Supplementary Information

Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor

Shunichi Fukuzumi,^{**a,b*} Kenji Saito,^{*a*} Kei Ohkubo,^{*a*} Tony Khoury,^{*c*} Yukiyasu Kashiwagi,^{*a*} Mark A. Absalom,^{*c*} Suresh Gadde,^{*d*} Francis D'Souza,^{**d*} Yasuyuki Araki,^{*e*} Osamu Ito^{*e*} and Maxwell J. Crossley^{**c*}

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan. Fax: +81-6-6879-7370; Tel: +81-6-6879-7368; E-mail: fukuzumi@chem.eng.osaka-u.ac.jp

^b Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea. ^c School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia. E-mail: m.crossley@chem.usyd.edu.au.

^d Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA. E-mail: Francis.DSouza@wichita.edu

^e Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan.

Fig. S1 (a) Change in the absorption of $D(ZnP)_{16}$ (2.9 × 10⁻⁶ M based on the number of porphyrin unit) in the presence of various concentrations of C_{60} py (0 to 9.6 × 10⁻⁵ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1} vs$. $[C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (A - A_0)/(A_{\infty} - A_0)$; *A* is the absorption of $D(ZnP)_{16}$ at 435 nm in the presence of C_{60} py, A_0 and A_{∞} are the initial and final intensities at the same wavelength in the absence and presence of C_{60} py, respectively. (b) Change in the absorbance at 430 nm of $D(ZnP)_{16}$ (2.9 × 10⁻⁶ M) in the presence of various concentrations of C_{60} py (0 to 9.6 × 10⁻⁵ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1} vs [C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (I - I_0)/(I_{\infty} - I_0)$; *I* is the absorbance at 430 nm in the presence of C_{60} py, I_0 and I_{∞} are the initial and final and final intensities of C_{60} py, I_0 and I_{∞} are the initial and final and final soborbance of C_{60} py, I_0 and I_{∞} are the initial and final intensities of C_{60} py, I_0 and I_{∞} are the initial and final presence of C_{60} py, respectively.

Fig. S2 (a) Change in the absorption of $D(ZnP)_8$ (2.9 × 10⁻⁶ M based on the number of porphyrin unit) in the presence of various concentrations of C_{60} py (0 to 9.6 × 10⁻⁵ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ vs $[C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (A - A_0)/(A_{\infty} - A_0)$; *A* is the absorption of $D(ZnP)_{16}$ at 430 nm in the presence of C_{60} py, A_0 and A_{∞} are the initial and final intensities at the same wavelength in the absence and presence of C_{60} py, respectively. (b) Change in the absorbance at 430 nm of $D(ZnP)_8$ (2.9 × 10⁻⁶ M) in the presence of various concentrations of C_{60} py (0 to 9.6 × 10⁻⁵ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ vs $[C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (I - I_0)/(I_{\infty} - I_0)$; *I* is the absorbance at 430 nm in the presence of C_{60} py, I_0 and I_{∞} are the initial and final and final and final presence of C_{60} py, I_0 and I_{∞} are the initial and final and final presence of C_{60} py, I_0 and I_{∞} are the initial and final here presence of C_{60} py, I_0 and I_{∞} are the initial and final here presence of C_{60} py, I_0 and I_{∞} are the initial and final here presence of C_{60} py, I_0 and I_{∞} are the initial and final

Fig. S3 (a) Change in the absorption of $D(ZnP)_4$ (2.9 × 10⁻⁶ M based on the number of porphyrin unit) in the presence of various concentrations of C_{60} py (0 to 9.6 × 10⁻⁵ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ vs $[C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (A - A_0)/(A_{\infty} - A_0)$; *A* is the absorption of $D(ZnP)_{16}$ at 430 nm in the presence of C_{60} py, A_0 and A_{∞} are the initial and final intensities at the same wavelength in the absence and presence of C_{60} py, respectively. (b) Change in the absorbance at 430 nm of $D(ZnP)_4$ (2.9 × 10⁻⁶ M) in the presence of various concentrations of C_{60} py (0 to 9.6 × 10⁻⁵ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ vs $[C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (I - I_0)/(I_{\infty} - I_0)$; *I* is the absorbance at 430 nm in the presence of C_{60} py, *I* and *I*_∞ are the initial and final shorbance of C_{60} py, *I*₀ and *I*_∞ are the initial and final shorbance of C_{60} py, *I*₀ and *I*_∞ are the initial and final shorbance of C_{60} py, *I*₀ and *I*_∞ are the initial and final shorbance of C_{60} py, *I*₀ and *I*_∞ are the initial and final shorbance at 430 nm in the presence of C_{60} py, *I*₀ and *I*_∞ are the initial and final shorbance at 430 nm in the presence of C_{60} py, *I*₀ and *I*_∞ are the initial and final shorbance at 430 nm in the presence of C_{60} py, *I*₀ and *I*_∞ are the initial and final and final absorbances in the absence and presence of C_{60} py, respectively.

Fig. S4 (a) Fluorescence spectra of $D(ZnP)_8$ (2.9 × 10⁻⁶ M based on the number of porphyrin unit) in the presence of various concentrations of C_{60} py (0 to 1.5 × 10⁻⁴ M) in deaerated PhCN at 298 K. (b) Change in the fluorescence intensity of $D(ZnP)_8$ (2.9 × 10⁻⁶ M based on the number of porphyrin unit) in the presence of various concentrations of C_{60} py (0 to 1.5 × 10⁻⁴ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ versus $[C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (I - I_0)/(I_{\infty} - I_0)$; *I* is the fluorescence intensity of $D(ZnP)_8$ at 609 nm in the presence of C_{60} py, I_0 and I_{∞} are the initial and final intensities at the same wavelength in the absence and presence of C_{60} py, respectively.

Fig. S5 (a) Fluorescence spectra of $D(ZnP)_4$ (2.9 × 10⁻⁶ M based on the number of porphyrin unit) in the presence of various concentrations of C_{60} py (0 to 1.5 × 10⁻⁴ M) in deaerated PhCN at 298 K. (b) Change in the fluorescence intensity of $D(ZnP)_4$ (2.9 × 10⁻⁶ M based on the number of porphyrin unit) in the presence of various concentrations of C_{60} py (0 to 1.5 × 10⁻⁴ M) in deaerated PhCN at 298 K. Inset: Plot of $(\alpha^{-1} - 1)^{-1}$ versus $[C_{60}py]_0 - \alpha[ZnP]_0$. $\alpha = (I - I_0)/(I_{\infty} - I_0)$; *I* is the fluorescence intensity of $D(ZnP)_4$ at 609 nm in the presence of C_{60} py, I_0 and I_{∞} are the initial and final intensities at the same wavelength in the absence and presence of C_{60} py, respectively.

Fig. S6 (a) Transient absorption spectra of $D(ZnP)_8-C_{60}py$ in deaerated PhCN taken at 1.0 (black), 10 (red) and 350 ps (blue) after femtosecond laser excitation at 438 nm. (b) Decay time profile at 460 nm due to ${}^{1}ZnP^{*}$. Gray line is drawn on the basis of the two-exponential curve fitting with $k = 1.7 \times 10^{10}$ and $1.0 \times 10^{8} \text{ s}^{-1}$.

Note: Slow decay component is due to the intersystem crossing of free ZnP.

Materials and methods

Zinc(II) porphyrin dendrimers and fulleropyrrolidine bearing a pyridine were prepared according to the literature.^{\$1,52} Absorption spectra were measured on a Shimadzu UV-3100PC spectrometer at 298 K. Corrected fluorescence spectra were taken using a SHIMADZU spectrofluorophotometer (RF-5300PC). Nanosecond transient absorption measurements were also carried out using SHG (532 nm) of a Nd:YAG laser (Spectra-Physics, Quanta-Ray GCR-130, fwhm 6 ns) as an excitation source. For transient absorption spectra in the near-IR region (600-1600 nm), monitoring light from a pulsed Xe lamp was detected with a Ge-avalanche photodiode (Hamamatsu Photonics, B2834). All the samples (10^{-4} ~ 10^{-5} M) in a quartz cell (1 x 1 cm) were deaerated by bubbling argon through the solution for 15 min. The quantum yields were measured using the comparative method.⁷ ESR spectra were recorded on a JEOL X-band spectrometer (JES-RE1XE) with a quartz ESR tube (4.5 mm i.d.). ESR spectra in frozen PhCN were measured under photoirradiation with a high-pressure mercury lamp (USH–1005D) through a water filter focusing at the sample cell in the ESR cavity at 173 K. The *g* values were calibrated using an Mn²⁺ marker.

S1. T. Hasobe, Y. Kashiwagi, M. A. Absalom, J. Sly, K. Hosomizu, M. J. Crossley, H. Imahori, P. V. Kamat and S. Fukuzumi, *Adv. Mater.*, 2004, **16**, 975.

S2. F. D'Souza, G. R. Deviprasad, M. E. Zandler, V. T. Hoang, A. Klykov, M. VanStipdonk, A. Perera, M. E. El-Khouly, M. Fujitsuka and O. Ito, J. *Phys. Chem. A*, 2002, 106, 3243.