Electronic Supporting Information (ESI) for manuscript entitled: A strategy for producing predicted polymorphs: catemeric carbamazepine form V

- 1. Sample preparation and single-crystal X-ray diffraction analysis of form V CBZ.
- 2. Method for computational substitution calculations in Figure 3 of manuscript.
- 3. ESI References

Tables

Table S1. Crystallographic details of CBZ form V structure.

Table S2. Unit cells for CBZ V, CBZ:DHC 50:50 solid-solution, DHC II and predicted CBZ structure.

Table S3. Comparison of the experimental and lattice energy minima for the observed and computationally generated isostructural crystal structures of the CBZ family

Figures

Figure S1. ORTEP diagram of CBZ form V (ellipsoids at 50% probability level)

Figure S2. Generalized molecular structure of CBZ/DHC/CYH/CYT, showing the torsion angles whose structures were varied within the lattice energy minimization.

1. Single-Crystal Structure analysis of CBZ form V

Data for this crystal structure were measured at 123 K with graphite monochromated Cu K α radiation ($\lambda = 1.54180$ Å) using an Oxford Diffraction Gemini S instrument. All non hydrogen atoms were refined anisotropically. Hydrogen atoms of the amide group were refined isotropically, whereas other H atoms were placed in calculated positions utilizing riding modes. All structures were refined to converge against F² using the SHELXL-97 program.¹ A summary of data collection and refinement details is provided in Table S1. The asymmetric unit of CBZ form V is shown in Figure S1.

Compound reference	Carbamazepine form V
Chemical formula	C ₁₅ H ₁₂ N ₂ O
Formula Mass	236.27
Crystal system	Orthorhombic
a/Å	9.1245(5)
$b/{ m \AA}$	10.4518(5)
$c/{ m \AA}$	24.8224(11)
α/°	90.00
β/°	90.00
γ/°	90.00
Unit cell volume/Å ³	2367.2(2)
colour	Colourless
Temperature/K	123(2)
Space group	Pbca
No. of formula units per unit cell, Z	8
No. of reflections measured	5416
No. of independent reflections	2140
R _{int}	0.0624
Final R_I values $(I > 2\sigma(I))$	0.0450
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0924
Final R_1 values (all data)	0.0872
Final $wR(F^2)$ values (all data)	0.1018
Goodness of fit on F^2	0.824

Table S1: Crystallographic details of CBZ form V structure

Using the reported method only a small number of individual crystals are obtained each time. Work is ongoing to obtain sufficient amounts of form V to allow a more complete physicochemical characterisation of this polymorph, including relative thermodynamic stability compared with other forms.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Figure S1. ORTEP diagram of CBZ form V (ellipsoids drawn at 50% probability level).

Compound reference	CBZ form V	DHC form II ²	50:50 solid solution ³	Predicted ⁴	
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	
a/Å	9.1245(5)	9.0592(4)	9.088(2)	9.312	
b/Å	10.4518(5)	10.3156(5)	10.425(4)	10.598	
c/Å	24.8224(11)	25.0534(12)	25.005(7)	24.882	
α/°	90.00	90.00	90	90	
β/°	90.00	90.00	90	90	
γ/°	90.00	90.00	90	90	
Unit cell volume/Å ³	2367.2(2)	2341.3	2369.0	2455.6	
Temperature/K	123(2)	120	150	0	
Space group	Pbca	Pbca	Pbca	Pbca	

Table S2. Unit cells for CBZ form V, CBZ:DHC 50:50 solid-solution, DHC II and predicted CBZ structure.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

2. Method for computational substitution calculations in Figure 3.

Figure S2. Generalized molecular structure of CBZ/DHC/CYH/CYT, showing the torsion angles whose structures were varied within the lattice energy minimization.

The atomic coordinates of hypothetical crystal structures were generated by substituting molecular structures so as to minimize the root-mean-square deviations of all atoms except hydrogens, with the C atom in CYH or CYT being matched to the N atom in CBZ or DHC. CYH and DHC have two low energy conformations differing in the orientation of the carboxamide group relative to the C10–C11 bond, both of which are observed in crystal structures. (The lower energy anti-conformer is observed in DHC I, II and III and the known solvate structures except that of the disordered DHC:DMSO, in which both the anti- and syn-conformers are both present with fractional occupancies of 0.81 and 0.19 respectively. The catemeric DHC form IV contains the syn-conformer.⁵ CYH form II contains 3 molecules in the lower energy anti conformation and one in the syn conformation.) Hence, hypothetical structures containing both conformations were considered. The exception was the hypothetical structure of DHC in the Z'=4 CBZ I structure, where the conformations seen in the structural isomer CYH II were assumed.

The CrystalOptimizer algorithm⁶ was used to simultaneously optimise the crystal structure and the molecular conformation within it by minimizing the lattice energy $E_{latt}=U_{inter}+\Delta E_{intra}$. Only the torsion angles (Fig S2) defining the two amide hydrogen positions, the rotation of the amide group with respect to the 7-membered ring, the angle of the amide to the ring, and, for CYH and DHC, the twist of the saturated bond of the 7-membered ring, were explicitly optimised within the crystal structure: all other intramolecular variables were defined by the constrained isolated molecule ab initio optimization. The intramolecular energy penalty for the conformational changes from the ab initio optimized structure, ΔE_{intra} , was calculated using GAUSSIAN03 at the RHF level of theory, with the 6-31G(d,p) basis set. The intermolecular lattice energy, U_{inter} , was calculated by DMACRYS using an isotropic atom-atom exp-6 potential with the FIT parameters⁷ and all terms in the electrostatic energy up to R⁻⁵ calculated from the atomic multipoles up to hexadecapole. The atomic multipoles were obtained using GDMA2⁸ to analyse the MP2/ 6-31G(d,p) charge density. The resulting lattice energy minima are shown in Table S3, and on Figure 3.

	4	4		6		-	,)		'n		,)	
Structure	Molecule	Form	Space Group	a /Å	b/ Å	c /Å	a / o	₿ ∕°	°/ *	E _{latt} / kJ mol ⁻¹	U _{inter} / kJ mol ⁻¹	ΔE _{intra} / kJ mol ⁻¹	Density / g cm ⁻³
CBZI	CBZ	CBZI	P-1	5.171(<1)	20.574(2)	22.245(2)	84.12(<1)	88.01(<1)	85.19(<1)				1.339
				5.262	20.517	22.365	85.160	86.361	85.932	-124.80	-127.44	2.64	1.310
	CYT	CYTII	P-1	5.810(<1)	19.632(<1)	21.709(<1)	85.92(<1)	86.16(<1)	84.48(<1)				1.274
				5.641	19.937	21.891	86.126	84.945	84.868	-129.62	-131.13	1.51	1.282
	CYH	CYHII	P-1	5.649(<1)	19.564(<1)	22.074(<1)	84.22(<1)	88.41(<1)	83.60(<1)				1.307
				5.727	19.874	22.136	84.163	88.313	83.761	-129.68	-130.70	1.02	1.265
	DHC	hypothetical											
				5.442	21.179	22.430	83.763	89.522	86.076	-111.26	-113.96	2.69	1.235
CBZII	CBZ	CBZII	R-3	35.454(3)	35.454(3)	5.253(1)	06	06	120				1.235
			R-3	35.423(5)	35.243(5)	5.185(1)	06	06	120				1.305
				35.264	35.264	5.272	60	90	120	-121.97	-125.34	3.37	1.244
	CYT	CYTI	R-3	33.908(1)	33.908(1)	5.675(<1)	06	06	120				1.244
				34.249	34.249	5.639	06	06	120	-127.96	-128.76	0.81	1.228
	СҮН	hypothetical											
		anti		34.378	34.378	5.637	06	06	120	-126.46	-128.17	1.71	1.229
		syn		35.743	35.743	5.666	06	06	120	-121.50	-123.08	1.58	1.131
	DHC	hypothetical											
		anti		35.140	35.140	5.433	06	06	120	-118.41	-120.80	2.39	1.226
		syn		36.072	36.072	5.461	60	06	120	-115.49	-118.50	3.02	1.157
CBZIII	CBZ	CBZIII	P21/n	7.537(1)	11.156(2)	13.912(3)	06	92.86(2)	06				1.343
				7.885	11.018	13.427	60	87.706	90	-128.76	-130.27	1.51	1.346
	CYT	hypothetical											
				6.768	11.657	16.993	60	112.179	90	-101.68	-102.13	0.45	1.259
	СҮН	hypothetical											
		anti		7.671	11.871	13.789	06	87.682	06	-114.72	-118.50	3.78	1.256
		syn		7.572	11.710	14.115	06	91.072	06	-118.97	-121.93	2.95	1.260
	DHC	hypothetical											
		anti		7.547	11.612	13.986	90	91.382	90	-121.19	-123.03	1.84	1.292
		syn		7.804	11.736	13.545	90	94.080	<u> 06</u>	-119.37	-121.42	2.06	1.279

Table S3. Comparison of the experimental and lattice energy minima for the observed and computationally generated isostructural crystal structures of the CBZ family (Fig. 3)

CBZIV	CBZ	CBZIV	C2/c	26.609(4)	6.927(1)	13.957(2)	90	109.70(<1)	06				1.296
				26.856	6.916	25.429	06	31.853	06	-123.25	-124.98	1.73	1.259
	CYT	hypothetical											
				29.464	7.334	13.597	06	121.236	06	-105.30	-108.65	3.35	1.244
	СҮН	hypothetical											
		anti		28.422	7.616	13.947	06	120.231	06	-104.61	-108.52	3.92	1.208
		syn		27.442	6.317	15.441	06	108.273	06	-118.54	-121.67	3.13	1.240
	DHC	hypothetical											
		anti		25.781	7.806	13.626	06	116.457	06	-120.99	-124.54	3.54	1.289
		syn		24.354	8.150	13.516	06	103.381	06	-112.78	-117.66	4.89	1.213
DHCI	CBZ	hypothetical											
				5.061	9.299	26.290	90	102.869	90	-122.08	-123.82	1.74	1.301
	CYT	hypothetical											
				5.500	9.218	24.666	90	99.697	06	-119.46	-124.01	4.55	1.268
	СҮН	CYHI	P21/c	5.604(<1)	9.172(1)	23.579(3)	06	96.75(1)	06				1.310
				5.545	9.467	23.458	06	98.309	06	-135.24	-136.08	0.85	1.294
	DHC	DHCI	P21/c	5.505(1)	9.158(2)	24.266(7)	06	95.95(2)	06				1.301
				5.363	9.506	23.963	90	94.382	60	-130.00	-130.77	0.77	1.299
DHCII	CBZ	CBZV	Pbca	9.1245(5)	10.4518(5)	24.8224(11)	60	90	60				1.326
				9.517	10.245	24.833	90	90	60	-124.69	-125.50	0.81	1.296
	CYT	hypothetical											
				9.210	11.460	23.374	06	06	06	-125.08	-125.22	0.14	1.267
	СҮН	hypothetical											
		anti		9.282	10.849	24.126	90	90	60	-131.81	-133.39	1.58	1.298
		syn		9.421	11.238	24.597	90	90	90	-116.83	-119.55	2.72	1.210
	DHC	DHCII	Pbca	9.059(<1)	10.316(<1)	25.053(1)	90	90	90				1.352
				9.281	10.467	24.718	90	90	90	-131.37	-132.04	0.68	1.318

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

_	_		_	_		_				_	_			_		_	
	1.30		1.27		1.22	1.20	1.32	1.30		1.28		1.23		1.17	1.21		1.30
	1.73		4.47		1.54	0.99		0.69		0.31		1.26		1.65	1.36		5.28
	-123.80		-123.91		-118.98	-115.01		-130.70		-121.78		-123.93		-117.07	-123.09		-132.20
	-122.07		-119.44		-117.44	-114.02		-130.01		-121.46		-122.67		-115.42	-121.73		-126.92
	90.041		90.198		71.604	90.318	88.93(3)	89.980		06		06		90	06	90	90
	77.138		74.182		83.326	73.451	84.23(2)	81.521		112.232		106.600		99.472	104.728	116.37(2)	115.587
	90.001		89.968		80.243	88.383	87.59(3)	89.998		06		06		06	06	90	90
	26.286		25.251		22.580	28.515	24.189(6)	24.139		18.610		18.625		16.726	18.118	18.891(7)	18.853
	9.299		9.220		8.681	8.516	9.200(5)	9.515		4.990		5.586		7.001	5.554	5.347(2)	5.418
	5.062		5.505		7.044	5.656	5.423(1)	5.363		14.261		12.709		11.637	13.445	13.207(6)	13.246
1		1		1			P-1		1		1		1			P21/c	
hypothetical		hypothetical		hypothetica	anti	syn	DHCIII		hypothetica		hypothetica		hypothetical	anti	syn	DHCIV	
CBZ		CYT		CYH			DHC		CBZ		CYT		CYH			DHC	
DHCIII									DHCIV								

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

3. References

- (1) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.
- (2) Harrison, W. T. A.; Yathirajan, H. S.; Anilkumar, H. G. Acta Crystallogr. 2006, C62, o240-242.
- (3) Florence, A. J.; Leech, C. K.; Shankland, N.; Shankland, K.; Johnston, A. CrystEngComm 2006, 8, 746-747.
- (4) Florence, A. J.; Johnston, A.; Price, S. L.; Nowell, H.; Kennedy, A. R.; Shankland, N. J. Pharm. Sci. 2006, 95, 1918-1930.
- (5) Arlin, J. B.; Johnston, A.; Miller, G. J.; Kennedy, A. R.; Price, S. L.; Florence, A. J. CrystEngComm 2010, 12, 64-66.
- (6) A. V. Kazantsev, P. G. K., C. S. Adjiman and C. C. Pantelides In *Molecular System Engineering* Adjiman, C. S. a. G., A., Ed.; WILEY-VCH Verlag GmbH & Co: Weinheim, 2010, p 1-42.
- (7) Coombes, D. S.; Price, S. L.; Willock, D. J.; Leslie, M. J. Phys. Chem. 1996, 100, 7352-7360.
- (8) Stone, A. J.; Alderton, M. Mol. Phys. 1985, 56, 1047-1064.