОН 2 Eq, 0.326	0	17	>99 ^b ,>99 ^c
2	Ph NH ₂ 1.2 Eq, 0.300	Cl Ph 2 Eq, 0.529	0	22	>99 ^b ,>99 ^c
3	Ph NH ₂ 1.2 Eq, 0.300	2 Eq, 0.448	0	25	>99 ^b ,>99 ^c
4	Ph NH ₂ 1.2 Eq, 0.300	10 Eq, 0.229, (11Eq, 0.251)	11.5 (23)	$96^{d} (24)^{e,f}$	>92 ^b >92 ^c (>90 ^b ,>99 ^c)
5	Ph NH ₂ 1.2 Eq, 0.300	0 () 2 Eq, 0.555	0	5 ^g	96 ^b , 97 ^c
6	Ph NH ₂ 1.2 Eq, 0.300	0 2 Eq, 0.526	0	19	90 ^{<i>b,i</i>}
7	Ph NH ₂ 1.2 Eq, 0.300	о ОМе 2 Eq, 0.411	0	5	93 ^{<i>b</i>} , 96 ^{<i>c</i>}
8	Ph NH ₂ 1.0 Eq, 0.038	с с с с с с с с с с с с с с с с с с с	1	~80 ^{<i>d,h</i>}	82 ^b
9	NH ₂ 1.2 Eq, 0.206	вг ОН 2 Eq, 0.326	2	1.5	>99 ^b , 95 ^c
10	NH ₂ 1.2 Eq, 0.206	Cl Ph 2 Eq, 0.529	0.9	23	>99 ^b , >99 ^c
11	NH ₂ 1.2 Eq, 0.206	2 Eq, 0.448	0	120	>99 ^b , 98 ^c
12	0 NH	Br	1.8	1	92 ^b ,87 ^c

ESI Table 3. S-alkylation of N-thiophosphoramidates

	1.2 Eq, 0.241	2 Eq, 0.326			
13	о <u></u> NH 1.2 Eq, 0.241	Cl Ph 2 Eq, 0.529	3.9	4^f	93 ^{<i>b</i>} , 85 ^{<i>c</i>}
14	оNн 1.2 Eq, 0.241	المربح الم	0.9	7^{f}	$98^{b}, 99^{c}$
15	оNн 1.2 Eq, 0.241	10 Eq, 0.229	9.2	17 ^{<i>f,j</i>}	94 ^b , 89 ^c
16	HONH ₂ 1.2 Eq, 0.138	вг ОН 2 Eq, 0.326	0	20	91 ^{<i>b</i>} , 78 ^{<i>c</i>}

^a All alkylations were performed at room temperature except where stated. ^b Determined by ³¹P NMR. ^c Determined by ¹H NMR. ^d Alkylation reaction heated at 50 °C. ^e Alkylating agent was added in three portions (2×0.114 and 0.023 ml) followed by additional 1 M NaOH in two portions (ESI Table 3, 2×11.5 mL) after the first and second additions of alkylating agent. ^f Alkylation reaction heated at 80 °C. ^g Reaction mixture was adjusted to pH 8 with HCl (0.05 M, 46 mL, 2.3 mmol) prior to solvent removal. ^h Benzylamine (1 Eq, 0.038 mL, 0.34 mol) was mixed with sodium hydroxide solution (5 Eq, 1 M aqueous solution, 1.7 mL, 1.7 mmol) and water (0.218 mL) in a round-bottomed flask with indentations that aimed to ensure turbulent mixing. Thiophosphoryl chloride (1 Eq. 0.034 mL, 0.34 mmol), dissolved in THF (1 mL) was added dropwise to the aqueous mixture over the course of 10 minutes. 5'-deoxy-5'-iodoguanosine (ESI Table 3, alkylating agent) was added in two equal portions along with the additional sodium hydroxide solution (ESI Table 3, additional 1 M NaOH) just after the first portion. The reaction mixture was vigorously mixed at 50 °C. The second portion of 5'-deoxy-5'-iodoguanosine) was added after 48 h. After 80 h total reaction time, ether extraction $(3 \times 10 \text{ mL})$ was performed and the resulting aqueous solution was lyophilised. The crude lyophilised product was purified via anion exchange chromatography (DEAE Sepharose* Fast Flow chromatography media, 50 mL bed volume, 10 × 3 cm column dimensions, 3 mL/min flow rate) using a gradient of 50-500 mM triethylammonium bicarbonate (TEAB), pH 7.6 buffer. Cation exchange chromatography was carried out on a column packed with Dowex $50W \times 2$, 200-400 (50 mL, 30 \times 2 cm, 3 mL/min) that had been converted to Na⁺ form by washing with two column volumes of aqueous sodium hydroxide solution (0.1 M) and then water. Elution was performed using water. ⁱA mixture of isomers (63:26) was obtained, where attack at the less hindered end was favoured. ^j Alkylation agent was added over two portions $(2 \times 0.114 \text{ ml})$ along with the additional 1 M NaOH $(2 \times 11.5 \text{ ml})$. The second portion of alkylating agent and sodium hydroxide solution were added after 1 h of reaction time. The reaction was then allowed to proceed for an additional 16 h.

Table 3, entry 1:

¹H NMR (400 MHz; D₂O) δ 7.37-7.19 (5 H, m, C₆*H*₅), 3.91 (2 H, d, *J* 10.8, C*H*₂NH), 3.59-3.55 (2 H, m, C*H*₂OH), 2.68-2.61 (2 H, m, SC*H*₂); ³¹P NMR [¹H] (162 MHz; D₂O) δ 25.6 (app qn, *J* 11.5, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 140.7 (d, ³*J*_{C-P} 8.1, *i*-C₆H₅), 129.1 (*m*-C₆H₅), 128.1 (*o*-C₆H₅), 127.5 (*p*-C₆H₅), 61.7 (d, ³*J*_{C-P} 5.1, CH₂OH), 45.4 (CH₂NH), 32.1 (SCH₂); HRMS (ES⁻, *m*/*z*): calcd for C₉H₁₃NO₃PS⁻: 246.0359, found 246.0356.

Table 3, entry 2:

¹H NMR (400 MHz; D₂O) δ 7.31-7.18 (10 H, m, 2 × C₆H₅), 3.75 (4 H, 2 × d, both *J* 10.4, PhCH₂NH and PhCH₂S); ³¹P NMR [¹H] (162 MHz; D₂O) δ 24.5 (qn, *J* 10.4, NHPS); ¹³C NMR (101 MHz; D₂O) δ 140.5 (d, ³J_{C-P} 8.1, *i*-C₆H₅CH₂NH), 139.2 (d, ³J_{C-P} 5.1, *i*-C₆H₅CH₂S), 128.8 (*m*-C₆H₅CH₂NH), 128.7 (*m*-C₆H₅SCH₂), 128.6 (*o*-C₆H₅CH₂NH), 127.7 (*o*-C₆H₅SCH₂), 127.3(*p*-C₆H₅CH₂NH), 127.2 (*p*-C₆H₅SCH₂), 45.4 (CH₂NH), 34.5 (SCH₂); HRMS (ES⁻, *m*/z): calcd for C₁₄H₁₅NO₂PS⁻: 292.0566, found 292.0564.

Table 3, entry 3:

¹H NMR (400 MHz; D₂O) δ 7.28-7.18 (5 H, m, C₆H₅), 3.90 (2 H, d, *J* 10.4, CH₂NH), 2.47 (2 H, dt, *J* 10.8 and 7.3, SCH₂), 1.44 (2 H, app sx, *J* 7.3, CH₂CH₂CH₃), 0.78 (3 H, t, *J* 7.3, CH₂CH₃); ³¹P NMR [¹H] (162 MHz; D₂O) δ 25.6 (app qn, *J* 10.6, NHPS); ¹³C NMR (101 MHz; D₂O) δ 140.7 (d, ³*J*_{C-P} 7.1, *i*-C₆H₅), 129 (*m*-C₆H₅), 128.1 (*o*-C₆H₅), 127.5 (*p*-C₆H₅), 45.4 (CH₂NH), 32.2 (SCH₂), 23.7 (d, ³*J*_{C-P} 5.8, CH₂CH₂CH₃), 12.8 (CH₂CH₃); HRMS (ES⁻, *m/z*): calcd for C₁₀H₁₅NO₂PS⁻: 244.0566, found 244.0565.

Table 3, entry 4 (two sets of ¹H and ³¹P spectra available):

¹H NMR (400 MHz; D₂O) δ 7.28-7.20 (5 H, m, C₆*H*₅), 3.98 (2 H, d, *J* 10.5, C*H*₂NH), 3.14-3.01 (1 H, m, C*H*(CH₃)₂), 1.42 (6 H, d, *J* 6.8, CH(C*H*₃)₂); δ_{P} [¹H](162 MHz; D₂O) 24.8 (app q, *J* 10.3, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 140.8 (d, ³*J*_{C-P} 8.1, *i*-C₆H₅), 128.7 (*m*-C₆H₅), 128.1 (*o*-C₆H₅), 127.5 (*p*-C₆H₅), 45.6 (CH₂NH), 36.2 (CH(CH₃)₂), 25.2 (d, ³*J*_{C-P} 5.1, CH(*C*H₃)₂); HRMS (ES⁻, *m/z*): calcd for C₁₀H₁₅NO₂PS⁻: 244.0566, found 244.0567.

Table 3, entry 5:

¹H NMR (400 MHz; D₂O) δ 7.23-7.01 (5 H, m, C₆*H*₅), 3.87 (2 H, d, *J* 11.0, C*H*₂NH), 3.48-3.40 (1 H, m, CH₂C*H*OH CH₂), 2.53-2.40 (2 H, m, SC*H*₂CH), 1.27-0.90 (6 H, m, OHCHC*H*₂ and OHCH(C*H*₂)₂), 0.70 (3 H, t, *J* 7.0, CH₂C*H*₃); ³¹P NMR [¹H] (162 MHz; D₂O) δ 24.8 (app qn, *J* 10.6, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 140.7 (d, ³*J*_{C-P} 7.3, *i*-C₆H₅), 128.5 (*m*-C₆H₅), 127.8 (*o*-C₆H₅), 126.9 (*p*-C₆H₅), 71.3 (d, ³*J*_{C-P} 5.8, CH₂CHOH), 45.6 (CH₂NH), 36.8 (SCH₂. CH), 35.3 (OHCH*C*H₂), 27.4 (CHCH₂*C*H₂), 22.3 (CH₂*C*H₂CH₂), 13.8 (CH₂*C*H₃); HRMS (ES⁻, *m/z*): calcd for C₁₃H₂₁NO₃PS⁻: 302.0984, found 302.0984.

Table 3, entry 6:

¹H NMR (400 MHz; D₂O) δ7.33-6.67 (10 H_A+10 H_B, m, 2 × C₆H₅), 4.56-4.51 (1 H_A, m, OHCH₂CH), 3.68 (2 H_A+2 H_B overlapping, both d, *J* 10.8, CH₂NH), 2.88-2.69 (2 H_A, m, OHCH₂CH), the other signals were not resolved; ³¹P NMR [¹H] (162 MHz; D₂O) δ25.6 (A: app qn, *J* 10.8, NHPS), 23.8 (B: app q, *J* 9.2, NHPS; ¹³C NMR (101 MHz; D₂O) δ142.5 (*i*_A-C₆H₅), 141.1 (*i*_B-C₆H₅), 140.6 (d, ³*J*_{C-P} 7.2, *i*_A-C₆H₅CH₂NH), 140.1 (d, ³*J*_{C-P} 9.6, *i*_B-C₆H₅CH₂NH), 128.7-126.3 (4 × C₆H₅), 73.4 (d, ³*J*_{C-P} 5.8, PhC_AHOHCH₂), 66.2 (d, ³*J*_{C-P} 6.7, HOC_BH₂CH), 50.8 (C_BH₂NH), 45.6 (C_AH₂NH), 45.4 (SC_AHPh), 38.0 (SC_BHCH₂); HRMS (ES⁻, *m*/*z*): calcd for C₁₅H₁₇NO₃PS⁻: 322.0672, found 322.0674.

Table 3, entry 7:

¹H NMR (400 MHz; D₂O) δ 7.28-7.05 (6 H, m, C₆*H*₅ and SC*H*=CH), 5.82 (1 H, d, *J* 10.3, SCH=C*H*CO₂Me), 3.90 (2 H, d, *J* 12.0, C*H*₂NH), 3.55 (3 H, s, OC*H*₃); ³¹P NMR [¹H] (162 MHz; D₂O) δ 21.5 (dt, *J* 14.9 and 12.0, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 168,7 (C=O), 145.2 (SCH=CH), 140.2 (d, ³*J*_{C-P} 6.3, *i*-C₆H₅CH₂NH), 128.7 (*m*-C₆H₅), 127.8 (*o*-C₆H₅), 127.2 (*p*-C₆H₅), 115.7 (d, ³*J*_{C-P} 7.7, SCH=CH), 45.7 (CH₂NH), 51.8 (OCH₃); HRMS (ES⁻, *m/z*): calcd for C₁₁H₁₃NO₄PS⁻: 286.0308, found 286.0308.

Table 3, entry 8:

The purity of the material after ion exchange chromatography was estimated using ³¹P NMR (95% + 5% inorganic phosphate) and ¹H NMR (100%) spectroscopies. ¹H NMR (700 MHz; D₂O) δ 7.78 (1 H, s, 8-*H*), 7.14-6.99 (5 H, m, C₆*H*₅), 5.67 (1 H, d, *J* 5.6, 1'-*H*, 2'-*H*), 4.64 (1 H, 2'-*H*, covered with the HOD signal), 4.17 (1 H, d, *J* 4.2, 3'-*H*), 4.13-4.09 (1 H, m, 4'-*H*),

3.75-3.69 (2 H, m, CH_2S), 2.95-2.83 (2 H, m, 5'-*H*); ³¹P NMR [¹H] (283 MHz; D₂O) δ 24.5 (m, NH*PS*); ¹³C NMR (176 MHz; D₂O) δ 161.0 (6-*C*), 154.8 (br s, 2-*C*), 151.7 (4-*C*), 140.3 (8-*C*), 137.8 (*C*H₂S), 128.6 (*o*-*C*₆H₅CH₂S), 127.4 (*m*-*C*₆H₅CH₂S), 127.2 (*p*-*C*₆H₅CH₂S), 117.0 (5-*C*), 87.5 (1'-*C*), 84.1 (d, ³*J*_{C-P} 4.9, 4'-*C*), 73.1 (2'-*C*), 72.6 (3'-*C*), 45.6 (NH*C*H₂Ph), 32.7 (*C*H₂S); HRMS (ES⁻, *m/z*): calcd for C₁₇H₂₀N₆O₆PS⁻: 467.0908, found 467.0916.

Table 3, entry 9:

¹H NMR (400 MHz; D₂O) δ 5.92-5.81 (1 H, m, CH₂=C*H*), 5.20-5.12 (1 H, m, C*H*H=CH), 5.05-4.99 (1 H, m, CH*H*=CH), 3.67 (2 H, t, *J* 6.2, C*H*₂OH), 3.40-3.34 (2 H, m, C*H*₂NH), 2.74 (2 H, dt, *J* 12.3 and 6.2, SC*H*₂); ³¹P NMR [¹H] (162 MHz; D₂O) δ 27.6 (app qn, *J* 11.5, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 137.2 (d, ³*J*_{C-P} 8.1, CH₂=CH), 115.3 (*C*H₂=CH), 61.9 (d, ³*J*_{C-P} 7.3, CH₂OH), 44.3 (CH₂NH), 32.2 (SCH₂); HRMS (ES⁻, *m/z*): calcd for C₅H₁₁NO₃PS⁻: 196.0203, found 196.0201.

Table 3, entry 10:

¹H NMR (400 MHz; D₂O) δ 7.29-7.13 (5 H, m, C₆H₅), 5.74-5.63 (1 H, m, CH₂=CH), 5.01 (1 H, dq, *J* 7.2 and 1.7, CHH=CH), 4.94-4.89 (1 H, m, CHH=CH), 3.75 (2 H, d, *J* 10.7, SCH₂), 3.13 (2 H, ddt, *J* 10.0, 5.7 and 1.5, CH₂NH); ³¹P NMR [¹H] (162 MHz; D₂O) δ 25.0 (app qn, *J* 10.3, NHPS); ¹³C NMR (101 MHz; D₂O) δ 139.2 (d, ³*J*_{C-P} 6.1, *i*-C₆H₅CH₂S), 136.8 (d, ³*J*_{C-P} 8.1, CH₂=CH), 128.9 (*m*-C₆H₅), 128.8 (*o*-C₆H₅), 127.4 (*p*-C₆H₅), 115.3 (CH₂=CH), 44.2 (CH₂NH), 34.2 (d, ³*J*_{C-P} 2.9, SCH₂); HRMS (ES⁻, *m*/*z*): calcd for C₁₀H₁₃NO₂PS⁻: 242.0410, found 242.0411.

Table 3, entry 11:

N I H O

¹H NMR (400 MHz; D₂O) δ 6.03-5.92 (1 H, m, CH₂=C*H*), 5.31-5.24 (1 H, m, CH*H*=CH), 5.16-5.11 (1 H, m, C*H*H=CH), 3.50-3.44 (2 H, m, C*H*₂NH), 2.67 (2 H, dt, *J* 10.9 and 7.4, SC*H*₂), 1.64 (2 H, sx, *J* 7.4, C*H*₂CH₃), 0.97 (3 H, t, *J* 7.4 CH₂C*H*₃); ³¹P NMR [¹H] (162 MHz; D₂O) δ 26.9 (app qn, *J* 10.7, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 137.4 (d, ³*J*_{C-P} 8.1,

CH₂=*C*H), 115.3 (*C*H₂=CH), 44.5 (*C*H₂NH), 32.5 (S*C*H₂), 24.1 (d, ${}^{3}J_{C-P}$ 5.8, *C*H₂CH₃), 13.1 (CH₂*C*H₃); HRMS (ES⁻, *m/z*): calcd for C₆H₁₃NO₂PS⁻: 194.0410, found 194.0410.

Table 3, entry 12:

¹H NMR (400 MHz; D₂O) δ 3.72 (2 H, t, *J* 6.3, *CH*₂OH), 3.65-3.63 (4 H, m, O(*CH*₂)₂), 3.06-3.02 (4 H, m, (*CH*₂)₂N), 2.83 (2 H, dt, *J* 11.8 and 6.2, S*CH*₂).; ³¹P NMR [¹H] (162 MHz; D₂O) δ 24.3-24.0 (m, N*P*S); ¹³C NMR (101 MHz; D₂O) δ 67.3 (d, ³*J*_{C-P} 11.3, O(*CH*₂)₂), 62.1 (d, ³*J*_{C-P} 11.3, *CH*₂OH), 45.1 ((*CH*₂)₂N), 31.8 (d, ³*J*_{C-P} 2.9, S*C*H₂); HRMS (ES⁻, *m/z*): calcd for C₆H₁₃NO₄PS⁻: 226.0308, found 226.0308.

Table 3, entry 13:

¹H NMR (400 MHz; D₂O) δ 7.20-7.15 (2 H, m, *o*-C₆*H*₅CH₂S), 7.07 (2 H, t, *J* 7.4, *m*-C₆*H*₅CH₂S), 7.01-6.95 (1 H, m, *p*-C₆*H*₅CH₂S), 3.75 (2 H, d, *J* 9.9, SC*H*₂), 3.52-3.40 (4 H, m, O(C*H*₂)₂), 2.92-2.79 (4 H, m, (CH₂)₂N); ³¹P NMR [¹H] (162 MHz; D₂O) δ 23.9-23.6 (m, NPS); ¹³C NMR (101 MHz; D₂O) δ 139.2 (d, ³*J*_{C-P} 6.1, *i*-C₆H₅CH₂S), 128.9 (*m*-C₆H₅), 128.8 (*o*-C₆H₅), 127.2 (*p*-C₆H₅), 67.2 (d, ³*J*_{C-P} 7.7, O(CH₂)₂), 45.4 ((CH₂)₂N), 34.4 (SCH₂); HRMS (ES⁻, *m*/*z*): calcd for C₁₁H₁₅NO₃PS⁻: 272.0516, found 272.0514.

Table 3, entry 14:

¹H NMR (400 MHz; D₂O) δ 3.75-3.72 (4 H, m, O(CH₂)₂), 3.13-3.09 (4 H, m, (CH₂)₂N), 2.74 (2 H, dt, *J* 11.6 and 7.4, SCH₂), 1.66 (2 H, sx, *J* 7.4, CH₂CH₂CH₃), 0.99 (3 H, t, *J* 7.4, CH₂CH₃); ³¹P NMR [¹H] (162 MHz; D₂O) δ 24.8-24.4 (m, NPS); ¹³C NMR (101 MHz; D₂O) δ 67.3 (d, ³*J*_{C-P} 7.3, O(CH₂)₂), 45.2 ((CH₂)₂N), 32.0 (d, ³*J*_{C-P} 2.9, SCH₂), 24.4 (d, ³*J*_{C-P} 5.8, CH₂CH₂), 13.1 (CH₂CH₃); HRMS (ES⁻, *m*/*z*): calcd for C₇H₁₅NO₃PS⁻: 224.0515, found 224.0516.

Table 3, entry 15:

¹H NMR (400 MHz; D₂O) δ 3.77-3.75 (4 H, m, O(CH₂)₂), 3.36-3.26 (1 H, m, SCH), 3.15-3.11 (4 H, m, (CH₂)₂N), 1.40 (6 H, d, *J* 6.8, CH(CH₃)₂); ³¹P NMR [¹H] (162 MHz; D₂O) δ 23.8-23.5 (m, NPS); ¹³C NMR (101 MHz; D₂O) δ 67.3 (d, ³*J*_{C-P} 7.3, O(CH₂)₂), 45.2 ((CH₂)₂N), 36.1 (CHCH₃), 25.9 (d, ³*J*_{C-P} 5.1, CHCH₃), HRMS (ES⁻, *m/z*): calcd for C₇H₁₅NO₃PS⁻: 224.0515, found 224.0516.

Table 3, entry 16:

¹H NMR (400 MHz; D₂O) δ 3.67 (2 H, t, *J* 6.4, HOC*H*₂CH₂NH), 3.54 (2 H, t, *J* 5.6, HOC*H*₂CH₂S), 2.88 (2 H, app dt, *J* 10.7 and 5.6, C*H*₂NH), 2.74 (2 H, app dt, *J* 12.2 and 6.4, SC*H*₂); ³¹P NMR [¹H] (162 MHz; D₂O) δ 26.6 (app qn, *J* 11.5, NH*P*S); ¹³C NMR (101 MHz; D₂O) δ 62.3 (d, ³*J*_{C-P} 8.1, HOCH₂CH₂NH), 61.8 (d, ³*J*_{C-P} 5.0, HOCH₂CH₂S), 43.5 (NH*C*H₂CH₂OH), 32.2 (SCH₂CH₂OH); HRMS (ES⁻, *m/z*): calcd for C₄H₁₁NO₄PS⁻: 200.0151, found 200.0151.

NMR Spectra

¹H, ¹³C, ³¹P NMR spectra were recorded on the following spectrometers, operating at the quoted frequencies: Varian Mercury 200 MHz (¹H 199.991 MHz; ³¹P 80.957 MHz), Varian Mercury 400 MHz (¹H 399.958 MHz; ³¹P 161.906 MHz), Varian Mercury 500 MHz (¹H 499.768 MHz; ¹³C 125.666 MHz), Varian Mercury 700 MHz (¹H 699.737 MHz; ³¹P 283.257 MHz; ¹³C 175.948 MHz). Bruker 400 MHz (¹H 400.130 MHz; ³¹P 161.943 MHz; ¹³C 100.612 MHz). ¹H chemical shifts (δ) are reported as parts per million (ppm) upfield relative to tetramethylsilane ($\delta = 0.00$ ppm) and are referenced to the residual protic solvent (HOD, δ = 4.79 ppm, CHD₂Cl₃ δ = 7.26 ppm and (CHD₂)SOCD₃, δ = 2.50 ppm). ³¹P NMR spectra were recorded both in proton decoupled and coupled modes where the multiplicities of the signals are presented along with the coupling constant J (Hz). ¹³C NMR spectra were proton decoupled and unless stated otherwise, the multiplicity was singlet. Sample purity was ³¹P using $^{1}\mathrm{H}$ NMR assessed NMR spectroscopy and spectroscopy.

Table 1, entry 1, ¹H NMR spectrum

Table 1, entry 1 ³¹P NMR spectrum

Table 1, entry 2 ¹H NMR spectrum

Table 1, entry 2 ³¹P NMR spectrum

Parameter	Value
Data File Name	/ dsers/ davidhodgson/ Desktop/ ChemComm/ Spectra/ Table 1 / Table 1 entry 2/ 07131653.fid/ fid
Title	7131653
Comment	MT 270 OHEtNHPOS excess PSCI3
Spectrometer	mercury
Solvent	D <mark>20</mark>
Pulse Sequence	s2pul
Number of Scans	9 <mark>6</mark>
Receiver Gain	34
Relaxation Delay	2.0000
Pulse Width	0,000,
Acquisition Time	1 <mark>.0000</mark>
Acquisition Date	2008-07-07Т13:11:46
Spectrometer Frequency	1 <mark>61.91 ^H O⁻ Na⁺</mark>
Spectral Width	5 <mark>0000.0</mark>
Lowest Frequency	- 6535.8
Nucleus	3 <mark>1</mark> P
Acquired Size	5 <mark>0000</mark>
Spectral Size	1 <mark>3</mark> 1072
high an anna an a	๛ <mark>๚฿[๚]๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</mark>
	000
	→ · · · · · · · · · · · · · · · · · · ·
50 48 46	44 42 40 38 36 34 32 30 28 26 24 22 chemical shift/ppm
	100*21.82/(21.82+1.00)=96%

Table 1, entry 3 ¹H NMR spectrum

Table 1, entry 3 ³¹P NMR spectrum

 Table 1, entry 4 ¹H NMR spectrum

100*64.08/(64.08+3.42+0.56)=94%

 Table 1, entry 4 ³¹P NMR spectrum

Table 1, entry 5 ¹H NMR spectrum

 Table 1, entry 5 ³¹P NMR spectrum

100*35.10/(35.10+1.00+0.14+0.06)=97%

Table 2, entry 1 ¹H NMR spectrum

100*685.88/(1.00+10.82+685.88+1.38)=98%

Table 2, entry 2 ¹H NMR spectrum

Table 2, entry 2 ³¹P NMR spectrum

 Table 2, entry 3 ¹H NMR spectrum

 Table 2, entry 3 ³¹P NMR spectrum

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

 Table 2, entry 4 ¹H NMR spectrum

Table 2, entry 4 ³¹P NMR spectrum

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

Table 3, entry 1 ¹H NMR spectrum

Table 3, entry 1 ³¹P NMR spectrum

estimated >99%

Table 3, entry 2 ¹H NMR spectrum

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

 Table 3, entry 2 ³¹P NMR spectrum

Table 3, entry 3 ¹H NMR spectrum

Table 3, entry 3 ³¹P NMR spectrum

Table 3, entry 4 ¹H NMR spectrum

100*23.66/(23.66+0.72+0.38+1.00)=92%

 Table 3, entry 4 ³¹P NMR spectrum

Table 3, entry 4 brackets ¹H NMR spectrum

Table 3, entry 4 brackets ³¹P NMR spectrum

100*30.42/(0.26+30.42+1.00+0.25+0.52+0.74+0.47+0.06)=90%

Table 3, entry 5 ¹H NMR spectrum

 Table 3, entry 5 ³¹P NMR spectrum

Table 3, entry 6 ¹H NMR spectrum

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

 Table 3, entry 6 ³¹P NMR spectrum

total for mixture of isomers: 100*(23.52+9.73)/(23.52+9.73+1.00+1.77+0.46+0.39)=90%

Table 3, entry 7 ¹H NMR spectrum

Table 3, entry 7 ³¹P NMR spectrum

Table 3, entry 8 crude ³¹P NMR spectrum

100*119.81/(1.00+119.81+3.09+0.27+21.17)=82%

Anion exchange chromatogram of Table 3, entry 8.

fractions collected between retention times of 45 and 60 minutes were combined and lyophilised. Thereafter, triethyalammonium ions were exchanged for sodium ions using a strong cation exchange resin. The lyophilised solid was dissolved in D₂O and subjected to NMR analyses.

Table 3, entry 8³¹P NMR spectrum after weak anion exchange chromatography and cation exchange

100*20.43/(20.43+0.11+1.00)=95% after chromatography and cation exchange

Table 3, entry 9 ¹H NMR spectrum

 Table 3, entry 9 ³¹P NMR spectrum

Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

 Table 3, entry 10 ³¹P NMR spectrum

Table 3, entry 11 ¹H NMR spectrum

 Table 3, entry 11
 ³¹P NMR spectrum

Table 3, entry 12 ¹H NMR spectrum

100*48.34/(48.34+1.00+6.33)=87%

 Table 3, entry 12 ³¹P NMR spectrum

Table 3, entry 13 ¹H NMR spectrum

Table 3, entry 13 ³¹P NMR spectrum

100*243.63/(243.63+0.92+1.00+14.49+1.10+0.88+0.90)=93%

Table 3, entry 14 ¹H NMR spectrum

 Table 3, entry 14 ³¹P NMR spectrum

Table 3, entry 15 ¹H NMR spectrum

Table 3, entry 15 ³¹P NMR spectrum

Table 3, entry 16 ¹H NMR spectrum

Table 3, entry 16³¹P NMR spectrum

