Supplementary Information

Activation of Olefins with Low-valent Gallium Compounds under Ambient Conditions

Christine A. Caputo, Zhongliang Zhu, Zachary D. Brown, James C. Fettinger and Philip P. Power

Department of Chemistry, The University of California, 1 Shields Ave., Davis, CA, USA. Fax: 530-732-8995; Tel: 530-752-8900; E-mail: pppower@ucdavis.edu

General Procedures. All manipulations were carried out under anaerobic and anhydrous conditions. All reagents were trap-to-trap vacuum distilled and dried over 4 Å molecular sieves prior to use. Ar'GaGaAr' was prepared according to literature procedures.¹ ¹H, ¹³C NMR were recorded on a Varian spectrometers and referenced to known standards. Elemental analysis was performed by Galbraith Laboratories (Knoxville, TN) with a ThermoFinnigan Flash EATM 1112 analyzer.

Ar'Ga(CH₂CH₂)₂GaAr' (1) Ethylene gas was bubbled at ca. 25 °C through a solution of Ar'GaGaAr' (0.30 g, 0.32 mol) in dry toluene (30 mL) . A rapid colour change from dark green to colourless was observed (within 1 min). The solution was concentrated under reduced pressure to ca. 10 mL then stored at a -18 °C to afford X-ray quality crystals of 1. Yield: 0.12 g, 38 %; m.p. 281 °C. ¹H NMR (600 MHz, C₆D₆, 298 K): δ 0.28 (s, Ga(CH₂CH₂)₂Ga, 8H), 1.05 (d, *o*-CH(CH₃)₂, ³J_{HH} = 6.8 Hz, 24H), 1.18 (d, *o*-CH(CH₃)₂, ³J_{HH} = 6.8 Hz, 24H), 1.18 (d, *o*-CH(CH₃)₂, ³J_{HH} = 6.8 Hz, 24H), 2.98 (sept, CH(CH₃)₂, ³J_{HH} = 6.8 Hz, 8H), 7.16 (d, *m*-Dipp (Dipp = 2,6-ⁱPr₂C₆H₃), ³J_{HH} = 8.4 Hz, 8H), 7.21-7.27 (m, *m*-C₆H₃, *p*-C₆H₃, 6H), 7.33 (t, *p*-Dipp, ³J_{HH} = 7.8 Hz, 4H). ¹³C{¹H} NMR (C₆D₆, 150.8 MHz, 298 K): δ 22.6, 25.8, 26.3, 30.6, 123.2, 127.3, 128.6, 141.8, 145.145.7, 147.1, 156.7. Anal. calcd for C₆₄H₈₂Ga₂: C, 77.58; H, 8.34 %. Found: C, 77.67; H, 8.36 %.

Ar'Ga{(CH₂CH(CH₃)}₂GaAr' (2) A solution of Ar'GaGaAr' (0.19 g, 0.20 mol) in dry degassed toluene (10 mL) was exposed to propene gas (~50 mL) at ca. 25 °C. An immediate colour change from dark green to bright yellow was observed. The solution was stirred for 1 h and concentrated under reduced pressure to ca. 2 mL then stored at -18 °C to afford colourless crystals of **2**. Yield: 0.11 g, 55%; m.p. 239 - 241 °C. ¹H NMR (600 MHz, C₆D₆, 298 K) Major conformer: 0.41 (d, CH₂CH(CH₃)₂, ${}^{3}J_{HH} = 5.4$ Hz, 6H), 0.54 (dd, CHH'CH(CH₃), ${}^{2}J_{HH} = 14.4$ Hz, ${}^{3}J_{HH} = 9.0$, 2H), 0.74 (dd, CHH'CH(CH₃), ${}^{2}J_{HH}$ = 14.4 Hz, ${}^{3}J_{HH}$ = 4.2 Hz, 2H), 0.98 (d, CH(CH₃)₂, ${}^{3}J_{HH}$ = 6.8 Hz, 3H), 1.08 (d, $CH(CH_3)_2$, ${}^{3}J_{HH} = 6.8$ Hz, 3H), 1.13 (m, $CH_2CH(CH_3)$, 2H), 1.22 (d, $CH(CH_3)_2$, ${}^{3}J_{HH} = 6.8$ Hz, 3H), 1.13 (m, $CH_2CH(CH_3)_2$, 2H), 1.22 (d, $CH(CH_3)_2$, 2H) 6.8 Hz, 3H), 1.27 (d, CH(CH₃)₂, ${}^{3}J_{HH} = 6.8$ Hz, 3H), 2.95 (sept, CH(CH₃)₂, ${}^{3}J_{HH} = 6.8$ Hz, 4H), 3.14 (sept, CH(CH₃)₂, ${}^{3}J_{HH} = 6.8$ Hz, 4H), 7.10 (d, p-C₆H₃, ${}^{3}J_{HH} = 7.8$ Hz, 2H), 7.12 -7.22 (m, $m^{-i}Pr_2-C_6H_3$, $m^{-i}Pr_2-C_6H_3$, 12H), 7.82 (t, $p^{-i}Pr_2-C_6H_3$, ${}^{3}J_{HH} = 7.8$ Hz, 4H). The minor conformer is present in a much smaller proportion and several peaks were obscured due to overlap with the major conformer and could not be explicitly assigned, a scan of the ¹H NMR spectrum is given for reference purposes. ¹³C{¹H} NMR (C₆D₆, 150.8 MHz, 298 K): 2_{ax}: 22.0, 22.3, 23.1, 25.9, 26.3, 26.4, 27.8, 30.5, 30.6, 123.0, 123.6, 128.9, 141.9, 145.5, 146.7, 147.6, 156.0. 2eg: 22.3, 22.7, 22.9, 25.4, 26.1, 26.3, 26.5, 30.5 (this peak is a shoulder under the corresponding signal for 2_{ax}), 30.6, 123.2, 123.3, 126.6, 142.0, 145.8, 147.0, 147.3, 155.7. Anal. calcd for C₆₆H₈₆Ga₂: C, 77.81; H, 8.51 %. Found: C, 78.01; H, 8.49 %.

Ar'Ga{CH₂CH(C₄H₉)}₂GaAr' (3) To a solution of Ar'GaGaAr' (0.22 g, 0.24 mol) in dry degassed toluene (10 mL) was added freshly distilled 1-hexene (150 μ L, 1.20 mmol, 5 eq,). A gradual colour change from dark green to pale yellow was observed over 12 h

while stirring at ca. 25 °C. The solution was concentrated under reduced pressure. The residue was washed with pentane and the pale yellow powder was dried *in vacuo* to afford pure **3**. Yield: 0.038 g, 20 %; m.p. 184 – 187 °C; Due to the mixture of isomers and numerous overlapping multiplets a tentative assignment is given based on the similarity to the spectrum of **2**: ¹H NMR (400 MHz, C₇D₈, 298 K) 0.34 (dd, $\{CHH'CH(C_4H_9)\}_2, {}^2J_{HH} = 14.8 \text{ Hz}, {}^3J_{HH} = 4.4 \text{ Hz}, 2H$), 0.62 – 0.70 (m, $\{CHH'CH(C_4H_9)\}_2, 2H$), 0.71 (dd, $\{CHH'CH(C_4H_9)\}_2, {}^2J_{HH} = 15.2 \text{ Hz}, {}^3J_{HH} = 4.4 \text{ Hz}, 4H$), 0.96 (d, $CH(CH_3)_2, {}^3J_{HH} = 6.8 \text{ Hz}, 12H$), 0.98 – 1.02 (m, $\{CHH'CH(C_4H_9)\}_2, {}^1J_{HH} = 6.8 \text{ Hz}, 12H$), 1.22 (d, $CH(CH_3)_2, {}^3J_{HH} = 6.8 \text{ Hz}, 12H$), 2.92 (sept, $CH(CH_3)_2, {}^3J_{HH} = 6.8 \text{ Hz}, 4H$), 3.11 (sept, $CH(CH_3)_2, {}^3J_{HH} = 6.8 \text{ Hz}, 4H$), 6.77 – 6.87 (m, Ar, 2H), 6.89 – 7.00 (m, Ar, 12H), 7.05 – 7.09 (m, Ar, 4H). Anal. calcd for C₇₂H₉₈Ga₂: C, 78.40; H, 8.96 %. Found: C, 78.70; H, 8.99 %.

Ar'Ga{CH₂CH(Ph)}₂GaAr' (4) To a solution of Ar'GaGaAr' (0.22 g, 0.24 mol) in dry degassed hexane (10 mL) was added freshly distilled styrene (68 µL, 0.59 mol) at ca. 25 °C for 18 h. A colourless precipitate was obtained. The solution was decanted and the solid dried in vacuo. The solid was redissolved in toluene then stored at -18 °C to afford colourless crystals of **4**. Yield: 0.06 g, 22 %; m.p. 217 - 220 °C. ¹H NMR (600 MHz, C_6D_6 , 298 K) 0.43 (dd, Ga(CHPhCHH')₂, ${}^2J_{HH} = 15.6$, ${}^3J_{HH} = 4.8$ Hz, 2H), 0.81 (d, o-CH(CH₃)₂, ${}^{3}J_{\text{HH}} = 6.6$ Hz, 12H), 0.93 (dd, Ga(CHPhCHH')₂, ${}^{2}J_{\text{HH}} = 15.6$, ${}^{3}J_{\text{HH}} = 9.0$ Hz, 2H), 0.93 (d, CH(CH₃)₂, ${}^{3}J_{HH} = 6.6$ Hz, 12H), 0.98 (d, CH(CH₃)₂, ${}^{3}J_{HH} = 6.6$ Hz ,12H), 1.0 (d, CH(CH₃)₂, ${}^{3}J_{\text{HH}} = 6.6 \text{ Hz}$, 12H), 2.07 (dd, (GaCHPhCHH')₂, ${}^{3}J_{\text{HH}} = 4.8$, 9.0 Hz), 2.94 (sept, $CH(CH_3)_2$, ${}^{3}J_{HH} = 6.6$ Hz, 4H), 3.00 (sept, $CH(CH_3)_2$, ${}^{3}J_{HH} = 6.6$ Hz, 4H), 6.48 (d, o-C₆H₅, ${}^{3}J_{\text{HH}} = 7.8$ Hz, 4H), 6.88 (t, p-C₆H₃, ${}^{3}J_{\text{HH}} = 7.8$ Hz, 2H), 6.95 (t, m-C₆H₃ ${}^{3}J_{\rm HH} = 7.8$ Hz, 4H), 7.05 - 7.12 (m, $m \cdot {}^{i}Pr_{2} \cdot C_{6}H_{3}$, $p \cdot C_{6}H_{5}$, 10H), 7.13 - 7.18 (m, $m \cdot C_{6}H_{5}$, 4H), 7.25 (t, p^{-i} Pr₂-C₆H₃, ${}^{3}J_{HH} = 7.8$ Hz, 4H). 13 C{¹H} NMR (C₆D₆, 150.8 MHz, 298 K): 23.4, 24.2, 25.6, 26.8, 26.9, 31.4, 37.8, 124.1, 124.2, 128.0, 128.8, 128.9, 129.0, 129.7, 142.2, 147.0, 148.2, 148.9, 154.8; λ_{max} (ϵ) 340 nm (821 Lmol⁻¹cm⁻¹). Anal. calcd for C₇₆H₉₀Ga₂: C, 79.86; H, 7.94 %. Found: C, 79.91 ; H, 8.01 %.

Compound	1	$2_{ax}/2_{eq}$	4
Formula	C ₆₄ H ₈₂ Ga ₂	C ₆₆ H ₈₆ Ga ₂	C ₇₆ H ₉₀ Ga ₂
FW	990.74	1018.79	1142.92
Colour, habit	colourless, needle	colourless, block	colourless, block
Cryst. system	monoclinic	monoclinic	monoclinic
Space group	P2 ₁ /n	P2 ₁ /n	P2 ₁ /n
a (Å)	12.9322(10)	10.8470(13)	11.216(7)
<i>b</i> (Å)	10.4139(8)	19.606(2)	11.335(7)
<i>c</i> (Å)	39.129(3)	13.780(2)	24.561(15)
α (°)	90	90	90
β(°)	98.865(1)	97.028(1)	94.241(11)
γ (°)	90	90	90
$V(\text{\AA}^3)$	5609.4(7)	2908.5(7)	3114(3)
Ζ	4	2	2
$d_{\rm calc} ({\rm g \ cm}^{-3})$	1.173	1.163	1.219
μ (mm ⁻¹)	0.997	0.964	1.366
no. obsd. reflns.	7578	5900	4756
$R_1 [I > 2\sigma I]$	0.0618	0.0564	0.0430
w R_2 , all	0.1650	0.1419	0.1140

Table 1 Summary of X-ray data collection and refinement for structures 1, 2 and 4.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

1. N. J. Hardman, R. J. Wright, A. D. Phillips and P. P. Power, *J. Am. Chem. Soc.*, 2003, **125**, 2667-2679.