Electronic Supplementary Information

DDQ-promoted Dehydrogenation from Natural Rigid Polycyclic Acids or Flexible Alkyl Acids to Generate Lactones by a Radical Ion Mechanism

Ye Ding, Zhangjian Huang, Jian Yin, Yisheng Lai, Shibo Zhang, Zhiguo Zhang, Lei Fang, Sixun Peng,

Yihua Zhang*

Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China

Tel: +86-25-83271015; fax: +86-25-83271015; e-mail: zyhtgd@sohu.com.

Table of Content

1. General information	S 2
2. Preparation and characterization of compounds	S 2
3. Crystallographic data of compound 2	S17
4. ESR spectra	S29
5. Enol intermediate trapping experiment	S 31
6. Cytotoxicity assay	S33
7. The references of the electronic supplementary information	S33
8. ¹ H NMR and ¹³ C NMR spectra of new compounds	S34

1. General information

Melting points were determined via a capillary apparatus (RDCSY-I) and are reported directly. All the synthesized compounds were purified by column chromatography (CC) on silica gel by Isolera-One flash purification system from Biotage. Thin-layer chromatography (TLC) was performed on silica gel 60 F254 plates (250μ m; Qingdao Ocean Chemical Company, China). The products were analyzed by ¹H NMR and ¹³C NMR (Bruker ACF-300Q, 300 M Hz), MS (Hewlett-Packard 1100 LC/MSD spectrometer), IR (Nicolet iS10 FT-IR), HRMS (Waters Q-TOF MicroTM). The X-ray diffraction analyses were performed on a Nonius CAD4 diffractometer and incident beam graphite monochromator using a Mo sealed tube source (λ) 0.71073 Å). ESR spectra were recorded on Bruker EMX 10/12 ESR SPECTROMETER. Compounds **18**, **26** and DPPH (98%) were purchased from Tokyo Chemical Industry Co. Ltd; compounds **20**, **22** and **24** (98%) were purchased from Wuxi Pharmaxyn Laboratories Ltd; compound **1**, **6**, **28**, **29** and **30** were synthesized according to literature¹. Oleanolic acid, ursolic acid and other reagents were purchased from Shanghai Chemical Reagent Company. The purchased compounds were used without further purification.

2. Preparation and characterization of compounds

2-Cyano-3-hydroxy-12-oxoolean-2(3),9(11)-dien-28-oate (1)

The title compound **1** was synthesized according to literature¹.

m.p. 198-200 °C;

IR (KBr, cm⁻¹): 3468, 3186, 2949, 2868, 2208, 1709, 1636, 1467, 1385, 1366;

ESI-MS: 492 [M-H]⁻;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 5.7 (s, 1H), 3.04 (m, 1H), 2.96 (d, *J* = 4.5 Hz, 1H), 2.41 (d, *J* = 9.0 Hz, 1H), 2.26 (d, *J* = 9.0 Hz, 1H), 1.26, 1.21, 1.24, 1.20, 1.16, 1.00, 0.91 (s, each 3H) ppm; ¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 199.8, 183.6, 175.4, 171.8, 124.3, 118.9, 78.5, 49.7, 48.4, 47.1, 45.3, 42.1, 41.8, 38.7, 38.6, 38.3, 35.7, 34.4, 33.2, 32.9, 31.4, 31.2, 30.7, 28.3, 28.0, 23.9, 23.0, 22.5, 21.9, 19.8, 14.1 ppm; HRMS (EI⁺) calc. for $[C_{31}H_{44}NO_4]^+$ 494.3270, found 494.3288.

2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO)

A mixture of **1** (0.25 g, 0.51 mmol) and DDQ (0.12 g, 0.51 mmol) in anhydrous benzene (20 mL) was refluxed for 15 min. After filtration, the filtrate was evaporated in vacuo to give a residue, which was subjected to flash column chromatography (petroleum ether/EtOAc) to give CDDO as an amorphous solid (0.23 g, 91%). The title compound was known as CAS 218600-44-3.²

m.p. 180-182 °C;

ESI-MS: 490 [M-H]⁻, 492 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 8.05 (1H, s), 5.99 (1H, s), 3.03-2.98 (2H, m), 1.55,1.38, 1.34, 1.22, 1.00, 0.91, 0.85 (each 3H,s, CH₃) ppm.

2-Cyano-3,12-dioxoolean-1,9(11)-dien-28,13β-olide (2)

Method 1: A mixture of **1** (0.3 g, 0.61 mmol) and DDQ (0.28 g, 1.22 mmol) in anhydrous benzene (30 mL) was refluxed for 48 h. After filtration, the filtrate was evaporated in vacuo to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc) to give **2** as an amorphous solid (0.17 g, 58%).

Method 2: A mixture of CDDO (0.22 g, 0.45 mmol) and DDQ (0.10 g, 0.45 mmol) in anhydrous benzene (30 mL) was refluxed for 48 h. After filtration, the filtrate was evaporated in vacuo to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc) to give **2** as an amorphous solid (0.12 g, 82%), and 0.07 g of CDDO was recovered.

Method 3: A mixture of CDDO (0.25 g, 0.51 mmol) and DPPH• (0.40 g, 1.02 mmol) in anhydrous benzene (30 mL) was refluxed for 48 h. After filtration, the filtrate was evaporated in vacuo to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc) to give **2** as an amorphous solid (0.20 g, 81%).

m.p. 260-262 °C;

 $[\alpha]_{D}^{25}$ 63.1 (*c* 1.0, in CH₂Cl₂);

IR (KBr, cm⁻¹): 3434, 2955, 2926, 2855, 2230, 1776, 1735, 1693, 1675, 1617;

ESI-MS: 490 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 8.02 (s, 1H), 6.22 (s, 1H), 3.00 (m, 1H), 1.93, 1.56, 1.54,

1.46, 1.44, 1.14, 0.98 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 196.3, 191.2, 178.2, 173.6, 165.4, 123.1, 115.0, 114.3, 87.5, 47.9, 46.4, 45.1, 44.1, 43.5, 42.9, 42.0, 36.6, 34.0, 33.1, 32.7, 31.6, 30.7, 27.6, 27.3, 27.1, 25.8, 23.8, 22.8, 21.5, 20.1, 17.5 ppm;

HRMS (EI⁺) calc. for $[C_{31}H_{40}NO_4]^+$ 490.2957, found 490.2961.

3β-Hydroxy-12-oxoolean-9(11)-en-28-oate (3)

A solution of **28** (2.0 g, 3.57 mmol) in THF (30 mL) was treated with 10% Pd/C (0.2 g). The mixture was stirred at RT with H_2 at atmospheric pressure for 1-2 h. The mixture was filtered through celite, and a filter cake was washed with THF. The filtrate was concentrated in vacuo to give a solid, which was subjected to flash column chromatography (petroleum ether/EtOAc) to give **3** as an amorphous solid (1.63 g, 97%).

m.p. 294-296 °C;

IR (KBr, cm⁻¹): 3443, 2927, 2869, 1710, 1687, 1661, 1593, 1466, 1384, 1363;

ESI-MS: 469 [M-H]⁻;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 5.76 (s, 1H), 3.25 (m, 1H), 3.02 (m, 1H), 2.90 (d, *J* = 4.5 Hz, 1H), 1.25, 1.17, 1.03, 1.00, 1.00, 0.89, 0.83 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 200.4, 183.5, 178.4, 122.7, 78.1, 50.2, 49.5, 47.1, 45.3, 41.7, 40.0, 39.2, 36.4, 35.8, 34.5, 33.2, 33.0, 32.9, 31.5, 30.7, 29.7, 28.1, 27.4, 23.8, 23.7, 23.1, 22.6, 21.7, 18.0, 15.5 ppm;

HRMS (EI⁺) calc. for $[C_{30}H_{47}NO_4]^+$ 471.3474, found 471.3482.

3β-Hydroxy-12-oxoolean-9(11)-en-28,13β-olide (4)

Compound **4** was synthesized from **3** (0.5 g, 1.06 mmol) according to the synthetic procedure of **2** (method 2), giving an amorphous solid (0.30 g, 82%), and 0.13 g of **3** was recovered.

m.p.230-232 °C;

 $[\alpha]_{D}^{25}$ 54.9 (*c* 1.0, in CH₂Cl₂);

IR (KBr, cm⁻¹): 3324, 2953, 2867, 1777, 1671, 1588, 1467, 1387, 1366, 1292;

ESI-MS: 469 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 6.0 (s, 1H), 3.24 (m, 1H), 2.98 (m, 1H), 1.52, 1.26, 1.12, 1.00, 0.96, 0.96, 0.85 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 192.3, 184.0, 178.7, 121.6, 87.9. 77.8, 50.2, 46.0, 43.9, 43.5, 41.7, 40.4, 39.3, 36.7, 36.4, 34.1, 34.0, 33.1, 31.6, 30.0, 28.1, 27.4, 27.2, 25.8, 24.4, 23.8, 23.1, 20.2, 17.3, 15.6 ppm;

HRMS (EI⁺) calc. for $[C_{30}H_{45}O_4]^+$ 469.3318, found 469.3342.

3β-Hydroxyolean-9(11)-en-28-oate (5)

A mixture of **3** (0.5 g, 1.06 mmol), KOH (5.36 g, 95.7 mmol) and hydrazine hydrate (98%) (6.2 mL, 191.4 mmol) in diethylene glycol (50 mL) was refluxed for 1.5 h. After removal of water and hydrazine

hydrate, the mixture was then refluxed for additional 6 h. After cooling to the RT, the mixture was neutralized with dilute aqueous HCl and poured into water. A precipitate was obtained by filtration and purified by silica gel column chromatography (petroleum ether/EtOAc) to give **5** (CAS 112899-58-8) as an amorphous solid (0.30 g, 62.1%).

m.p. >275 °C (Lit^[2]. >275 °C);

ESI-MS: 455 [M-H]⁻;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 5.57 (m, 1H), 3.22 (m, 1H), 1.14, 1.11, 0.98, 0.94, 0.93, 0.89, 0.78 (each 3H, s).

Benzyl 12-oxoisoxazolo[4,5-b]olean-9(11)-en-28-oate (6)

Compound **6** was synthesized according to literature¹.

m.p. 74-76 °C;

IR (KBr, cm⁻¹): 3434, 2947, 2861, 2353, 2312, 1722, 1660, 1581, 1456, 1384;

ESI-MS: 584 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 8.06 (s, 1H), 7.38-7.28 (m, 5H), 5.8 (s, 1H), 5.20 (d, J = 12.6 Hz, 1H), 5.15 (d, J = 12.6 Hz, 1H), 3.10 (m, 1H), 2.80 (d, J = 4.5 Hz, 1H), 2.75 (d, J = 15 Hz, 1H),
3.38 (d, J = 15 Hz, 1H), 1.37, 1.26, 1.12, 1.01, 0.99, 0.95, 0.90 (s, each 3H) ppm;
¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 199.8, 177.4, 176.0, 172.1, 150.2, 136.3, 128.6, 128.6, 128.5, 128.5, 128.1, 124.5, 108.6, 66.2, 49.8, 49.5, 47.2, 45.6, 41.8, 41.3, 36.0, 35.2, 34.6, 33.7, 33.3, 32.9, 31.6, 31.3, 30.7, 28.8, 28.2, 24.6, 23.2, 22.8, 22.8, 21.6, 21.4, 18.3 ppm;

HRMS (EI⁺) calc. for $[C_{38}H_{50}NO_4]^+$ 584.3740, found 584.3763.

12-Oxoisoxazolo[4,5-b]olean-9(11)-en-28-oate (7)

Compound 7 was synthesized from 6 (1.0 g, 1.72 mmol) according to the synthetic procedure of 3, giving an amorphous solid (0.74 g, 87%).

m.p. 224-226 °C;

IR (KBr, cm⁻¹): 3455, 2939, 2867, 1706, 1659, 1632, 1478, 1454, 1384, 1342;

ESI-MS: 492[M-H]⁻;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 8.06 (s, 1H), 5.9 (s, 1H), 3.06 (m, 1H), 2.93 (d, *J* = 4.5 Hz, 1H), 2.78 (d, *J* = 15.3 Hz, 1H), 2.40 (d, *J* = 15.3 Hz, 1H), 1.35, 1.31, 1.26, 1.16, 1.01, 0.97, 0.85 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 199.8, 183.8, 176.1, 172.1, 150.1, 124.5, 108.5, 49.7, 49.6, 47.1, 45.7, 41.8, 41.3, 35.8, 35.1, 34.5, 33.6, 33.2, 33.0, 31.4, 31.3, 30.6, 28.8, 28.2, 24.5, 23.1, 23.0, 22.6, 21.5, 21.4, 18.2 ppm;

HRMS (EI⁺) calc. for $[C_{31}H_{44}NO_4]^+$ 494.3270, found 494.3290.

12-Oxoisoxazolo[4,5-b]olean-9(11)-en-28,13β-olide (8)

Compound **8** was synthesized from **7** (0.5 g, 1.01 mmol) according to the synthetic procedure of **2** (method 2), giving an amorphous solid (0.36 g, 89%), and 0.09 g of **7** was recovered.

m.p. 278-280 °C;

 $[\alpha]_{D}^{25}$ 64.3 (*c* 1.0, in CH₂Cl₂);

IR (KBr, cm⁻¹): 3539, 3493, 2945, 2860, 1777, 1669, 1596, 1482, 1467, 1456;

ESI-MS: 492 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 8.08 (s, 1H), 6.13 (s, 1H), 3.01 (m, 1H), 2.85 (d, *J* = 15.0

Hz, 1H), 2.43 (d, *J* = 15.0 Hz, 1H), 1.57, 1.26, 1.61, 1.09, 1.06, 1.00, 0.94 (s, each 3H) ppm; ¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 191.9, 181.6, 178.3, 171.9, 150.0, 123.2, 108.2, 87.7, 49.6, 46.3, 44.0, 43.5, 41.8, 41.6, 36.6, 35.2, 34.0, 33.6, 33.1, 32.4, 31.6, 29.5, 28.8, 27.2, 25.9, 25.0, 23.8, 23.1, 21.3, 20.2, 17.4 ppm;

HRMS (EI⁺) calc. for $[C_{31}H_{42}NO_4]^+$ 492.3114, found 490.3108.

3,12-Dioxoolean-9(11)-en-28-oate (9)

Compound **9** was synthesized from **29** (2.0 g, 3.58 mmol) according to the synthetic procedure of **3**, giving an amorphous solid (1.63 g, 97%).

m.p. 264-268 °C;

IR (KBr, cm⁻¹): 3462, 2951, 2869, 1726, 1707, 1661, 1593, 1465, 1384, 1366;

ESI-MS: 469 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 5.8 (s, 1H), 3.04 (m, 1H), 2.94 (d, *J* = 4.5 Hz, 1H), 2.66,

2.49, 2.22 (m, each 1H), 1.30, 1.29, 1.25, 1.23, 1.19, 1.13, 1.09 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 215.8, 199.8, 183.4, 176.6, 124.1, 50.9, 49.6, 47.5, 47.1, 45.4, 41.8, 39.4, 37.0, 35.8, 34.5, 34.1, 33.2, 32.9, 32.0, 31.5, 30.6, 28.1, 26.3, 23.8, 23.7, 23.1, 22.6, 21.6, 21.4, 19.1 ppm;

HRMS (EI⁺) calc. for $[C_{30}H_{45}O_4]^+$ 469.3318, found 469.3325.

3,12-Dioxoolean-9(11)-en-28,13β-olide (10)

Compound **10** was synthesized from **9** (0.5 g, 1.07 mmol) according to the synthetic procedure of **2** (method 2), giving an amorphous solid (0.31 g, 84%), and 0.13 g of **9** was recovered.

m.p.243-245 °C;

 $[\alpha]_{D}^{25}$ 66.5 (c 1.0, in CH₂Cl₂);

IR (KBr, cm⁻¹): 3457, 2942, 2868, 1785, 1705, 1666, 1590, 1466, 1386, 1357;

ESI-MS: 467 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 6.03 (s, 1H), 2.99 (m, 1H), 2.66, 2.49, 2.22 (m, each 1H),

1.57, 1.44, 1.38, 1.14, 1.11, 1.00, 0.92 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 215.3, 192.0, 182.0, 178.4, 122.8, 87.8, 50.9, 47.6, 46.1, 44.0, 43.5, 41.8, 39.8, 37.0, 36.7, 34.1, 33.1, 31.6, 29.9, 29.7, 27.2, 26.3, 25.9, 24.3, 23.8, 23.0, 21.6, 21.4, 18.4 ppm;

HRMS (EI⁺) calc. for $[C_{30}H_{43}O_4]^+$ 467.3161, found 467.3172.

3β-(3-Carboxy-1-oxopropoxy)-12-oxoolean-9(11)-en-28-oate (11)

To a solution of **3** (2.0 g, 4.26 mmol) and butanedioic anhydride (1.7 g, 17.0 mmol) in anhydrous CH_2Cl_2 (50 mL) was added DMAP (0.51 g, 4.26 mmol). The mixture was refluxed for 12 h, and then was washed with water (50 mL × 3) followed by brine (50 mL × 3), then dried over anhydrous Na₂SO₄. After filtration, the filtrate was evaporated in vacuo, and purified by flash column chromatography (petroleum ether/EtOAc) to afford **11** as an amorphous solid (1.99 g, 82%).

m.p.186-190 °C;

IR (KBr, cm⁻¹): 3458, 2950, 2861, 2648, 2271, 1731, 1659, 1584, 1466, 1384;

ESI-MS: 571 [M+H]⁺;

¹H NMR (300M Hz, DMSO-d₆, 25 °C, TMS): δ 5.75 (s, 1H), 4.54 (m, 1H), 3.01 (m, 1H), 2.91 (d, *J* = 4.5 Hz, 1H), 2.69-2.64 (m, 4H), 1.57, 1.26, 1.61, 1.09, 1.06, 1.00, 0.94 (s, each 3H) ppm;

¹³C NMR (75M Hz, DMSO-d₆, 25 °C, TMS): δ 199.7, 179.4, 178.4, 173.8, 172.0, 122.4, 79.6, 50.1,
49.2, 46.5, 45.4, 41.7, 39.9, 38.3, 36.1, 35.9, 34.4, 33.6, 33.0, 32.7, 31.6, 30.7, 29.7, 29.3, 28.1, 28.0,
24.1, 24.0, 23.5, 23.5, 22.8, 21.6, 17.8, 17.1 ppm;

HRMS (EI⁺) calc. for $[C_{34}H_{51}O_7]^+$ 571.3635, found 571.3648.

3β-(3-Carboxy-1-oxopropoxy)-12-oxoolean-9(11)-en-28,13β-olide (12)

Compound **12** was synthesized from **11** (0.5 g, 0.88 mmol) according to the synthetic procedure of **2** (method 2), giving an amorphous solid (0.36 g, 78%), and 0.04 g of **11** was recovered.

m.p.255-257 °C;

 $[\alpha]_{D}^{25}$ 49.5 (*c* 1.0, in CH₂Cl₂);

IR (KBr, cm⁻¹): 3449, 2946, 2867, 1766, 1740, 1728, 1674, 1584, 1472, 1387;

ESI-MS: 569 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 5.90 (s, 1H), 4.55 (m, 1H), 2.98 (m, 1H), 2.70-2.64 (m, 4H), 1.46, 1.28, 1.20, 0.99, 0.97, 0.93, 0.92 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 192.3, 183.4, 178.7, 177.8, 171.8, 121.7, 87.8, 80.1, 50.4,
46.0, 44.0, 43.6, 41.7, 40.3, 38.3, 36.7, 36.1, 34.1, 33.9, 33.1, 31.6, 30.0, 29.3, 29.0, 27.9, 27.2, 25.8,
24.4, 23.8, 23.7, 23.0, 20.2, 17.1, 16.1 ppm;

HRMS (EI⁺) calc. for $[C_{34}H_{49}O_7]^+$ 569.3478, found 569.3466.

3β-Acetoxy-12-oxoolean-28-oate (13)

Compound 13 was synthesized from 30 (2.0 g, 3.58 mmol) according to the synthetic procedure of 3,

giving an amorphous solid (1.68 g, 99%).

m.p.285-287 °C;

IR (KBr, cm⁻¹): 3448, 2944, 2861, 1731, 1692, 1463, 1451, 1381, 1366, 1249;

ESI-MS: 515 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 4.50 (m, 1H), 2.92 (m, 1H), 2.69 (d, J = 4.5 Hz, 1H),

2.29-2.15 (m, 2H), 2.19 (s, 3H), 0.99, 0.98, 0.95, 0.91, 0.88, 0.87, 0.85 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 211.3, 183.6, 170.9, 80.4, 55.2, 51.9, 49.7, 47.2, 41.9, 41.4, 38.5, 37.8, 37.7, 36.9, 36.1, 34.5, 33.4, 33.1, 31.9, 31.8, 30.7, 29.7, 27.9, 27.6, 23.4, 23.1, 22.6, 21.3, 20.5, 18.2, 16.4, 15.3 ppm;

HRMS (EI⁺) calc. for $[C_{32}H_{51}O_5]^+$ 515.3737, found 515.3752.

3β-Acetoxy-12-oxoolean-28,13β-olide (14)

Compound 14 was synthesized from 13 (0.5 g, 0.97 mmol) according to the synthetic procedure of 2 (method 2), giving an amorphous solid (0.21 g, 61%), and 0.15 g of 13 was recovered.

m.p.215-216 °C;

 $[\alpha]_{\rm D}^{25}$ 16.7 (*c* 1.0, in CH₂Cl₂);

IR (KBr, cm⁻¹): 3506, 2954, 2926, 2855, 2353, 1770, 1729, 1714, 1647, 1590;

ESI-MS: 530 [M+NH₄]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 4.50 (m, 1H), 2.76 (t, *J* = 14.4 Hz, 1H), 2.57 (t, *J* = 8.4 Hz, 1H), 2.39 (m, 1H), 2.09 (s, 3H), 1.35, 1.25, 0.97, 0.96, 0.93, 0.87, 0.85 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 206.0, 178.4, 170.9, 91.0, 80.3, 55.1, 51.1, 44.0, 44.0, 43.7, 42.6, 38.2, 37.9, 37.4, 37.2, 34.2, 33.2, 33.0, 31.6, 29.7, 27.9, 27.3, 25.9, 23.8, 23.4, 21.2, 20.7, 18.5, 18.2, 17.5, 16.4, 15.9 ppm;

HRMS (EI⁺) calc. for $[C_{32}H_{48}O_5Na]^+$ 535.3399, found 535.3412.

3β-Acetoxyolean-12-en-28-oate (15)

Compound 15 (CAS 4339-72-4) was prepared from oleanolic acid according to the reported

procedure.3

m.p.265-267 °C(Lit⁴. 264-265 °C).

3β-Hydroxy-12-oxours-9(11)-en-28-oate (16)

Compound 16 was synthesized from ursolic acid (2.0 g, 4.38 mmol) according to the synthetic procedure of 3, giving an amorphous solid (0.98 g, 47%).

m.p.242-244 °C;

IR (KBr, cm⁻¹): 3630, 3483, 2931, 2872, 1782, 1664, 1458, 1385, 1284, 1240;

ESI-MS: 470 [M+H]⁺, 493 [M+Na]⁺;

¹H NMR (300M Hz, DMSO-d₆, 25 °C, TMS): δ 5.74 (s, 1H), 4.41 (brs, 1H), 3.01 (m, 1H), 2.71-2.67 (d,

J = 11.0 Hz, 1H), 2.51 (m, 1H), 1.13, 1.09, 1.05, 0.95, 0.86, 0.73 (s, each 3H) ppm;

¹³C NMR (75M Hz, DMSO-d₆, 25 °C, TMS): δ 199.8, 179.8, 179.5, 122.6, 76.6, 50.7, 50.0, 49.2, 45.3,

42.4, 40.8, 40.6, 39.7, 39.3, 39.1, 37.0, 36.4, 32.9, 31.2, 28.7, 28.4, 27.8, 24.8, 24.6, 24.0, 21.0, 20.1,

19.5, 18.0, 16.5 ppm;

HRMS (EI⁺) calc. for $[C_{30}H_{47}O_4]^+$ 471.3474, found 471.3485.

3β-Hydroxy-12-oxours-9(11)-en-28,13β-olide (17)

Compound **17** was synthesized from **16** (0.5 g, 0.97 mmol) according to the synthetic procedure of **2** (method 2), giving an amorphous solid (0.35 g, 85%), and 0.08 g of **16** was recovered. m.p.256-258 °C;

 $[\alpha]_{D}^{25}$ 51.4 (*c* 1.0, in CH₂Cl₂);

IR (KBr, cm⁻¹): 3488, 3428, 2962, 2937, 2875, 1783, 1769, 1733, 1664, 1632;

ESI-MS: 469 [M+H]⁺, 491 [M+Na]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 6.06 (s, 1H), 3.25 (m, 1H), 2.55 (d, *J* = 11.6 Hz, 1H), 1.49, 1.26, 1.16, 1.05, 0.95, 0.93, 0.85 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 193.1, 184.6, 178.5, 121.5, 88.0, 77.8, 54.6, 50.2, 45.7, 44.9, 42.4, 40.5, 39.6, 39.3, 37.3, 36.4, 33.9, 31.2, 30.7, 30.3, 28.2, 27.5, 26.1, 24.5, 21.8, 20.4, 19.3, 18.2, 17.3, 15.6 ppm;

HRMS (EI⁺) calc. for $[C_{30}H_{45}O_4]^+$ 469.3318, found 469.3328.

(±)-5-(Phenylcarbonyl)dihydrofuran-2(3H)-one (19)

A mixture of 4-Benzoylbutyric acid (18) (0.20 g, 1.0 mmol) and DDQ (0.24 g, 1.0 mmol) in anhydrous benzene (50 mL) was refluxed for 168 h. After filtration, the filtrate was evaporated in vacuo to give a residue, which was purified by flash column chromatography (hexane/ethylether) to give 19 (CAS 35304-85-9) as a light yellow viscous liquid (0.048 g, 54%), and 0.11 g of 18 was recovered.

ESI-MS: 191 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 7.97-7.16 (m, 5H), 5.88-5.80 (m, 1H), 2.67-2.41 (m, 4H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 194.4, 176.0, 134.3, 134.3, 129.1, 128.8, 78.3, 26.9, 25.0 ppm.

(±)-5-(4-Methoxy-phenylcarbonyl)dihydrofuran-2(3H)-one (21)

Compound **21** (CAS 24962-85-4) was synthesized from 4-(4-methoxybenzoyl)butyric acid (**20**) (0.20 g, 0.90 mmol) according to the synthetic procedure of **19**, giving an amorphous solid (0.035 g, 51%), and 0.13 g of **20** was recovered.

m.p.125-126 °C;

ESI-MS: 221 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 7.99-6.97 (m, 4H), 5.76-5.71 (m, 1H), 3.89 (s, 3H), 2.67-2.46 (m, 4H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 192.6, 176.3, 164.4, 131.1, 131.1, 126.7, 114.3, 114.3, 78.1, 55.6, 26.9, 25.0 ppm.

(±)-5-(4-Methyl-phenylcarbonyl)dihydrofuran-2(3H)-one (23)

Compound **23** (CAS 420119-86-4) was synthesized from 4-(4-methoxybenzoyl)butyric acid (**22**) (0.20 g, 0.97 mmol) according to the synthetic procedure of **19**, giving an amorphous solid (0.052 g, 58%), and 0.11 g of **22** was recovered.

m.p.84-86 °C;

ESI-MS: 205 [M+H]⁺;

¹HNMR (300M Hz, CDCl₃, 25 °C, TMS): δ 7.89-7.26 (m, 4H), 5.79-5.74 (m, 1H), 2.65-2.39 (m, 7H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 193.9, 175.2, 145.4, 131.2, 129.7, 129.7, 128.9, 128.9, 78.2, 29.7, 25.0, 21.7 ppm.

(±)-5-(4-Methyl-phenylcarbonyl)-5-phenylcarbonyl-dihydrofuran-2(3H)-one (25)

Compound **25** was synthesized from 4-(4-methylbenzoyl)-4-benzoylbutyric acid (**24**) (0.2 g, 0.65 mmol) according to the synthetic procedure of **19**, giving an viscous liquid (0.039 g, 36%), and 0.09 g of **24** was recovered.

ESI-MS: 309 [M+H]⁺;

IR (KBr, cm⁻¹): 3445, 3061, 2908, 2235, 1702, 1677, 1605, 1554, 1448, 1413;

¹HNMR (300M Hz, CDCl₃, 25 °C, TMS): δ 7.59-6.90 (m, 9H), 3.06-2.04 (m, 7H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 195.8, 195.4, 177.6, 144.7, 135.8, 133.6, 133.6, 133.3, 129.6, 129.6, 128.9, 128.9, 128.8, 128.8, 128.6, 128.6, 55.0, 31.1, 23.9 ppm.
HRMS (EI⁺) calc. for [C₁₉H₁₆O₄K]⁺ 347.0686, found 347.0690.

(±)-6-Benzoyltetrahydro-2*H*-pyran-2-one (27)

Compound **27** (CAS 184171-69-5) was synthesized from benzenehexanoic acid (**26**) (0.2 g, 0.97 mmol) according to the synthetic procedure of **19**, giving an amorphous solid (0.074 g, 62%), and 0.08 g of **26** was recovered.

m.p.121-123 °C;

ESI-MS: 205 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 7.96-7.47 (m, 5H), 5.13-5.08 (m, 1H), 3.65-3.20 (m, 2H), 2.65-2.57 (m, 3H), 2.09-1.97 (m, 1H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 196.2, 176.6, 136.4, 133.7, 128.8, 128.8, 128.0, 128.0,

76.5, 43.8, 28.5, 28.3 ppm.

Benzyl 3β-hydroxy-12-oxoolean-9(11)-en-28-oate (28)

Compound **28** was synthesized according to literature¹.

m.p. 197-198 °C;

IR (KBr, cm⁻¹): 3506, 2953, 2930, 2867, 1715, 1647, 1587, 1456, 1382, 1236;

ESI-MS: 561 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 7.34-7.29 (m, 5H), 5.7 (s, 1H), 5.18 (d, *J* = 12.6 Hz, 1H),

5.13 (d, J = 12.6 Hz, 1H), 3.22-3.17 (m, 1H), 3.08 (m, 1H), 2.75 (d, J = 4.2 Hz, 1H), 1.14, 1.02, 1.00,

0.96, 0.92, 0.89, 0.81 (s, each 3H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 200.4, 178.5, 177.5, 136.3, 128.5, 128.5, 128.4, 128.4, 128.1, 122.6, 77.8, 66.1, 50.2, 49.3, 47.2, 45.3, 41.7, 40.0, 39.3, 36.5, 35.9, 34.5, 33.3, 32.9, 32.8, 31.6, 30.7, 28.1, 28.0, 27.5, 23.8, 23.4, 23.2, 22.8, 21.7, 18.0, 15.7 ppm;
HRMS (EI⁺) calc. for [C₃₇H₅₃O₄]⁺ 561.3944, found 561.3968.

Benzyl 3,12-dioxoolean-9(11)-en-28-oate (29)

Compound **29** was synthesized according to literature¹.

m.p. 146-147 °C;

IR (KBr, cm⁻¹): 3421, 2946, 2861, 2359, 1723, 1708, 1662, 1599, 1466, 1383;

ESI-MS: 559 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 7.38-7.28 (m, 5H), 5.8 (s, 1H), 5.19 (d, *J* = 12.6 Hz, 1 H), 5.14 (d, *J* = 12.6 Hz, 1H), 3.09 (m, 1H), 2.79 (d, *J* = 4.5 Hz, 1H), 2.66, 2.49, 2.17 (m, each 1H), 1.26, 1.11, 1.07, 1.00, 0.97, 0.95, 0.89 (s, each 3H) ppm; ¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 215.7, 199.9, 177.4, 176.6, 136.3, 128.5, 128.5, 128.4, 128.4, 128.2, 124.0, 50.9, 49.5, 47.5, 47.2, 45.4, 41.8, 39.4, 37.0, 35.9, 34.5, 34.2, 33.3, 32.8, 31.9, 31.6, 30.7, 29.7, 28.0, 26.3, 23.8, 23.3, 23.2, 22.8, 21.6, 21.4, 19.1 ppm;

HRMS (EI⁺) calc. for $[C_{37}H_{50}O_4Na]^+$ 581.3607, found 581.3625.

Benzyl 3β-acetoxy-12-oxoolean-28-oate (30)

Compound **30** (CAS 357953-28-7) was synthesized according to literature¹.

m.p. 196-198 °C;

ESI-MS: 605 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 7.34-7.31 (m, 5H), 5.21 (d, *J* = 12.2 Hz, 1H), 5.13 (d, *J* = 12.2 Hz, 1H), 4.46 (m, 1H), 2.83 (m, 1H), 2.43 (d, *J* = 4.1 Hz, 1H), 1.99, 1.03, 0.99, 0.92, 0.90, 0.85, 0.81 (s, each 3H) ppm;

2,2-Diphenyl-1-picrylhydrazine (DPPH-H)

A mixture of CDDO (0.25 g, 0.51 mmol) and DPPH• (0.40 g, 1.02 mmol) in anhydrous benzene (30 mL) was refluxed for 48 h. After filtration, the filtrate was evaporated in vacuo to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc) to give DPPH-H (CAS 1707-75-1) as a purple-black solid (0.20g, 80.3%).

m.p. 176-178 °C;

IR (KBr, cm⁻¹): 3510, 3422, 3264, 3121, 3062, 2920, 1624, 1597, 1538, 1505;

ESI-MS: 394 [M-H]⁻;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 10.1(s, 1H), 9.21 (s, 1H), 8.51(s, 1H), 7.53-7.01(m, 10H) ppm;

¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 146.0, 146.0, 142.0, 142.0, 136.4, 129.5, 129.5, 129.5, 129.5, 129.5, 126.2, 125.8, 125.8, 125.8, 124.9, 120.4, 120.4, 120.4, 120.4 ppm;

HRMS (EI⁺) calc. for $[C_{18}H_{12}N_5O_6]^-$ 394.0801, found 394.0796.

3. Crystallographic data of compound 2

CCDC 793908 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Bone precision	0.0067 Å
Wavelength	0.71073
Cell	$a = 8.9020(18)$ Å $\alpha = 90^{\circ}$
	$b = 12.345 (3)$ Å $\beta = 90^{\circ}$
	$c = 24.222 (5)$ Å $\gamma = 90^{\circ}$
Temperature	293K
Volume	2661.9
Space group	P212121
Hall group	P2ac2ab
Formual	C ₃₁ H ₃₉ NO ₄
Mr	489.63
Dx, gcm ⁻³	1.222
Z	4
Mu (mm ⁻¹)	0.080
F000	1056.0
F000'	1056.46
H, k, lmax	10, 14, 29
Nref	2763 [4844]
Tmin, Tmax	0.981, 0.992
Tmin'	0.976

 Table.1a Crystal data and structure refinement for 2.

Correction method	PSI-SCAN
Data completeness	1.74/1.00
Theta (max)	25.290
R (reflections)	0.0702 (3079)
wR2 (reflections)	0.1942 (4821)
S	1.007
Npar	326

Table 1b. Atomic coordinates and equivalent isotropic displacement parameters for 2.

	х	у	Z	U(eq)	
C1	1.0088(6)	-0.0786(4)	-0.05234(18)	0.0529(13)	
01	1.2810(7)	-0.2114(5)	-0.1352(3)	0.147(3)	
02	0.6598(4)	0.1210(3)	0.07556(15)	0.0650(10)	
03	0.8857(4)	0.2317(2)	0.14122(12)	0.0483(8)	
O4	0.8964(6)	0.3456(3)	0.21336(15)	0.0805(13)	
Ν	0.9100(7)	-0.3082(4)	-0.1257(2)	0.0941(18)	
C2	1.0726(6)	-0.1571(4)	-0.0823(2)	0.0539(13)	
C3	1.2348(8)	-0.1580(4)	0.0947(3)	0.0763(18)	
C4	1.3412(6)	-0.0903(4)	-0.0610(2)	0.0539(13)	
C5	1.2581(5)	-0.0344(4)	-0.01288(18)	0.0473(12)	
C6	1.3496(6)	0.0485(4)	0.0181(2)	0.0571(12)	
C7	1.2819(5)	0.0675(4)	0.0749(2)	0.0509(12)	
C8	1.1171(5)	0.1013(3)	0.07410(17)	0.0398(10)	
С9	1.0248(5)	0.0518 (3)	0.02695 (18)	0.0400(10)	
C10	1.1008(6)	0.0117(3)	-0.02643(18)	0.0464(11)	
C11	0.8741(6)	0.0559(4)	0.03123(18)	0.0503(12)	
C12	0.7909(6)	0.0992(4)	0.0791(2)	0.0457(11)	
C13	0.8775(5)	0.1126(3)	0.13337(17)	0.0367(9)	
C14	1.0373(5)	0.0677(3)	0.13003(17)	0.0356 (9)	

C15	1.1240(5)	0.1086(4)	0.18094(18)	0.0492(12)
C16	1.0296(5)	0.1035(4)	0.23416(18)	0.0485(12)
C17	0.8712(5)	0.1479(3)	0.22810(18)	0.0437(11)
C18	0.7853(5)	0.0832(3)	0.18420(17)	0.0370(10)
C19	0.7432(5)	-0.0315(3)	0.20339(19)	0.0453(11)
C20	0.6481(5)	-0.0261(4)	0.2566(2)	0.0497(12)
C21	0.7375(6)	0.0401(4)	0.3005(2)	0.0595(13)
C22	0.7832(6)	0.1548(4)	0.2811(2)	0.0572(14)
C23	1.4574(7)	-0.1688(6)	-0.0380(3)	0.094(2)
C24	1.4213(9)	-0.0144 (5)	-0.1003 (3)	0.104(3)
C25	1.0974(7)	0.1068(4)	-0.0689(2)	0.0685(16)
C26	1.1192(6)	0.2265(3)	0.06348(19)	0.0583(13)
C27	1.0303(5)	-0.0587(3)	0.13191(19)	0.0419(10)
C28	0.8834(6)	0.2541(4)	0.19692(19)	0.0557(12)
C30	0.6275(7)	-0.1408(4)	0.2781(2)	0.0705(16)
C29	0.4914(6)	0.0221(5)	0.2462(3)	0.0688(15)
C31	0.9836(7)	-0.2403(4)	-0.1068(2)	0.0662(15)

 Table 1c. Hydrogen coordinates and isotropic displacement parameters for 2.

	х	у	Z	U(eq)	
H1A	0.9053	-0.0794	-0.0472	0.063	
H5A	1.2394	-0.0923	0.0139	0.057	
H6A	1.3514	0.1160	-0.0023	0.068	
H6B	1.4522	0.0231	0.0220	0.068	
H7A	1.3395	0.1233	0.0935	0.061	
H7B	1.2913	0.0015	0.0963	0.061	
H11A	0.8181	0.0294	0.0017	0.060	
H15A	1.1552	0.1828	0.1746	0.059	
H15B	1.2137	0.0650	0.1857	0.059	

H16A	1.0235	0.0287	0.2462	0.058
H16B	1.0810	0.1440	0.2628	0.058
H18A	0.6896	0.1215	0.1796	0.044
H19A	0.8327	-0.0733	0.2101	0.054
H19B	0.6852	-0.0674	0.1746	0.054
H21A	0.6765	0.0466	0.3335	0.071
H21B	0.8275	0.0002	0.3103	0.071
H22A	0.6939	0.1984	0.2753	0.069
H22B	0.8437	0.1895	0.3093	0.069
H23A	1.4091	-0.2192	-0.0136	0.141
H23B	1.5325	-0.1291	-0.0180	0.141
H23C	1.5039	-0.2074	-0.0678	0.141
H24A	1.3514	0.0379	-0.1143	0.156
H24B	1.4628	-0.0553	-0.1304	0.156
H24C	1.5008	0.0222	-0.0810	0.156
H25A	1.1437	0.0840	-0.1028	0.103
H25B	1.1513	0.1677	-0.0542	0.103
H25C	0.9952	0.1274	-0.0759	0.103
H26A	1.1681	0.2411	0.0289	0.087
H26B	1.1728	0.2619	0.0928	0.087
H26C	1.0180	0.2533	0.0622	0.087
H27A	1.0363	-0.0827	0.1696	0.063
H27B	1.1129	-0.0882	0.1114	0.063
H27C	0.9374	-0.0829	0.1160	0.063
H30A	0.5733	-0.1829	0.2514	0.106
H30B	0.5721	-0.1389	0.3121	0.106
H30C	0.7241	-0.1731	0.2844	0.106
H29A	0.4409	-0.0196	0.2183	0.103
H29B	0.5014	0.0957	0.2339	0.103

H2	29C	0.4342	0.0202	0.279	98	0.103	
	Table 1d. Anisotropic displacement parameters for 2.						
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C1	0.066(3)	0.053(3)	0.039(3)	-0.001(2)	-0.004(2)	0.002(2)	
01	0.131(4)	0.149(5)	0.160(5)	-0.096(5)	0.014(4)	-0.002(4)	
02	0.051(2)	0.089(3)	0.055(2)	-0.0049(19)	-0.0116(18)	0.0141(18)	
03	0.071(2)	0.0238(14)	0.0498(19)	-0.0001(13)	-0.0044(17)	0.0084(14)	
O4	0.142(4)	0.0321(18)	0.067(2)	-0.0180(17)	0.003(2)	-0.004(2)	
N	0.140(5)	0.064(3)	0.078(4)	-0.012(3)	-0.020(4)	-0.019(3)	
C2	0.079(4)	0.039(2)	0.044(3)	-0.004(2)	-0.007(3)	-0.002(2)	
C3	0.097(5)	0.049(3)	0.083(4)	-0.031(3)	0.002(4)	0.007(3)	
C4	0.069(3)	0.042(3)	0.051(3)	0.001(2)	0.014(3)	-0.003(2)	
C5	0.054(3)	0.042(3)	0.046(2)	0.005(2)	0.008(2)	-0.013(2)	
C6	0.054(3)	0.058(3)	0.059(3)	-0.008(2)	0.014(2)	-0.015(3)	
C7	0.049(3)	0.051(3)	0.053(3)	-0.008(2)	-0.003(2)	-0.014(2)	
C8	0.044(3)	0.033(2)	0.042(2)	-0.0033(19)	-0.005(2)	-0.006(2)	
С9	0.052(3)	0.025(2)	0.043(2)	0.0030(18)	-0.009(2)	0.0008(19)	
C10	0.065(3)	0.034(2)	0.040(3)	0.0027(19)	-0.004(2)	-0.005(2)	
C11	0.063(3)	0.050(3)	0.037(3)	-0.005(2)	-0.014(2)	-0.004(3)	
C12	0.049(3)	0.043(3)	0.045(3)	0.002(2)	-0.011(2)	0.001(2)	
C10	0.065(3)	0.034(2)	0.040(3)	0.0027(19)	-0.004(2)	-0.005(2)	
C11	0.063(3)	0.050(3)	0.037(3)	-0.005(2)	-0.014(2)	-0.004(3)	
C12	0.049(3)	0.043(3)	0.045(3)	0.002(2)	-0.011(2)	0.001(2)	
C13	0.049(3)	0.0211(18)	0.040(2)	-0.0021(17)	-0.010(2)	-0.0008(19)	
C14	0.042(2)	0.0251(19)	0.040(2)	-0.0043(17)	-0.010(2)	-0.0037(18)	
C15	0.053(3)	0.046(3)	0.048(3)	-0.002(2)	-0.011(2)	0.001(2)	
C16	0.059(3)	0.044(3)	0.042(3)	-0.006(2)	-0.014(2)	-0.005(2)	
C17	0.056(3)	0.034(2)	0.041(3)	-0.0047(19)	-0.001(2)	0.006(2)	

C18	0.043(2)	0.029(2)	0.038(2)	-0.0052(18)	-0.006(2)	0.0056(19)
C19	0.048(3)	0.037(2)	0.051(3)	0.002(2)	-0.003(2)	0.005(2)
C20	0.049(3)	0.044(3)	0.056(3)	0.008(2)	0.002(2)	0.003(2)
C21	0.068(3)	0.060(3)	0.050(3)	0.005(2)	0.001(2)	0.003(2)
C22	0.073(4)	0.055(3)	0.043(3)	-0.013(2)	-0.006(2)	0.002(3)
C23	0.085(4)	0.115(6)	0.082(4)	-0.002(4)	0.013(4)	0.028(4)
C24	0.144(7)	0.079(4)	0.090(5)	-0.002(4)	0.067(5)	-0.009(4)
C25	0.103(4)	0.049(3)	0.053(3)	0.011(3)	0.004(3)	-0.005(3)
C26	0.085(4)	0.039(2)	0.052(3)	0.003(2)	0.005(3)	-0.018(3)
C27	0.047(2)	0.031(2)	0.048(3)	0.001(2)	-0.005(2)	-0.006(2)
C28	0.076(3)	0.043(3)	0.048(3)	-0.009(2)	-0.003(3)	0.002(3)
C30	0.079(4)	0.061(3)	0.072(4)	0.015(3)	0.013(3)	0.000(3)
C29	0.059(3)	0.077(4)	0.071(3)	0.002(3)	0.010(3)	0.002(3)
C31	0.097(4)	0.054(3)	0.048(3)	-0.008(3)	-0.005(3)	-0.006(3)

Table 1e. Bond lengths [Å] for 2.

C1-C2	1.336(7)	C16-C17	1.520(6)
C1-C10	1.520(6)	C16-H16A	0.9700
C1- H1A	0.9300	С16-Н16В	0.9700
O1-C3	1.252(7)	C17-C22	1.506(6)
O2-C12	1.201(5)	C17-C28	1.517(6)
O3-C28	1.378(5)	C17-C18	1.534(6)
O3-C13	1.485(4)	C18-C19	1.539(6)
O4-C28	1.202(5)	C18-H18A	0.9800
N-C31	1.158(7)	C19-C20	1.539(7)
C2-C31	1.427(7)	С19-Н19А	0.9700
C2-C3	1.475(8)	С19-Н19В	0.9700
C3-C4	1.503(8)	C20-C30	1.520(7)
C4-C24	1.514(7)	C20-C29	1.537(7)

C4-C23	1.523(8)	C20-C21	1.559(7)
C4-C5	1.543(6)	C21-C22	1.547(7)
C5-C6	1.508(6)	C21-H21A	0.9700
C5-C10	1.547(7)	C21-H21B	0.9700
С5-Н5А	0.9800	С22-Н22А	0.9700
C6-C7	1.520(6)	С22-Н22В	0.9700
С6-Н6А	0.9700	С23-Н23А	0.9600
С6-Н6В	0.9700	С23-Н23В	0.9600
C7-C8	1.525(6)	С23-Н23С	0.9600
C7-H7A	0.9700	C24-H24A	0.9600
С7-Н7В	0.9700	C24-H24B	0.9600
C8-C9	1.534(6)	C24-H24C	0.9600
C8-C26	1.567(6)	С25-Н25А	0.9600
C8-C14	1.585(6)	С25-Н25В	0.9600
C9-C11	1.346(7)	С25-Н25С	0.9600
C9-C10	1.541(6)	С26-Н26А	0.9600
C10-C25	1.562(6)	С26-Н26В	0.9600
C11-C12	1.475(7)	С26-Н26С	0.9600
C11-H11A	0.9300	С27-Н27А	0.9600
C12-C13	1.534(6)	С27-Н27В	0.9600
C13-C18	1.524(6)	С27-Н27С	0.9600
C13-C14	1.529(6)	С30-Н30А	0.9600
C14-C15	1.540(6)	С30-Н30В	0.9600
C14-C27	1.562(5)	С30-Н30С	0.9600
C15-C16	1.540(6)	С29-Н29А	0.9600
C15-H15A	0.9700	С29-Н29В	0.9600
С15-Н15В	0.9700	С29-Н29С	0.9600

Table 1f. Bond angles [°] for 2.

C2-C1-C10	121.8(5)	C28-C17-C16	107.1(4)
C2-C1-H1A	119.1	C22-C17-C18	111.1(4)
С10-С1-Н1А	119.1	C28-C17-C18	98.1(3)
C28-O3-C13	108.9(3)	C16-C17-C18	110.0(3)
C1-C2-C31	120.8(5)	C13-C18-C17	99.7(3)
C1-C2-C3	122.1(5)	C13-C18-C19	126.6(3)
C31-C2-C3	117.0(5)	C17-C18-C19	113.2(4)
01-C3-C2	119.0(6)	C13-C18-H18A	105.2
01-C3-C4	120.8(6)	C17-C18-H18A	105.2
C2-C3-C4	120.1(5)	C19-C18-H18A	105.2
C3-C4-C24	107.4(5)	C18-C19-C20	110.4(3)
C3-C4-C23	105.9(5)	С18-С19-Н19А	109.6
C24-C4-C23	107.6(5)	С20-С19-Н19А	109.6
C3-C4-C5	110.9(4)	С18-С19-Н19В	109.6
C24-C4-C5	115.1(4)	С20-С19-Н19В	109.6
C23-C4-C5	109.5 (4)	H19A-C19-H19B	108.1
C6-C5-C4	114.9(4)	C30-C20-C29	107.9(4)
C6-C5-C10	110.2(4)	C30-C20-C19	108.2(4)
C4-C5-C10	116.0(4)	C29-C20-C19	111.9(4)
С6-С5-Н5А	104.8	C30-C20-C21	108.4(4)
С4-С5-Н5А	104.8	C29-C20-C21	111.8(4)
С10-С5-Н5А	104.8	C19-C20-C21	108.4(4)
C5-C6-C7	109.9(4)	C22-C21-C20	114.0(4)
С5-С6-Н6А	109.7	C22-C21-H21A	108.8
С7-С6-Н6А	109.7	C20-C21-H21A	108.8
С5-С6-Н6В	109.7	C22-C21-H21B	108.8
С7-С6-Н6В	109.7	C20-C21-H21B	108.8
H6A-C6-H6B	108.2	H21A-C21-H21B	107.7
C6-C7-C8	114.4(4)	C17-C22-C21	110.2(4)

С6-С7-Н7А	108.7	C17-C22-H22A	109.6
С8-С7-Н7А	108.7	C21-C22-H22A	109.6
С6-С7-Н7В	108.7	С17-С22-Н22В	109.6
С8-С7-Н7В	108.7	С21-С22-Н22В	109.6
Н7А-С7-Н7В	107.6	H22A-C22-H22B	108.1
C7-C8-C9	114.6(4)	С4-С23-Н23А	109.5
C7-C8-C26	105.1(4)	С4-С23-Н23В	109.5
C9-C8-C26	106.1(4)	H23A-C23-H23B	109.5
C7-C8-C14	110.4(4)	С4-С23-Н23С	109.5
C9-C8-C14	107.0(3)	H23A-C23-H23C	109.5
C26-C8-C14	113.8(3)	H23B-C23-H23C	109.5
C11-C9-C8	117.5(4)	C4-C24-H24A	109.5
C11-C9-C10	121.0(4)	C4-C24-H24B	109.5
C8-C9-C10	121.1(4)	H24A-C24-H24B	109.5
C1-C10-C9	110.2(4)	C4-C24-H24C	109.5
C1-C10-C5	107.8(4)	H24A-C24-H24C	109.5
C9-C10-C5	109.7(4)	H24B-C24-H24C	109.5
C1-C10-C25	105.6(4)	C10-C25-H25A	109.5
C9-C10-C25	107.7(4)	C10-C25-H25B	109.5
C5-C10-C25	115.7(4)	H25A-C25-H25B	109.5
C9-C11-C12	125.0(4)	С10-С25-Н25С	109.5
С9-С11-Н11А	117.5	H25A-C25-H25C	109.5
C12-C11-H11A	117.5	H25B-C25-H25C	109.5
O2-C12-C11	120.9(4)	С8-С26-Н26А	110.3(3)
O2-C12-C13	121.7(5)	С8-С26-Н26В	109.6
C11-C12-C13	117.4(4)	H26A-C26-H26B	109.6
O3-C13-C18	99.1(3)	С8-С26-Н26С	109.5
O3-C13-C14	108.7(3)	H26A-C26-H26C	109.5
C18-C13-C14	117.3(3)	H26B-C26-H26C	109.5

		•	
O3-C13-C12	104.0(3)	С14-С27-Н27А	109.5
C18-C13-C12	113.4(4)	С14-С27-Н27В	109.5
C14-C13-C12	112.5(4)	H27A-C27-H27B	109.5
C13-C14-C15	107.8(3)	С14-С27-Н27С	109.5
C13-C14-C27	108.9(3)	H27A-C27-H27C	109.5
C15-C14-C27	108.9(3)	H27B-C27-H27C	109.5
C13-C14-C8	111.5(3)	O4-C28-O3	120.8(4)
C15-C14-C8	112.0(3)	O4-C28-C17	130.8(4)
C27-C14-C8	107.7(3)	O3-C28-C17	108.3(3)
C14-C15-C16	112.6(4)	С20-С30-Н30А	109.5
С14-С15-Н15А	109.1	С20-С30-Н30В	109.5
С16-С15-Н15А	109.1	H30A-C30-H30B	109.5
C14-C15-H15B	109.1	С20-С30-Н30С	109.5
С16-С15-Н15В	109.1	H30A-C30-H30C	109.5
H15A-C15-H15B	107.8	H30B-C30-H30C	109.5
C17-C16-C15	114.2(4)	С20-С29-Н29А	109.5
C17-C16-H16A	108.7	С20-С29-Н29В	109.5
С15-С16-Н16А	108.7	H29A-C29-H29B	109.5
C17-C16-H16B	108.7	С20-С29-Н29С	109.5
C15-C16-H16B	108.7	H29A-C29-H29C	109.5
H16A-C16-H16B	107.6	Н29В-С29-Н29С	109.5
C22-C17-C28	114.4(4)	H29B-C29-H29C	109.5
C22-C17-C16	114.9(4)	N-C31-C2	178.6(6)

Table 1g. Torsion angles [°] for 2.

C10-C1-C2-C31	-179.2(4)	C18-C13-C14-C15	-58.8(4)
C10-C1-C2-C3	-3.4(8)	C12-C13-C14-C15	167.1(3)
C1-C2-C3-O1	-158.4(6)	O3-C13-C14-C27	170.4(3)
C31-C2-C3-O1	17.5(9)	C18-C13-C14-C27	59.2(4)

C1-C2-C3-C4	18.0(8)	C12-C13-C14-C27	-75.0(4)
C31-C2-C3-C4	-166.0(5)	O3-C13-C14-C8	-70.8(4)
01-C3-C4-C24	54.6(8)	C18-C13-C14-C8	178.0(3)
C2-C3-C4-C24	-121.8(6)	C12-C13-C14-C8	43.8(4)
01-C3-C4-C23	-60.2(8)	C7-C8-C14-C13	173.1(3)
C2-C3-C4-C23	123.4(6)	C9-C8-C14-C13	-61.7(4)
01-C3-C4-C5	-178.9(6)	C26-C8-C14-C13	55.2(4)
C2-C3-C4-C5	4.7(7)	C7-C8-C14-C15	52.2(4)
C3-C4-C5-C6	-171.1(4)	C9-C8-C14-C15	177.5(4)
C24-C4-C5-C6	-48.9(7)	C26-C8-C14-C15	-65.7(5)
C23-C4-C5-C6	72.4(6)	C7-C8-C14-C27	-67.5
C3-C4-C5-C10	-40.7(6)	C9-C8-C14-C27	57.7(4)
C24-C4-C5-C10	81.5(6)	C26-C8-C14-C27	174.6(4)
C23-C4-C5-C10	-157.1(4)	C13-C14-C15-C16	41.9(5)
C4-C5-C6-C7	-159.5(4)	C27-C14-C15-C16	-76.0(5)
C10-C5-C6-C7	67.2(5)	C8-C14-C15-C16	164.9(4)
C5-C6-C7-C8	-55.8(6)	C14-C15-C16-C17	-46.3(5)
C6-C7-C8-C9	33.1(5)	C15-C16-C17-C22	-173.7(4)
C6-C7-C8-C26	-82.9(5)	C15-C16-C17-C28	-45.5(5)
C6-C7-C8-C14	153.9(4)	C15-C16-C17-C18	60.1(5)
C7-C8-C9-C11	164.0(4)	O3-C13-C18-C17	-47.7(4)
C26-C8-C9-C11	-80.5(5)	C14-C13-C18-C17	68.9(4)
C14-C8-C9-C11	41.3(5)	C12-C13-C18-C17	-157.3(3)
C7-C8-C9-C10	-23.3(5)	O3-C13-C18-C19	-176.3(4)
C26-C8-C9-C10	92.1(4)	C14-C13-C18-C19	-59.7(5)
C14-C8-C9-C10	-146.0(4)	C12-C13-C18-C19	74.1(5)
C2-C1-C10-C9	-150.3(4)	C22-C17-C18-C13	166.8(3)
C2-C1-C10-C5	-30.5(6)	C28-C17-C18-C13	46.7(4)
C2-C1-C10-C25	93.7(5)	C16-C17-C18-C13	-64.9(4)

C11-C9-C10-C1	-35.5(6)	C22-C17-C18-C19	-56.2(5)
C8-C9-C10-C1	152.1(4)	C28-C17-C18-C19	-176.4(4)
C11-C9-C10-C5	-154.0(4)	C16-C17-C18-C19	72.1(5)
C8-C9-C10-C5	33.6(5)	C13-C18-C19-C20	-179.9(4)
C11-C9-C10-C25	79.2(5)	C17-C18-C19-C20	57.1(5)
C8-C9-C10-C25	-93.1(5)	C18-C19-C20-C30	-172.2(4)
C6-C5-C10-C1	-174.4(4)	C18-C19-C20-C29	69.1(5)
C4-C5-C10-C1	52.9(5)	C18-C19-C20-C21	-54.8(5)
C6-C5-C10-C9	-54.4(5)	C30-C20-C21-C22	173.1(4)
C4-C5-C10-C9	173.0(4)	C29-C20-C21-C22	-68.1(6)
C6-C5-C10-C25	67.7(5)	C19-C20-C21-C22	55.8(5)
C4-C5-C10-C25	-65.0(5)	C28-C17-C22-C21	163.4(4)
C8-C9-C11-C12	-3.4(7)	C16-C17-C22-C21	-72.2(5)
C10-C9-C11-C12	-176.0(4)	C18-C17-C22-C21	53.5(5)
C9-C11-C12-O2	164.3(5)	C20-C21-C22-C17	-55.5(6)
C9-C11-C12-C13	-17.0(7)	C13-O3-C28-O4	176.3(5)
C28-O3-C13-C18	30.8(4)	C13-O3-C28-C17	-0.8(5)
C28-O3-C13-C14	-92.2(4)	C22-C17-C28-O4	36.4(8)
C28-O3-C13-C12	147.7(4)	C16-C17-C28-O4	-92.1(7)
02-C12-C13-O3	-69.3(6)	C18-C17-C28-O4	154.1(6)
C11-C12-C13-O3	112.1(4)	C22-C17-C28-O3	-146.8(4)
O2-C12-C13-C18	37.3(6)	C16-C17-C28-O3	84.7(5)
C11-C12-C13-C18	-141.4(4)	C18-C17-C28-O3	-29.2(5)
O2-C12-C13-C14	173.3(4)	C1-C2-C31-N	-49(28)
C11-C12-C13-C14	-5.4(5)	C3-C2-C31-N	135(28)
O3-C13-C14-C15	52.5(4)		

4. ESR spectra

ESR measurements: ESR spectra were recorded on Bruker EMX 10/12 ESR SPECTROMETER. Typical spectrometer parameters include: range: 200 G; field set: 3475 G; modulation frequency 100 K Hz; modulation amplitude: 0.5 G; receiver gain: $5.02e \times 10^4$; microwave power: 20 mW. *N*-tert-butyl- α -phenyl nitrone (PBN) (98%) was purchased from J&K CHEMICA and benzene (GC) was from TOKYO CHEMICAL INDUSTRY CO. LTD.

Figure 1. ESR spectra of five samples.

a. ESR spectra of reaction system: PBN (0.05 mmol) was dissolved in benzene (1 mL). The mixture showed no signal.

b. ESR spectra of reaction system: CDDO (0.2 mmol) was dissolved in benzene (2 mL) and then refluxed for 30min. The refluxed mixture showed no signal.

c. ESR spectra of reaction system: DDQ (0.2 mmol) was dissolved in benzene (2 mL) and then refluxed for 30min. The refluxed mixture showed no signal.

d. ESR spectra of reaction system: CDDO (0.2 mmol) and DDQ (0.2 mmol) was dissolved in benzene (2 mL) and was refluxed for 30min. A free radical signal was detected.

e. ESR spectra of reaction system: CDDO (0.2 mmol) and DDQ (0.2 mmol) was dissolved in benzene (2 mL). The mixture was refluxed for 30min, and cooled to 40 °C (because PBN is unstable at 80 °C.). PBN (0.15 mmol) in 1mL benzene was added to the solution. A heightened and split ESR free radical signal was detected.

According to our proposed radical ion mechanism by which olean- $28,13\beta$ -olide is formed, there are three possible radical ions and two possible radicals which could generate ESR signals in the reaction system, and they are intermediates **c**, **d**, **e**, DDQ⁻ and DDQH⁺ as depicted as follows.

Since DDQ^{-} is a much more stable radical anion,⁵ therefore, the singlet in Figure 1d is assigned to DDQ^{-} ; and Figure 1e is composed of two types of signals which are overlapped: e1 and e2, the singlet e1 is attributed to DDQ^{-} , and the triplet e2 is assigned to **h** which generates from the interaction of PBN with DDQ^{-} illustrated as follows.

5. Enol intermediate trapping experiment

To find more convincing evidence for an enol as a transient intermediate in the formation of lactone, the reaction of excess acetyl chloride with a solution of DDQ and **6** was carried out (**6** is a C28-carboxyl protected derivative of **7**, and **7** can be converted to olean-28,13 β -olide **8**).

Table 2. Evidence for an enol as a transient intermediate in the DDQ-promoted formation of olean-28,13 β -olide.^{*a*}

Benzyl 12-acetoxyisoxazolo[4,5-b]olean-9(11),12(13)-dien-28-oate (31)

A mixture of **6** (1.0 g, 1.72 mmol), DDQ (0.39 g, 1.72 mmol), acetyl chloride (0.69 g, 34.4 mmol) and triethylamine (0.20 g, 2.0 mmol) in anhydrous benzene (60 mL) was refluxed for 48 h. After filtration, the filtrate was evaporated in vacuo to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc) to give **31** as an amorphous solid (28 mg, 2.6%).

m.p. 74-76 °C;

IR (KBr, cm⁻¹): 3434, 2947, 2861, 2353, 2312, 1722, 1660, 1581, 1456, 1384;

ESI-MS: 526 [M+H]⁺;

¹H NMR (300M Hz, CDCl₃, 25 °C, TMS): δ 8.02 (s, 1H), 7.34-7.30 (m, 5H), 5.58 (s, 1H), 5.20 (d, *J* =

12.5 Hz, 1H), 5.02 (d, J = 12.5 Hz, 1H), 3.35 (m, 1H), 2.76 (d, J = 15 Hz, 1H), 2.43 (d, J = 15 Hz, 1H), 1.37, 1.26, 1.12, 1.01, 0.99, 0.95, 0.90 (s, each 3H) ppm; ¹³C NMR (75M Hz, CDCl₃, 25 °C, TMS): δ 176.9, 172.7, 169.3, 154.1, 150.2, 140.7, 136.4, 129.3, 128.6, 128.4, 128.2, 128.1, 127.9, 116.8, 109.2, 66.1, 50.6, 45.4, 43.4, 41.6, 40.5, 40.2, 35.0, 34.4, 33.8, 32.8, 32.7, 32.1, 30.9, 30.5, 28.9, 27.1, 25.6, 23.3, 23.2, 21.2, 20.7, 20.0, 19.4, 18.5; HRMS (EI⁺) calc. for [C₄₀H₅₁NO₅Na]⁺ 648.3665, found 648.3669.

6. Cytotoxicity assay

Human hepatoma (BEL-7402) cell, human cervical cancer (HeLa) cells, human breast cancinoma (MCF-7) cell (all from Shanghai Institutes for Biological Science, Chinese Academy of Science) were cultivated at 37 °C, 5% CO₂ in DMEM medium with 10% heat inactivated fetal calf serum (all from Gibco, USA). *In vitro* inhibitory effects of the target compounds on the cells were measured by MTT assay. The cells treated with Trypsin-EDTA solution were placed in 96-well plates for 24 h and incubated with individual compounds at different concentrations in the vehicle (0.1% DMSO) or in vehicle alone for 48 h. Then the cells were exposed to MTT (5 mg/ml, sigma) for 4 h and the resulting formazan crystals were dissolved in 200 μ M DMSO and measured at 570 nm on a microplate reader (Thermo, USA). The absorbance data were converted into a cell proliferation percentage, in comparison with DMSO treated cells, to determine growth inhibition. Each assay was performed in triplicate.

7. The references of the electronic supplementary information

- 1 Y. Ding, Z. Huang, J. Yin, S. Zhang, Y. Lai, S. Peng and Y. Zhang, *Synthesis*, 2011, submitted.
- T. Honda, B.V. Rounds, L. Bore, H. J. Finlay, F. G. Favaloro, N. Suh, Y. Wang, M. B. Sporn and G. W. Gribble, *J. Med. Chem.*, 2000, 43, 4233.
- 3. J. Li, S. Chen, Y. Zhao and J. Li, Carbohydr. Res., 2009, 344, 599.
- 4. F. King, C. Cotterill, D. Godson, L. Jurd and T. King, J. Chem. Soc., 1953, 3693.
- 5. G. Grampp, S. Landgraf and K. Rasmussen, J. Chem. Soc., Perkin Trans. 2., 1999, 9, 1897.

8. ¹H NMR and ¹³C NMR spectra of new compounds

.60 150 140 S0 40 12) 110 (ppm)

