Supporting Information for:

Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane.

Sean M. Smith, Maulen Uteuliyev, and James M. Takacs*

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

The general procedure for the synthesis of β , γ -unsaturated Weinreb amides affords, after flash chromatography on silica gel (85:15 hexanes:ethyl acetate), the title compound (85%) as a colorless oil.

TLC analysis	$R_f 0.6 (50:50 \text{ hexanes:ethyl acetate})$
¹ H NMR (400 MHz, CDCl ₃)	δ 5.60–5.40 (2H, m, e,f), 3.65 (3H, s, a), 3.15–3.05 (2H, suspected d, d), 2.05–1.95
	(2H, m, g), 1.40–1.20 (4H, m, h,i), 0.84 (3H, t, <i>J</i> = 7.0 Hz, j).
¹³ C NMR (100 MHz, CDCl ₃)	δ 173.08 (c), 134.36 (f), 122.22 (e), 61.24 (a), 36.08 (d), 32.19 (g), 32.08 (b), 31.34 (h),
	22.15 (i), 13.87 (j).
IR (neat)	2958 (CH sp ² stretch), 2929 (CH sp ³ stretch), 2873, 1667 (C=O stretch), 1465, 1414,
	1379 (C-N stretch), 1175, 1102 (C-O stretch), 999, 969, 933 cm ⁻¹ .
HRMS (CI)	Calcd. for C ₁₀ H ₂₀ NO ₂ (M+H): 186.1494, found 186.1488 <i>m/z</i> .

Smith, Uteuliyev, and Takacs: Supporting Information for

Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

¹H NMR of (E)-1b

Smith, Uteuliyev, and Takacs: Supporting Information for Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

The general procedure for the synthesis of β , γ -unsaturated Weinreb amides affords, after flash chromatography on silica gel (85:15 hexanes:ethyl acetate), the title compound (78%) as a colorless oil.

TLC analysis	$R_f 0.60 (50:50 \text{ hexanes:ethyl acetate})$
¹ H NMR (400 MHz, CDCl ₃)	δ 7.35–7.25 (2H, m, k,k'), 7.25–7.15 (3H, m, j,j',l), 5.20–5.10 (2H, m, e,f), 3.68 (3H, s,
	a), $3.15-3.05$ (2H, suspected d, d), 3.20 (3H, s, b), 2.72 (2H, t, $J = 7.5$ Hz, h), $2.45-$
	2.35 (2H, m, g).
¹³ C NMR (100 MHz, CDCl ₃)	δ 172.95 (c), 141.88 (i), 133.37 (f), 128.45 (j,j'), 128.30 (k,k'), 125.80 (l), 123.11 (e),
	61.32 (a), 36.06 (d), 35.68 (h), 34.36 (g), 32.15 (b).
IR (neat)	3026 (CH sp ² stretch), 2936 (CH sp ³ stretch), 1657 (C=O stretch), 1454, 1382 (C-N
	stretch), 1176, 1108 (C-O stretch), 1000, 967, 746, 699 cm ⁻¹ .
HRMS (CI)	Calcd. for C ₁₄ H ₂₀ NO ₂ (M+H): 234.1495, found 234.1504 <i>m/z</i> .

¹H NMR of (E)-4

Smith, Uteuliyev, and Takacs: Supporting Information for Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

The general procedure for the synthesis of β , γ -unsaturated Weinreb amides affords, after flash chromatography on silica gel (85:15 hexanes:ethyl acetate), the title compound (83%) as a colorless oil.

TLC analysis	$R_f 0.5 (50:50 \text{ hexanes:ethyl acetate})$
¹ H NMR (400 MHz, CDCl ₃)	δ 5.60–5.40 (2H, m, e,f), 3.66 (3H, s, a), 3.15–3.10 (2H, suspected d, d), 3.14 (3H, s,
	b), 2.05–1.95 (2H, m, g), 0.95 (3H, t, <i>J</i> = 7.4 Hz, h).
¹³ C NMR (100 MHz, CDCl ₃)	δ 173.11 (c), 135.88 (f), 121.30 (e), 61.26 (a), 36.00 (d), 32.09 (b), 25.52 (g), 13.45 (h).
IR (neat)	2964 (CH sp ² stretch), 2937 (CH sp ³ stretch), 1660 (C=O stretch), 1462, 1411, 1381
	(C-N stretch), 1175, 1102, 1013 (C-O stretch), 967, 937, 820, 780 cm ⁻¹ .
HRMS (CI)	Calcd. for C ₈ H ₁₆ NO ₂ (M+H): 158.1181, found 158.1176 <i>m/z</i> .

Smith, Uteuliyev, and Takacs: Supporting Information for

Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

S9

Smith, Uteuliyev, and Takacs: Supporting Information for Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

The general procedure for the synthesis of β , γ -unsaturated Weinreb amides affords, after flash chromatography on silica gel (85:15 hexanes:ethyl acetate), the title compound (80%) as a colorless oil.

TLC analysis	$R_f 0.5 (50:50 \text{ hexanes:ethyl acetate})$
¹ H NMR (400 MHz, CDCl ₃)	δ 5.60–5.50 (2H, m, e,f), 3.70 (3H, s, a), 3.21 (2H, d, <i>J</i> = 4.9 Hz, d), 3.18 (3H, s, b),
	2.15–2.05 (2H, m, g), 0.99 (3H, t, <i>J</i> = 7.5 Hz, h).
¹³ C NMR (100 MHz, CDCl ₃)	δ 172.93 (c), 134.61 (f), 120.91 (e), 61.24 (a), 32.22 (b), 30.89 (d), 20.81 (g), 13.95 (h).
IR (neat)	2965 (CH sp ² stretch), 2937 (CH sp ³ stretch), 1665 (C=O stretch), 1463, 1376 (C-N
	stretch), 1241, 1176, 1119 (C-O stretch), 989, 924, 785, 703 cm ⁻¹ .
HRMS (CI)	Calcd. for C ₈ H ₁₆ NO ₂ (M+H): 158.1181, found 158.1176 <i>m/z</i> .

Smith, Uteuliyev, and Takacs: Supporting Information for aboration of β a Uncaturated Weinrah Amides: Surprising Influence of the Roman

Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

¹³C NMR of (*Z*)-6

The general procedure for the synthesis of β , γ -unsaturated phenyl amides affords, after flash chromatography on silica gel (75:25 hexanes:ethyl acetate), the title compound (85%) as a colorless oil.

m.p.	47–49 °C
TLC analysis	$R_f 0.54$ (75:25 hexanes:ethyl acetate)
¹ H NMR (400 MHz, CDCl ₃)	δ 7.85 (1H, br s, NH), 7.54 (2H, d, J = 8.0 Hz, c,c'), 7.31 (2H, t, J = 7.8 Hz, b,b'), 7.11
	(1H, t, <i>J</i> = 7.4 Hz, a), 5.76-5.59 (2H, m, g,h), 3.12 (2H, d, <i>J</i> = 6.7 Hz, f), 2.14–2.08
	(2H, m, i), 1.44–1.33 (4H, m, j,k), 0.94 (3H, t, <i>J</i> = 7.01 Hz, l).
¹³ C NMR (100 MHz, CDCl ₃)	δ 169.58 (e), 137.85 (d), 137.49 (g), 128.98 (b,b'), 124.20 (a), 122.29 (h), 119.72 (c,c'),
	41.63 (f), 32.27 (i), 31.31 (j), 22.25 (k), 13.91 (l).
IR (neat)	3292 (N-H stretch), 2948, 2923, 2864, 6959, 1596, 1525 (N-H bend), 1498, 1440,
	1357, 1250, 1187 cm^{-1} .
HRMS (FAB)	Calcd. for C ₁₄ H ₁₉ NO (M+H): 218.1545, found 218.1536 <i>m/z</i> .

¹H NMR of (E)-1a

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

Catalytic asymmetric hydroboration of (*E*)-1b affords, after flash chromatography on silica gel (60:40 hexanes:ethyl acetate), the title compound (81%) as a colorless oil.

TLC analysis	$R_f 0.4 (30:70 \text{ hexanes:ethyl acetate})$
Optical rotation	$[\alpha]_{D}^{20} = +14.2^{\circ} (c \ 0.5, \text{CHCl}_3)$
	δ 7.37 (2H, br s, COOH, OH), 4.10–4.00 (1H, m, c), 2.57 and 2.47 (2H, overlapping
¹ H NMR (300 MHz, CDCl ₃)	dd's, <i>J</i> ₁ = 16.5 Hz, 3.3 Hz, <i>J</i> ₂ = 16.5 Hz, 8.8 Hz, b), 1.60–1.40 (2H, m, d), 1.40–1.20
	(6H, m, e, f, g), 0.90 (3H, t, J = 6.5 Hz, h).
¹³ C NMR (75 MHz, CDCl ₃)	δ 177.94 (a), 68.08 (c), 41.09 (b), 36.39 (d), 31.64 (e), 25.11 (f), 22.56 (g), 14.00 (h).
IR (neat)	3391 (OH stretch), 2930, 2860 (CH sp ³ stretch), 1709 (C=O stretch), 1378 (C-N
	stretch), 1156, 1126, 1080 (C-O stretch), 1044, 950, 883, 828 cm ⁻¹ .

¹³C NMR of (*S*)-3b -177.94 -68.08 -41.09 -36.39 -31.64 -25.11 - 14.00 ma THITT 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

Smith, Uteuliyev, and Takacs: Supporting Information for Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

Catalytic asymmetric hydroboration of (E)-4 affords, after flash chromatography on silica gel (60:40 hexanes:ethyl acetate), the title compound (76%) as a colorless oil.

TLC analysis	$R_f 0.5$ (30:70 hexanes:ethyl acetate)
Optical rotation	$[\alpha]_{D}^{20} = +13.8^{\circ} (c \ 0.5, \text{CHCl}_{3})$
¹ H NMR (300 MHz, CDCl ₃)	δ 7.35–7.25 (2H, m, i,i'), 7.25–7.15 (3H, m, h,h',j), 5.60 (2H, br s, COOH, OH), 4.10– 4.00 (1H, m, c), 2.66 (2H, t, <i>J</i> = 7.5 Hz, f), 2.55 and 2.46 (2H, overlapping dd's, <i>J</i> ₁ = 16.6 Hz, 2.9 Hz, <i>J</i> ₂ = 16.6 Hz, 8.9 Hz, b), 1.90–1.75 (1H, m, d), 1.75–1.65 (1H, m, d), 1.65–1.60 (1H, m, e), 1.60–1.50 (1H, m, e).
¹³ C NMR (75 MHz, CDCl ₃)	δ 177.30 (a), 142.07 (g), 128.41 (h,h'), 128.35 (i,i'), 125.83 (j), 67.87 (c), 41.08 (b), 35.94 (d), 35.63 (f), 27.24 (e).
IR (neat)	3230 (OH stretch), 2932 (CH sp ³ stretch), 2547, 1689 (C=O stretch), 1447, 1407, 1311, 1291, 1194 (C-O stretch), 1075, 938, 877, 736, 699 cm ⁻¹ .

¹H NMR of (S)-5

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

S22

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

Catalytic asymmetric hydroboration of (*E*)-6 affords, after flash chromatography on silica gel (60:40 hexanes:ethyl acetate), the title compound (73%) as a colorless oil.

TLC analysis	$R_f 0.3 (30:70 \text{ hexanes:ethyl acetate})$
Optical rotation	$[\alpha]_{\rm D}^{20} = +13.0^{\circ} (c \ 0.5, \rm CHCl_3)$
	δ 5.75 (2H. br s, COOH, OH), 4.10–4.00 (1H, m, c), 2.57 and 2.47 (2H, overlapping
¹ H NMR (400 MHz, CDCl ₃)	dd's, $J_1 = 16.5$ Hz, 3.0 Hz, $J_2 = 16.5$ Hz, 8.9 Hz), 1.60–1.50 (1H, m, d), 1.50–1.40 (2H,
	m, d,e), $1.40-1.35$ (1H, m, e), 0.95 (3H, t, $J = 7.0$ Hz, f).
¹³ C NMR (100 MHz, CDCl ₃)	δ 177.38 (a), 67.79 (c), 41.06 (b), 38.55 (d), 18.65 (e), 13.89 (f).
IR (neat)	3522 (OH stretch), 2959 (CH sp ³ stretch), 2932, 2874, 1708 (C=O stretch), 1467, 1380,
	1177 (C-O sretch), 1122, 1075, 1019, 952, 883, 827 cm ⁻¹ .

Catalytic asymmetric hydroboration of (E)-1a affords, after flash chromatography on silica gel (75:25 hexanes:ethyl acetate), the title compound (78%) as a colorless oil.

TLC analysis	$R_f 0.60 (50:50 \text{ hexanes:ethyl acetate})$
m.p.	113–114 °C
Optical rotation	$[\alpha]_{D}^{20} = +7.0^{\circ} (c \ 0.5, \text{ ethanol})$
HPLC analysis	HPLC analysis (Chiralpak-AD, 85:15 hexanes: isopropanol) showed peaks at 23.5
	minutes (3.5% (R)) and 26.5 minutes (96.5% (S)).
	δ 8.00 (1H, br s, NH), 7.52 (2H, d, J = 8.0 Hz, c, c'), 7.33 (2H, t, J = 7.7 Hz, b, b'), 7.13
¹ H NMR (400 MHz, CDCl ₃)	(1H, t, <i>J</i> = 7.3 Hz, a), 4.20-4.00 (1H, m, g), 3.14 (1H, br s, OH), 2.57 and 2.47 (2H,
	overlapping dd's, $J_1 = 15.4$ Hz, 2.5 Hz, $J_2 = 15.4$ Hz, 8.8 Hz, f), 1.70-1.20 (8H, m,
	h,i,j,k), 0.92 (3H, t, J = 6.6 Hz, 1).
¹³ C NMR (100 MHz, CDCl ₃)	δ 170.50 (e), 137.65 (d), 129.00 (c,c'), 124.41 (a), 120.04 (b,b'), 68.85 (g), 43.85 (f),
	36.98 (h), 31.68 (i), 25.15 (j), 22.56 (k), 13.96 (l).
IR (neat)	3304 (N-H stretch), 2951, 2928, 2868, 1661 (C=O stretch), 1598, 1537 (N-H bend),
	1498, 1442, 1308 (C-N stretch), 1253, 1123 (C-OH stretch), 1071, 756, 690 cm ⁻¹ .
HRMS (FAB)	Calcd. for C ₁₄ H ₂₂ NO ₂ (M+H): 236.1651, found 236.1661 <i>m/z</i>

¹H NMR of (S)-3a

S27

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

Benzylation of β -hydroxyacid (S)-3b affords, after flash chromatography on silica gel (90:10 hexanes:ethyl acetate), the title compound (82%) as a light yellow oil.

TLC analysis	$R_f 0.6 (80:20 \text{ hexanes:ethyl acetate})$
Optical rotation	$[\alpha]_{\rm D}^{20} = +14.2^{\circ} (c \ 0.5, \text{CHCl}_3)$
HPLC analysis	HPLC analysis (Chiralcel-OD, 80:20 hexanes: isopropanol) showed peaks at 11
	minutes (1.5% (R)) and 14 minutes (98.5% (S)).
¹ H NMR (300 MHz, CDCl ₃)	δ 7.45–7.30 (5H, m, a,b,b',c,c'), 5.18 (2H, s, e), 4.10–4.00 (1H, m, h), 2.94 (1H, br s,
	OH), 2.58 and 2.48 (2H, overlapping dd's, $J_1 = 16.4$ Hz, 3.4 Hz, $J_2 = 16.4$ Hz, 8.8 Hz,
	g), 1.60–1.40 (3H, m, i,j), 1.40–1.20 (5H, m, j,k,l), 0.91 (3H, t, <i>J</i> = 6.6 Hz, m).
¹³ C NMR (75 MHz, CDCl ₃)	δ 172.87 (f), 135.63 (d), 128.63 (c,c'), 128.38 (a), 128.27 (b,b'), 68.05 (h), 66.47 (e),
	41.39 (g), 36.51 (i), 31.71 (j), 25.15 (k), 22.58 (l), 14.02 (m).
IR (neat)	3441 (OH stretch), 2954 (CH sp ³ stretch), 2930, 2859, 1728 (C=O stretch), 1456, 1278,
	1160 (C-O stretch), 969, 736, 695 cm ⁻¹ .

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

¹H NMR of XIII

Smith, Uteuliyev, and Takacs: Supporting Information for Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

S31

Benzylation of β -hydroxyacid (S)-5 affords, after flash chromatography on silica gel (90:10 hexanes:ethyl acetate), the title compound (84%) as a light yellow oil.

TLC analysis	$R_f 0.5 \ (80:20 \text{ hexanes:ethyl acetate})$
Optical rotation	$[\alpha]_{D}^{20} = +15.9^{\circ} (c \ 0.5, \text{CHCl}_{3})$
HPLC analysis	HPLC analysis (Chiralcel-OD, 80:20 hexanes: isopropanol) showed peaks at 22
	minutes (2.0% (R)) and 31 minutes (98.0% (S)).
¹ H NMR (300 MHz, CDCl ₃)	δ 7.45–7.35 (5H, m, a,b,b',c,c'), 7.35–7.25 (2H, m, n,n'), 7.25–7.15 (3H, m, m,m',o),
	5.18 (2H, s, e), 4.15–4.00 (1H, m, h), 2.97 (1H, br s, OH), 2.67 (2H, t, <i>J</i> = 7.4 Hz, k),
	2.58 and 2.49 (2H, overlapping dd's, $J_1 = 16.5$ Hz, 3.6 Hz, $J_2 = 16.5$ Hz, 8.6 Hz, g),
	1.90–1.80 (1H, m, i), 1.75–1.60 (1H, m, i), 1.60–1.40 (2H, m, j).
¹³ C NMR (75 MHz, CDCl ₃)	δ 172.82 (f), 142.17 (l), 135.60 (d), 128.66 (c,c'), 128.42 (m,m',a), 128.34 (n,n'), 128.30
	(b,b'), 125.81 (o), 67.89 (h), 66.53 (e), 41.39 (g), 36.02 (i), 35.69 (k), 27.27 (j).
IR (neat)	3434 (OH stretch), 2938 (CH sp ³ stretch), 2859, 1728 (C=O stretch), 1496, 1454, 1168
	(C-O stretch), 1087, 967, 748, 696 cm^{-1} .
HRMS (CI)	Calcd. for C ₁₉ H ₂₂ NaO ₃ (M+Na): 321.1467, found 321.1472 <i>m/z</i> .

¹H NMR of XIV

Benzylation of β -hydroxyacid (S)-7 affords, after flash chromatography on silica gel (90:10 hexanes:ethyl acetate), the title compound (78%) as a light yellow oil.

TLC analysis	$R_f 0.5$ (80:20 hexanes:ethyl acetate)
Optical rotation	$[\alpha]_{D}^{20} = +13.8^{\circ} (c \ 0.5, \text{CHCl}_{3})$
HPLC analysis	HPLC analysis (Chiralcel-OD, 80:20 hexanes: isopropanol) showed peaks at 9 minutes
	(1.5% (R)) and 12 minutes (98.5% (S)).
¹ H NMR (300 MHz, CDCl ₃)	δ 7.45–7.35 (5H, m, a,b,b',c,c'), 5.18 (2H, s, e), 4.10–4.00 (1H, m, h), 2.86 (1H, br s,
	OH), 2.58 and 2.48 (2H, overlapping dd's, $J_1 = 16.5$ Hz, 3.4 Hz, $J_2 = 16.5$ Hz, 8.8 Hz,
	g), 1.60–1.35 (4H, m, i,j), 0.95 (3H, t, <i>J</i> = 7.0 Hz, k).
¹³ C NMR (75 MHz, CDCl ₃)	δ 172.90 (f), 135.60 (d), 128.64 (c,c'), 128.40 (a), 128.28 (b,b'), 67.76 (h), 66.50 (e),
	41.36 (g), 38.63 (i), 18.67 (j), 13.96 (k).
IR (neat)	3444 (OH stretch), 2958 (CH sp ³ stretch), 2932, 2872, 1728 (C=O stretch), 1455, 1381,
	1262, 1163 (C-O stretch), 980, 906, 736, 696 cm ⁻¹ .

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

¹H NMR of XV

Smith, Uteuliyev, and Takacs: Supporting Information for Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

S37

Catalytic asymmetric hydroboration of (E)-4 without oxidative workup affords, after flash chromatography on silica gel (85:15 hexanes:ethyl acetate), the title compound (79%) as a light yellow oil.

TLC analysis	$R_f 0.5 \ (60:40 \text{ hexanes:ethyl acetate})$
Optical rotation	$[\alpha]_{\rm D}^{20} = -8.0^{\circ} (c \ 0.5, \text{CHCl}_3)$
¹ H NMR (300 MHz, CDCl ₃)	δ 7.35–7.25 (2H, m, k,k'), 7.25–7.15 (3H, m, j,j',l), 4.25–4.10 (1H, m, q), 3.68 (3H, s,
	a), 3.20 and 3.17 (3H, s's, b), 2.62 (2H, t, <i>J</i> = 6.8 Hz, h), 2.50–2.40 (2H, m, d), 1.72
	(1H, dd, J = 13.7 Hz, 3.0 Hz, o), 1.70–1.60 (2H, m, f), 1.60–1.30 (4H, m, o,g,e), 1.29
	(3H, s, m), 1.25 (3H, s, m'), 1.25–1.20 (3H, m, q).
¹³ C NMR (75 MHz, CDCl ₃)	δ 143.13 (i), 128.42 (j,j'), 128.16 (k,k'), 125.44 (l), 70.19 and 70.14 (n), 64.41 and
	64.28 (p), 61.22 and 61.09 (a), 45.90 and 45.83 (o), 36.21 (h), 33.95 (d), 32.17 (b),
	31.29 (m), 30.97 (g), 30.88 and 30.85 (f), 27.93 and 27.81 (m'), 27.73 (e), 23.22 (q).
IR (neat)	2858 (CH sp ³ stretch), 2926, 2856, 1662 (C=O stretch), 1454, 1378, 1314, 1144 (C-O
	stretch), 1001, 967, 867, 670 cm ⁻¹ .
HRMS (CI)	Calcd. for C ₂₀ H ₃₃ BNO ₄ (M+H): 362.2503, found 362.2511 <i>m/z</i> .

¹H NMR of 8

Smith, Uteuliyev, and Takacs: Supporting Information for Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

Catalytic asymmetric hydroboration of (E)-4 with mild oxidative workup (NaBO₃) affords, after flash chromatography on silica gel (60:40 hexanes:ethyl acetate), the title compound (97%) as a light yellow oil.

TLC analysis	$R_f 0.4$ (25:75 hexanes:ethyl acetate)
Optical rotation	$[\alpha]_{D}^{20} = +21.5^{\circ} (c \ 0.5, \text{CHCl}_{3})$
¹ H NMR (400 MHz, CDCl ₃)	δ 7.35–7.25 (2H, m, k,k'), 7.25–7.15 (3H, m, j,j',l), 4.10–4.00 (1H, m, e), 3.89 (1H, br
	s, OH), 3.68 (3H, s, a), 3.68 (3H, s, b), 2.67 (2H, t, <i>J</i> = 7.5 Hz, h), 2.70–2.60 (1H,
	suspected dd, d), 2.46 (1H, dd, $J = 16.8$ Hz, 9.6 Hz, d), 1.90–1.80 (1H, m, f), 1.80–1.70
	(1H, m, f), 1.70–1.60 (1H, m, g), 1.60–1.45 (1H, m, g).
¹³ C NMR (100 MHz, CDCl ₃)	δ 173.86 (c), 142.36 (i), 128.45 (j,j'), 128.29 (k,k'), 125.72 (l), 67.72 (e), 61.25 (a),
	38.22 (d), 36.08 (f), 35.79 (h), 31.84 (b), 27.36 (g).
IR (neat)	3427 (OH stretch), 2962 (CH sp ³ stretch), 1639 (C=O stretch), 1453, 1387 (C-N
	stretch), 1258, 1088 (C-O stretch), 1004, 870, 789, 699 cm ⁻¹ .
HRMS (ESI)	Calcd. for C ₁₄ H ₂₁ NaNO ₃ (M+Na): 274.1419, found 274.1414 <i>m/z</i> .

¹H NMR of 10

TBS-protection of **10** affords, after flash chromatography on silica gel (90:10 hexanes:ethyl acetate), the title compound (82%) as a light yellow oil.

TLC analysis	$R_f 0.30 (90:10 \text{ hexanes:ethyl acetate})$
Optical rotation	$[\alpha]_{\rm D}^{20} = +^{\circ} (c \ 0.5, \text{CHCl}_3)$
¹ H NMR (300 MHz, CDCl ₃)	δ 7.35–7.25 (2H, m, k,k'), 7.25–7.15 (3H, m, j,j',l), 4.35–4.25 (1H, m, e), 3.69 (3H, s,
	a), 3.19 (3H, s, b), 2.75 and 2.39 (2H, overlapping dd's, $J_1 = 14.6$ Hz, 7.3 Hz, $J_2 = 14.6$
	Hz, 5.3 Hz, d), 2.64 (2H, t, <i>J</i> = 7.5 Hz, h), 1.80–1.65 (2H, m, f), 1.65–1.50 (2H, m, g),
	0.88 (9H, s, n,n',n"), 0.07 (3H, s, o), 0.04 (3H, s, o').
¹³ C NMR (75 MHz, CDCl ₃)	δ 172.43 (c), 142.44 (i), 128.39 (j,j'), 128.27 (k,k'), 125.67 (l), 69.25 (e), 61.30 (a),
	39.51 (d), 37.41 (f), 35.97 (h), 31.94 (b), 26.70 (g), 25.86 (n,n',n"), 18.04 (m), -4.65 (o),
	-4.71 (o').
IR (neat)	2929 (CH sp ³ stretch), 2855, 1661 (C=O stretch), 1472, 1385, 1252, 1090 (C-O
	stretch), 1004, 939, 834, 775, 732, 698 cm ⁻¹ .
HRMS (ESI)	Calcd. for C ₂₀ H ₃₅ NNaO ₃ Si (M+Na): 388.2284, found 388.2283 <i>m/z</i> .

¹H NMR of XVI

Treatment of β -siloxy Weinreb amide **XVI** with phenylmagnesium bromide affords, after flash chromatography on silica gel (95:5 hexanes:ethyl acetate), the title compound (94%) as a light yellow oil.

TLC analysis	$R_f 0.6 (90:10 \text{ hexanes:ethyl acetate})$
Optical rotation	$[\alpha]_{D}^{20} = +21.2^{\circ} (c \ 0.5, \text{CHCl}_{3})$
¹ H NMR (300 MHz, CDCl ₃)	δ 8.05–7.95 (2H, m, c,c'), 7.60–7.55 (1H, m, a), 7.55–7.45 (2H, m, b,b'), 7.35–7.25
	(2H, m, m,m'), 7.25–7.15 (3H, m, l,l',n), 4.45–4.35 (1H, m, g), 3.26 and 2.93 (2H,
	overlapping dd's, $J_1 = 15.4$ Hz, 7.1 Hz, $J_2 = 15.4$ Hz, 5.3 Hz, f), 2.66 (2H, t, $J = 7.3$ Hz,
	j), 1.80–1.70 (2H, m, h), 1.70–1.55 (2H, m, i), 0.83 (9H, s, p,p',p"), 0.06 (3H, s, q), -
	0.06 (3H, s, q').
¹³ C NMR (75 MHz, CDCl ₃)	δ 199.43 (e), 142.36 (k), 137.63 (d), 133.00 (a), 128.51 (b,b'), 128.40 (l,l'), 128.39
	(m,m'), 128.31 (c,c'), 125.74 (n), 69.38 (g), 45.96 (f), 37.58 (h), 35.96 (j), 26.72 (i),
	25.82 (p,p',p"), 17.99 (o), -4.62 (q), -4.73 (q').
IR (neat)	2928 (CH sp ³ stretch), 2855, 1684 (C=O stretch), 1598, 1474, 1448, 1360, 1252, 1210,
	1090 (C-O stretch), 1019, 1003, 833, 775, 669 cm ⁻¹ .
HRMS (ESI)	Calcd. for C ₂₄ H ₃₄ NaO ₂ Si (M+Na): 405.2226, found 405.2223 <i>m/z</i> .

¹H NMR of 12

Half reduction of β -siloxy Weinreb amide **XVI** with DIBAL-H affords, after flash chromatography on silica gel (95:5 hexanes:ethyl acetate), the title compound (91%) as a light yellow oil.

TLC analysis	$R_f 0.4 (90:10 \text{ hexanes:ethyl acetate})$
Optical rotation	$[\alpha]_{D}^{20} = +5.5^{\circ} (c \ 0.5, \text{CHCl}_{3})$
¹ H NMR (300 MHz, CDCl ₃)	δ 9.81 (1H, t, J = 2.3 Hz, a), 7.35–7.25 (2H, m, i,i'), 7.25–7.15 (3H, m, h,h',j), 4.25–
	4.15 (1H, m, c), 2.70–2.60 (2H, m, f), 2.60–2.50 (2H, m, b), 2.75–2.65 (2H, m, d),
	2.65–2.55 (2H, m, e), 0.89 (9H, s, 1,1',1"), 0.07 (3H, s, m), 0.06 (3H, s, m').
¹³ C NMR (75 MHz, CDCl ₃)	δ 202.24 (a), 142.06 (g), 128.35 (h,h',i,i'), 125.83 (j), 68.00 (c), 50.80 (b), 37.29 (d),
	35.78 (f), 26.73 (e), 25.76 (1,1',1"), 17.98 (k), -4.44 (m), -4.70 (m').
IR (neat)	2929 (CH sp ³ stretch), 2857, 1725 (C=O stretch), 1471, 1361, 1253, 1095 (C-O
	stretch), 1027, 1005, 834, 774, 698 cm ⁻¹ .

Smith, Uteuliyev, and Takacs: Supporting Information for

Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

Smith, Uteuliyev, and Takacs: Supporting Information for Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

Treatment of β -borato Weinreb amide **8** with satd. aq KHF₂ affords the title compound (82%) as a white solid.

m.p.	235–236 °C
Optical rotation	$[\alpha]_{D}^{20} = -10.2^{\circ} (c \ 0.5, \text{MeOH})$
¹ H NMR (300 MHz, MeOD)	δ 7.25–7.20 (2H, m, k,k'), 7.20–7.15 (2H, m, j,j'), 7.15–7.05 (1H, m, l), 3.68 (3H, s, a),
	3.17 (3H, s, b), 2.60–2.50 (2H, m, h), 2.40–2.20 (2H, m, d), 1.70–1.60 (2H, m, g),
	1.55–1.45 (1H, m, f), 1.30–1.15 (1H, m, f), 0.95 (1H, br s, e).
¹³ C NMR (75 MHz, MeOD)	δ 178.71 (c), 143.39 (i), 128.05 (j,j'), 127.68 (k,k'), 124.90 (l), 60.26 (a), 36.41 (h),
	33.44 (d), 31.18 (e,f), 30.90 (b,g).
¹⁹ F NMR (376 MHz, MeOD)	δ-146.53.
IR (neat)	2958 (CH sp ³ stretch), 2856, 1668 (C=O stretch), 1454, 1390, 1300, 1144 (C-O
	stretch), 1000, 955, 854, 660 cm ⁻¹ .
HRMS (CI)	Calcd. for (M-BF ₃ K+2H): 236.1651, found 236.1654 <i>m/z</i> .

¹H NMR of 9

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

S55

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

--146.53

¹⁹F NMR of 9

The general procedure for the preparation of 1,3,2-dioxaborolanes affords, after bulb-to-bulb distillation, the title compound (75%) as a colorless liquid.

b.p.	160–165 °C
¹ H NMR (300 MHz, CDCl ₃)	δ 4.30–4.15 (1H, m, d), 3.84 (1H, q, J = 155.6 Hz, BH), 1.90–1.75 (1H, m, c), 1.60–
	1.45 (1H, m, c), 1.31 (3H, s, a), 1.29 (3H, s, a'), 1.26 (3H, d, $J = 6.2 Hz, e).$
¹³ C NMR (75 MHz, CDCl ₃)	δ 70.99 (b), 64.73 (d), 46.17 (c), 31.02 (a), 28.14 (a'), 22.93 (e).
¹¹ B NMR (193 MHz, THF with	824.96(4.1-160.1 Hz)
residual CDCl ₃)	0.24.90 (d, $J = 109.1$ Hz).
IR (neat)	2976 (CH sp ³ stretch), 2879, 2400, 1495, 1427, 1384, 1291, 1156 (C-O stretch), 1094,
	$1024, 889, 789, 666 \text{ cm}^{-1}.$
HRMS (CI)	Calcd. for C ₆ H ₁₄ BO ₂ (M+H): 129.1087, found 129.1082 <i>m/z</i> .

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

¹³C NMR of B7

Smith, Uteuliyev, and Takacs: Supporting Information for *Catalytic Asymmetric Hydroboration of* β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

¹¹B NMR of B7

25.40

The general procedure for the preparation of phosphoramidites affords, after flash chromatography on silica gel (92:8 hexanes:ethyl acetate), the title compound (68%) as a white foamy solid.

m.p.	94–95 °C
Optical rotation	$[\alpha]_{D}^{20} = -87.2^{\circ} (c \ 0.5, \text{ ethanol})$
TLC analysis	$R_f 0.60 (75:25 \text{ hexanes: DCM})$
¹ H NMR (400 MHz, CDCl ₃)	δ 8.03 (1H, d, <i>J</i> = 8.8 Hz), 8.00-7.90 (3H, m), 7.60-7.55 (1H, m), 7.50-7.41 (4H, m),
	7.41-7.25 (7H, m), 7.17-7.10 (1H, m), 2.67 (3H, d, <i>J</i> = 2.51 Hz).
¹³ C NMR (100 MHz, CDCl ₃)	δ 149.89, 149.18, 146.39, 146.13 132.86, 132.64, 131.53, 130.90, 130.49, 130.24,
	129.17, 128.39, 128.33, 127.02, 126.93, 126.22, 124.98, 124.79, 124.07, 123.23,
	122.72, 121.83, 121.28, 121.12, 33.53 ($J_{CP} = 4.02 \text{ Hz}$).
³¹ P NMR (162 MHz, CDCl ₃)	δ 143.76.
IR (neat)	3061, 2935 (P-O stretch), 1589, 1489, 1330, 1269, 1226, 1061, 938, 804, 769 cm ⁻¹ .
HRMS (FAB)	Calcd. for C ₂₇ H ₂₀ NO ₂ P (M+H): 422.1310, found 422.1307 <i>m/z</i>

¹H NMR of L

Smith, Uteuliyev, and Takacs: Supporting Information for Catalytic Asymmetric Hydroboration of β , γ -Unsaturated Weinreb Amides: Surprising Influence of the Borane

³¹P NMR of L

S64