Formation of N-heterocyclic, donor-stabilised borenium ions*

Chika I. Someya, Shigeyoshi Inoue, Carsten Präsang, Elisabeth Irran, and Matthias Driess* Institute of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, D-10623 Berlin, Germany

E-mail: matthias.driess@tu-berlin.de

General Considerations

All experiments and manipulations were carried out under dry oxygen-free nitrogen using standard Schlenk techniques or in an MBraun inert atmosphere glovebox containing an atmosphere of purified nitrogen. Solvents were dried by standard methods and freshly distilled prior to use. The ¹H, ¹³C, and ¹¹B NMR spectra were recorded on a Bruker Spectrometer AM200, AM400 and referenced to solvent resonances. The starting material, β -diketiminato ligand L^[1] was prepared according to the literature. Abbreviations: L = {HC[CMeN(Ar)]₂}⁻, L' = {HC[C(Me)(C=CH₂)N(Ar)₂]}, Ar = 2,6-diisopropylphenyl, OTf = OSO₂CF₃, s = singlet; d = doublet; t = triplet; sept = septet; mult = multiplet; br = broad.

Single-Crystal X-ray Structure Determinations: Crystals were each mounted on a glass capillary in perfluorinated oil and measured in a cold N2 flow. The data of compounds 2 and 4 were collected on an Oxford Diffraction Xcalibur S Sapphire at 150 K (Mo- K α radiation, $\lambda = 0.71073$ Å). The structures were solved by direct methods and refined on *F*2 with the SHELX-97 software package.^[2] The positions of the H atoms were calculated and considered isotropically according to a riding model.

Experimental selections

Synthesis of [LBBr]⁺[BBr₄]⁻1

To a solution of LH (5.0 g, 12.0 mmol) in toluene (20 mL) at -78 °C was slowly added *n*-BuLi (7.5 mL, 1.6 M in n-hexane, 12.0 mmol). The solution was slowly warmed to room temperature and stirred for 5 hours. BBr₃ (1.2ml, 12.0 mmol) was added to this solution at -78 °C. After stirring overnight, the precipitate was filtered off and extracted by dichloromethane. The filtrate was concentrated and stored at -12 °C overnight to give pale yellow crystals of **1** (3.6 g, 36%).

¹H NMR (400.13 MHz, CDCl₃, 298K): $\delta = 1.11$ (d, ³*J*HH = 6.8 Hz, 12 H, CH*Me*₂), 1.05 (d, ³*J*HH = 6.8 Hz, 12 H, CH*Me*₂), 2.47 (s, 6 H, NC*Me*), 2.16 (sept, ³*J*HH = 6.7 Hz, 4 H, C*H*Me₂), 7.21 - 7.47 (m, 6 H, 2,6-*i*Pr₂C₆H₃), 9.07 (s, 1 H, γ -C*H*); ¹³C{¹H}NMR (100.61 MHz, CDCl₃, 298K): $\delta = 23.08$ (NC*Me*₂), 23.8, 24.05 (CH*Me*₂), 29.04 (*C*HMe₂), 116.42 (γ -CH), 125.58, 131.12, 134.98, 142, 25 (2,6-*i*Pr₂C₆H₃), 173.13 (N-C); ¹¹B NMR (128.27 MHz, CDCl₃, 298K): $\delta = -24.6$ (*B*Br₄), 29.9 (*B*-Br); Mp: 251-252 °C (decomposed); ESI-MS m/z (%): 508.25 [LBBr]⁺.

Synthesis of L'BBr 2

A THF solution of lithium napthalenide (20 ml, 6.0 mmol) was added to compound **1** (1.2 g, 1.4 mmol) in THF (20 mL) at -78 °C, and then the reaction mixture was stirred for 2 h. After removal of solvent in vacuo, the residue was extracted with pentane. The resulting solution was concentrated and stored at -12 °C to give yellow crystals of **2** (0.2 g, 28 %).

¹H NMR (400.13 MHz, CDCl₃, 298K): $\delta = 1,22$ (d, ³*J*HH = 6.9 Hz, 6 H, CH*Me*₂), 1.23 (d, ³*J*HH = 6.9 Hz, 6 H, CH*Me*₂), 1.26 (d, ³*J*HH = 6.9 Hz, 6 H, CH*Me*₂), 1.27 (d, ³*J*HH = 6.9 Hz, 6 H, CH*Me*₂), 1.59 (s, 3 H, NC*Me*), 3.19 (sept, ³*J*HH = 6.5 Hz, 4 H, C*H*Me₂), 3.00 (s, 1 H, NCC*H*₂), 3.76 (s, 1 H, NCC*H*₂), 5.58 (s, 1 H, γ -C*H*), 7.17-7.26 (m, 6 H, 2,6-*i*Pr₂C₆H₃); ¹³C{¹H}NMR (100.61 MHz, CDCl₃, 298K): $\delta = 20.72$ (NC*Me*), 24.09, 24.24, 24.4, 25.24 (CH*Me*₂), 28.56, 28.6 (CHMe₂), 83.93 (NCCH₂), 106.62 (γ -CH), 123.97, 124.38, 127.96, 128.3, 138.0, 138.16, 140.48, 145.8 (2,6-*i*Pr₂C₆H₃), 146.42 (NC=CH₂), 146.64 (NCMe); ¹¹B NMR (128.27 MHz, CDCl₃, 298K): $\delta = 27.2$ ppm; M.p. 198-199 °C (decomposed). HRMS calc. for C₂₉H₄₀BBrN₂: 506.4679, found: 506.4548.

Synthesis of [LBBr]⁺[OTf]⁻3

Trifluoromethanesulfonic acid (0.35 g, 2.4 mmol) was dropwise added with stirring to a cooled (-60°C) solution of **2** (1.0 g, 2.0 mmol) in CH_2Cl_2 (2 mL). The reaction mixture was slowly warmed to room temperature and stirred overnight. The solvent was removed in vacuo and the residue was extracted with toluene (30 mL). Filtration and subsequent concentration afforded crystals of **3** (0.2 g, 0.3 mmol, 18%).

¹H NMR (400.13 MHz, CDCl₃, 298K): $\delta = 1.18$ (d, ³*J*HH = 6.8 Hz, 12 H, CH*Me*₂), 1.24 (d, ³*J*HH = 6.8 Hz, 12 H, CH*Me*₂), 2.37 (sept, ³*J*HH = 6.8 Hz, 4 H, C*H*Me₂), 2.50 (s, 6 H, NC*Me*), 7.37 (d, ²*J*HH = 7.8 Hz, 4 H, 2,6-*i*Pr₂C₆H₃), 7.83 (t, ²*J*HH = 7.8 Hz, 2 H, 2,6-*i*Pr₂C₆H₃), 7.95 (s, 1 H, γ -C*H*); ¹³C{¹H}NMR (100.61 MHz, CDCl₃, 298K): $\delta = 23.25$ (NC*Me*₂), 24.1, 24.33 (CH*Me*₂), 29.15 (CHMe₂), 116.3 (γ -CH), 125.8, 131.23, 135.52, 142.96 (2,6-*i*Pr₂C₆H₃), 173.32 (NCMe); ¹¹B NMR (128.27 MHz, CDCl₃, 298K): $\delta = 29.8$ ppm; M.p. 231-232 °C; ESI-MS m/z (%): 508.25 [LBBr]⁺.

Synthesis of [LB-L'BBr]⁺[Br]⁻4

When a mixture of 2 (0.1 g, 0.2 mmol) and CHCl₃ (0.5 ml) in a sealed NMR tube was kept at 110°C for 4 days in the dark, the yellow solution turned gradually to violet. The quantitative formation of 4 was confirmed by NMR spectroscopy. The volatiles were removed in vacuo and the residue was extracted with toluene (5 mL). Filtration and subsequent concentration afforded crystals of 4 (89.1 mg, 89 %).

¹H NMR (400.13 MHz, CDCl₃, 298K): $\delta = 1.09$ (d, ³*J*HH = 6.8 Hz, 6 H, CH*Me*₂), 1.10 (d, ³*J*HH = 6.8 Hz, 6 H, CH*Me*₂), 1.13 (d, ³*J*HH = 6.8 Hz, 12 H, CH*Me*₂), 1.15 (d, ³*J*HH = 6.8 Hz, 6 H, CH*Me*₂), 1.20 (d, ³*J*HH = 6.8 Hz, 6 H, CH*Me*₂), 1.22 (d, ³*J*HH = 6.8 Hz, 12 H, CH*Me*₂), 2.18 (NC*Me*), 2.27 (sept, ³*J*HH = 6.8 Hz, 4 H, C*H*Me₂), 2.57 (s, 6 H, NC*Me*), 2.66 (sept, ³*J*HH = 6.8 Hz, 4 H, C*H*Me₂), 4.84 (s, 1 H, γ-C*H*), 7.20-7.54 (m, 6 H, 2,6-*i*Pr₂C₆*H*₃), 9.33 (s, 1 H, γ-C*H*); ¹³C{¹H}NMR (100.61 MHz, CDCl₃, 298K): $\delta = 21.39$ (NC*Me*), 23.04 (NC*Me*₂), 23.97, 24.05, 24.11, 24.15, 24.18, 24.29 (CH*Me*₂), 28.7, 28.73, 29.2 (*C*HMe₂), 46.31 (NC=CHBr), 106.00 (γ-CH), 116.41 (γ-CH), 124.59, 124.80, 125.71, 128.28, 129.09, 131.27, 133.83, 135.18, 135.28, 142.6, 142.75, 144.46 (2,6-*i*Pr₂C₆H₃), 144.47 (NC=CHBr), 144.57 (NCMe), 173.74 (NCMe); ¹¹B NMR (128.27 MHz, CDCl₃, 298K): $\delta = 27.3$, 29.6. M.p.281-282 °C; ESI-MS m/z (%): 934.57 [LB-L'BBr]⁺.

Crystallographic data for compound **2**

Empirical formula	C29 H40 B Br N2		
Formula weight	507.35		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/n		
Unit cell dimensions	a = 12.5324(9) Å	α=90°	
	$b = 16.4444(11) \text{ Å} \qquad \beta = 103.$		
	c = 13.7137(13) Å	$\gamma = 90^{\circ}$	
Volume	2743.6(4) Å ³		
Z	4		
Density (calculated)	1.228 Mg/m ³		
Absorption coefficient	1.517 mm ⁻¹		
F(000)	1072		
Crystal size	0.38 x 0.32 x 0.17 mm ³		
Theta range for data collection	3.06 to 25.00°.		
Index ranges	-14<=h<=11, -19<=k<=19, -16	<=l<=16	
Reflections collected	14104		
Independent reflections	4825 [R(int) = 0.1044]		
Completeness to theta = 25.00°	99.6 %		
Absorption correction	Semi-empirical from equivalen	its	
Max. and min. transmission	0.7825 and 0.5964		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4825 / 288 / 306		
Goodness-of-fit on F ²	1.028		
Final R indices [I>2sigma(I)]	R1 = 0.0788, $wR2 = 0.1681$		
R indices (all data)	R1 = 0.1572, $wR2 = 0.1905$		
Largest diff. peak and hole	0.725 and -0.596 e.Å ⁻³		

Br(1)-B(1)	1.932(8)	C(2)-N(1)-C(6)	117.6(5)
N(1)-C(2)	1.411(8)	B(1)-N(1)-C(6)	122.8(6)
N(1)-B(1)	1.412(9)	C(4)-N(2)-B(1)	118.9(5)
N(1)-C(6)	1.462(8)	C(4)-N(2)-C(18)	117.2(5)
N(2)-C(4)	1.413(8)	B(1)-N(2)-C(18)	123.8(6)
N(2)-B(1)	1.417(9)	N(1)-B(1)-N(2)	121.8(6)
N(2)-C(18)	1.458(8)	N(1)-B(1)-Br(1)	119.0(5)
C(1)-C(2)	1.401(9)	N(2)-B(1)-Br(1)	119.2(5)
C(2)-C(3)	1.417(9)	C(1)-C(2)-N(1)	121.6(6)
C(3)-C(4)	1.379(9)	C(1)-C(2)-C(3)	121.8(6)
C(4)-C(5)	1.444(9)	N(1)-C(2)-C(3)	116.6(6)
C(6)-C(7)	1.384(9)	C(4)-C(3)-C(2)	125.2(6)
C(6)-C(11)	1.405(9)	C(3)-C(4)-N(2)	117.8(6)
C(7)-C(8)	1.399(9)	C(3)-C(4)-C(5)	121.9(6)
C(7)-C(12)	1.515(9)	N(2)-C(4)-C(5)	120.2(6)
C(8)-C(9)	1.364(9)	C(7)-C(6)-C(11)	122.1(6)
C(9)-C(10)	1.365(9)	C(7)-C(6)-N(1)	119.6(6)
C(10)-C(11)	1.393(9)	C(11)-C(6)-N(1)	118.4(6)
C(11)-C(15)	1.518(9)	C(6)-C(7)-C(8)	117.9(6)
C(12)-C(14)	1.520(10)	C(6)-C(7)-C(12)	122.3(6)
C(12)-C(13)	1.523(10)	C(8)-C(7)-C(12)	119.8(6)
C(15)-C(16)	1.518(9)	C(9)-C(8)-C(7)	121.2(6)
C(15)-C(17)	1.528(10)	C(8)-C(9)-C(10)	119.9(6)
C(18)-C(19)	1.378(9)	C(9)-C(10)-C(11)	122.1(6)
C(18)-C(23)	1.382(9)	C(10)-C(11)-C(6)	116.8(6)
C(19)-C(20)	1.405(9)	C(10)-C(11)-C(15)	120.7(6)
C(19)-C(24)	1.518(9)	C(6)-C(11)-C(15)	122.5(6)
C(20)-C(21)	1.359(9)	C(7)-C(12)-C(14)	113.0(6)
C(21)-C(22)	1.380(9)	C(7)-C(12)-C(13)	111.8(6)
C(22)-C(23)	1.411(9)	C(14)-C(12)-C(13)	108.6(6)
C(23)-C(27)	1.515(9)	C(11)-C(15)-C(16)	111.3(6)
C(24)-C(25)	1.516(9)	C(11)-C(15)-C(17)	111.9(6)
C(24)-C(26)	1.520(10)	C(16)-C(15)-C(17)	110.5(6)
C(27)-C(29)	1.503(9)	C(19)-C(18)-C(23)	123.0(6)
C(27)-C(28)	1.545(9)	C(19)-C(18)-N(2)	119.2(6)
		C(23)-C(18)-N(2)	117.8(6)
C(2)-N(1)-B(1)	119.6(5)	C(18)-C(19)-C(20)	117.6(6)

Table 1. Bond lengths [Å] and angles $[\circ]$ for 4.

C(18)-C(19)-C(24)	123.3(6)	C(22)-C(23)-C(27)	118.6(6)
C(20)-C(19)-C(24)	119.0(6)	C(25)-C(24)-C(19)	112.9(6)
C(21)-C(20)-C(19)	121.1(7)	C(25)-C(24)-C(26)	109.6(6)
C(20)-C(21)-C(22)	120.4(6)	C(19)-C(24)-C(26)	110.4(6)
C(21)-C(22)-C(23)	120.4(6)	C(29)-C(27)-C(23)	114.1(5)
C(18)-C(23)-C(22)	117.4(6)	C(29)-C(27)-C(28)	109.1(6)
C(18)-C(23)-C(27)	124.0(6)	C(23)-C(27)-C(28)	110.8(6)

Crystallographic data for compound 4

Empirical formula	C72 H96 B2 Br2 N4		
Formula weight	1198.97		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 13.5298(6) Å	α= 91.285(3)°.	
	$b = 15.1978(6) \text{ Å}$ $\beta = 96$		
	c = 17.1182(8) Å	$\gamma = 105.226(4)^{\circ}$.	
Volume	3366.7(3) Å ³		
Ζ	2		
Density (calculated)	1.183 Mg/m ³		
Absorption coefficient	1.246 mm ⁻¹		
F(000)	1272		
Crystal size	0.30 x 0.26 x 0.20 mm ³		
Theta range for data collection	2.90 to 25.00°.		
Index ranges	-16<=h<=16, -18<=k<=18, -20	<=l<=20	
Reflections collected	35317		
Independent reflections	11828 [R(int) = 0.0789]		
Completeness to theta = 25.00°	99.8 %		
Absorption correction	Semi-empirical from equivalen	its	
Max. and min. transmission	0.7887 and 0.7062		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	11828 / 175 / 743		
Goodness-of-fit on F ²	0.845		
Final R indices [I>2sigma(I)]	R1 = 0.0494, w $R2 = 0.1019$		
R indices (all data)	R1 = 0.1206, $wR2 = 0.1150$		
Largest diff. peak and hole	0.765 and -0.419 e.Å ⁻³		

Br(1)-B(1)	1.945(5)	C(23)-C(27)	1.524(7)
N(1)-B(1)	1.399(6)	C(24)-C(25)	1.513(6)
N(1)-C(2)	1.408(5)	C(24)-C(26)	1.534(6)
N(1)-C(6)	1.452(5)	C(27)-C(29)	1.521(7)
N(2)-B(1)	1.421(6)	C(27)-C(28)	1.541(6)
N(2)-C(4)	1.428(5)	C(30)-C(31)	1.509(6)
N(2)-C(18)	1.444(5)	C(31)-C(32)	1.375(6)
N(3)-C(31)	1.357(5)	C(32)-C(33)	1.359(6)
N(3)-B(2)	1.450(6)	C(33)-C(34)	1.505(6)
N(3)-C(35)	1.475(5)	C(35)-C(40)	1.396(6)
N(4)-C(33)	1.363(5)	C(35)-C(36)	1.398(6)
N(4)-B(2)	1.467(6)	C(36)-C(37)	1.384(6)
N(4)-C(47)	1.470(5)	C(36)-C(41)	1.523(7)
B(2)-C(5)	1.538(6)	C(37)-C(38)	1.366(7)
C(1)-C(2)	1.495(6)	C(38)-C(39)	1.377(7)
C(2)-C(3)	1.348(6)	C(39)-C(40)	1.399(6)
C(3)-C(4)	1.430(6)	C(40)-C(44)	1.519(7)
C(4)-C(5)	1.349(5)	C(41)-C(43)	1.525(7)
C(6)-C(11)	1.394(6)	C(41)-C(42)	1.529(7)
C(6)-C(7)	1.401(6)	C(44)-C(46)	1.487(13)
C(7)-C(8)	1.398(6)	C(44)-C(45)	1.530(8)
C(7)-C(12)	1.513(7)	C(47)-C(48)	1.405(6)
C(8)-C(9)	1.375(7)	C(47)-C(52)	1.408(6)
C(9)-C(10)	1.365(7)	C(48)-C(49)	1.387(6)
C(10)-C(11)	1.395(6)	C(48)-C(53)	1.505(7)
C(11)-C(15)	1.522(6)	C(49)-C(50)	1.362(7)
C(12)-C(13)	1.529(8)	C(50)-C(51)	1.380(6)
C(12)-C(14)	1.532(7)	C(51)-C(52)	1.368(6)
C(15)-C(16)	1.513(6)	C(52)-C(56)	1.516(6)
C(15)-C(17)	1.525(6)	C(53)-C(54)	1.532(6)
C(18)-C(19)	1.402(6)	C(53)-C(55)	1.533(6)
C(18)-C(23)	1.402(6)	C(56)-C(58)	1.522(6)
C(19)-C(20)	1.386(6)	C(56)-C(57)	1.534(7)
C(19)-C(24)	1.531(6)		
C(20)-C(21)	1.379(6)	B(1)-N(1)-C(2)	117.6(4)
C(21)-C(22)	1.368(7)	B(1)-N(1)-C(6)	123.8(4)
C(22)-C(23)	1.391(7)	C(2)-N(1)-C(6)	118.6(4)

Table 2. Bond lengths [Å] and angles $[\circ]$ for 4.

C(16)-C(15)-C(11)

112.1(4)

C(39)-C(40)-C(44)

119.3(5)

B(1)-N(2)-C(4)	121.5(4)	C(16)-C(15)-C(17)	110.3(4)
B(1)-N(2)-C(18)	121.1(4)	C(11)-C(15)-C(17)	112.0(4)
C(4)-N(2)-C(18)	117.2(3)	C(19)-C(18)-C(23)	121.6(4)
C(31)-N(3)-B(2)	122.4(4)	C(19)-C(18)-N(2)	120.1(4)
C(31)-N(3)-C(35)	115.5(4)	C(23)-C(18)-N(2)	118.3(4)
B(2)-N(3)-C(35)	121.9(4)	C(20)-C(19)-C(18)	118.1(4)
C(33)-N(4)-B(2)	121.3(4)	C(20)-C(19)-C(24)	121.0(5)
C(33)-N(4)-C(47)	116.2(4)	C(18)-C(19)-C(24)	120.9(4)
B(2)-N(4)-C(47)	121.6(4)	C(21)-C(20)-C(19)	120.8(5)
N(1)-B(1)-N(2)	121.5(4)	C(22)-C(21)-C(20)	120.5(5)
N(1)-B(1)-Br(1)	118.8(4)	C(21)-C(22)-C(23)	121.2(5)
N(2)-B(1)-Br(1)	119.7(4)	C(22)-C(23)-C(18)	117.7(5)
N(3)-B(2)-N(4)	113.7(4)	C(22)-C(23)-C(27)	119.8(4)
N(3)-B(2)-C(5)	123.5(4)	C(18)-C(23)-C(27)	122.5(4)
N(4)-B(2)-C(5)	122.6(4)	C(25)-C(24)-C(19)	113.2(4)
C(3)-C(2)-N(1)	120.3(4)	C(25)-C(24)-C(26)	107.1(4)
C(3)-C(2)-C(1)	121.5(4)	C(19)-C(24)-C(26)	112.7(4)
N(1)-C(2)-C(1)	118.1(4)	C(29)-C(27)-C(23)	109.3(4)
C(2)-C(3)-C(4)	125.9(4)	C(29)-C(27)-C(28)	110.3(4)
C(5)-C(4)-N(2)	123.7(4)	C(23)-C(27)-C(28)	113.8(5)
C(5)-C(4)-C(3)	123.1(4)	N(3)-C(31)-C(32)	119.9(4)
N(2)-C(4)-C(3)	113.2(4)	N(3)-C(31)-C(30)	120.3(4)
C(4)-C(5)-B(2)	124.4(4)	C(32)-C(31)-C(30)	119.8(4)
C(11)-C(6)-C(7)	122.3(4)	C(33)-C(32)-C(31)	121.6(5)
C(11)-C(6)-N(1)	118.6(4)	C(32)-C(33)-N(4)	120.5(4)
C(7)-C(6)-N(1)	119.1(4)	C(32)-C(33)-C(34)	118.6(4)
C(8)-C(7)-C(6)	117.0(4)	N(4)-C(33)-C(34)	120.8(4)
C(8)-C(7)-C(12)	120.1(5)	C(40)-C(35)-C(36)	122.2(4)
C(6)-C(7)-C(12)	122.9(4)	C(40)-C(35)-N(3)	118.3(4)
C(9)-C(8)-C(7)	121.4(5)	C(36)-C(35)-N(3)	119.2(4)
C(10)-C(9)-C(8)	120.3(5)	C(37)-C(36)-C(35)	117.7(5)
C(9)-C(10)-C(11)	121.2(5)	C(37)-C(36)-C(41)	118.6(5)
C(6)-C(11)-C(10)	117.8(5)	C(35)-C(36)-C(41)	123.6(4)
C(6)-C(11)-C(15)	123.1(4)	C(38)-C(37)-C(36)	121.6(5)
C(10)-C(11)-C(15)	119.1(4)	C(37)-C(38)-C(39)	119.8(5)
C(7)-C(12)-C(13)	114.0(5)	C(38)-C(39)-C(40)	121.5(5)
C(7)-C(12)-C(14)	110.6(5)	C(35)-C(40)-C(39)	116.9(5)
C(13)-C(12)-C(14)	109.4(5)	C(35)-C(40)-C(44)	123.8(4)

C(36)-C(41)-C(43)	114.0(4)	C(50)-C(49)-C(48)	121.8(5)
C(36)-C(41)-C(42)	109.5(4)	C(49)-C(50)-C(51)	119.8(5)
C(43)-C(41)-C(42)	109.8(5)	C(52)-C(51)-C(50)	121.9(5)
C(46)-C(44)-C(40)	115.8(7)	C(51)-C(52)-C(47)	117.5(4)
C(46)-C(44)-C(45)	98.3(9)	C(51)-C(52)-C(56)	119.3(5)
C(40)-C(44)-C(45)	112.0(5)	C(47)-C(52)-C(56)	123.1(5)
C(48)-C(47)-C(52)	121.7(4)	C(48)-C(53)-C(54)	110.4(5)
C(48)-C(47)-N(4)	121.3(4)	C(48)-C(53)-C(55)	112.7(4)
C(52)-C(47)-N(4)	116.7(4)	C(54)-C(53)-C(55)	108.0(4)
C(49)-C(48)-C(47)	117.2(5)	C(52)-C(56)-C(58)	112.2(4)
C(49)-C(48)-C(53)	119.2(4)	C(52)-C(56)-C(57)	111.0(4)
C(47)-C(48)-C(53)	123.6(5)	C(58)-C(56)-C(57)	110.2(4)

DFT calculations of the compounds **2-4** were performed at the B3LYP level using 6-31G(d) basis set with the GAUSSIAN-03 program package.^[3] The structure obtained by X-ray analysis was used as the input for these calculation of compounds **2-4**. Cartesian coordinates of optimized structures are shown in Table 3-5.

Table 3. Cartesian coordination (x, y, z) of optimized structure for 2

Br	0.027059	0.000123	-1.839219	Н	-3.122127	-0.879076	2.71677
Ν	1.251562	-0.0001	0.807046	Н	-3.122246	0.877982	2.717102
С	2.427351	0.000026	2.955392	Н	4.900553	2.140231	-1.034328
В	0.015979	-0.000081	0.105586	Н	6.010311	-0.000135	-1.574807
Ν	-1.237762	-0.000204	0.797517	Н	4.900698	-2.140475	-1.033914
С	1.282962	-0.000102	2.235872	Н	1.565711	-2.380526	0.672857
С	-0.025424	-0.000283	2.869927	Н	1.507651	-2.63425	-1.809902
С	-1.207195	-0.000335	2.215422	Н	1.560106	-4.208819	-0.982024
С	-2.514158	-0.000553	2.96006	Н	3.016479	-3.562435	-1.757414
С	2.533708	-0.000087	0.131945	Н	4.311209	-3.737771	0.55035
С	3.154404	1.231118	-0.165199	Н	2.836206	-4.398922	1.267529
С	4.409	1.203413	-0.786344	Н	3.596355	-2.96072	1.976314
С	5.035523	-0.000121	-1.093782	Н	1.565385	2.380403	0.672064
С	4.409084	-1.203643	-0.786104	Н	3.59544	2.960242	1.976481
С	3.154492	-1.231307	-0.164961	Н	2.83601	4.398665	1.267362
С	2.494909	-2.574565	0.12968	Н	4.311203	3.737135	0.550889
С	2.122145	-3.288978	-1.184688	Н	3.017216	3.562418	-1.757524
С	3.36484	-3.467011	1.033369	Н	1.56073	4.208977	-0.982512
С	2.494823	2.574414	0.129287	Н	1.508243	2.634518	-1.810606
С	3.364523	3.466625	1.033441	Н	-4.893903	2.139781	-1.042535
С	2.122657	3.289054	-1.185114	Н	-6.010453	0.000707	-1.568796
С	-2.524088	0.000038	0.126624	Н	-4.894529	-2.138791	-1.042946
С	-3.144382	1.231477	-0.179179	Н	-1.564809	-2.395422	0.662247
С	-4.402757	1.203422	-0.7928	Н	-2.93052	-3.490425	-1.85481
С	-5.032776	0.000521	-1.093875	Н	-1.485989	-4.151263	-1.066611
С	-4.403108	-1.202627	-0.79303	Н	-1.432963	-2.543349	-1.826506
С	-3.144736	-1.231165	-0.179438	Н	-3.654845	-3.081547	1.86767
С	-2.47595	-2.577764	0.084475	Н	-2.809212	-4.45475	1.132879
С	-2.054842	-3.231404	-1.247549	Н	-4.27108	-3.811364	0.377542
С	-3.356942	-3.530791	0.913441	Н	-1.564041	2.395104	0.662608
С	-2.475263	2.577842	0.08509	Н	-4.270175	3.811525	0.379062
С	-3.355916	3.530694	0.914621	Н	-2.808031	4.454522	1.134221
С	-2.054261	3.231921	-1.246746	Н	-3.653593	3.081154	1.868778
Н	2.370787	0.000004	4.038002	Н	-1.432629	2.543955	-1.826083
Н	3.409626	0.000125	2.503648	Н	-1.485153	4.151568	-1.065533
Н	-0.034718	-0.000404	3.953948	Н	-2.929969	3.491412	-1.853762
Н	-2.324225	-0.000744	4.03607				

Br	0.000016	0.000463	-1.825519	Н	-4.274961	3.800782	0.424843
Ν	-1.242194	-0.000073	0.819842	н	1.548871	2.419715	0.646853
С	-2.54353	0.000373	0.132734	Н	-6.006057	0.001652	-1.557846
Ν	1.242196	-0.000471	0.819836	Н	0	-0.001215	3.93074
С	-1.222998	-0.000509	2.182418	Н	-4.89472	-2.137682	-1.036738
В	-0.000004	-0.000042	0.076758	Н	1.547615	-2.420615	0.643958
С	-2.477983	-2.588715	0.087911	Н	4.277188	3.799747	0.425081
С	4.401394	-1.205229	-0.785226	Н	3.625079	3.078134	1.901511
С	-3.347321	3.53044	0.940038	Н	2.808299	4.458348	1.14936
С	2.47718	2.588689	0.08839	Н	-1.546734	2.420182	0.644168
С	-5.029227	0.00129	-1.083302	Н	4.894098	2.138602	-1.036216
С	-0.000001	-0.000908	2.848768	Н	-4.892536	2.140148	-1.037974
С	-4.402211	-1.203838	-0.784391	Н	3.111851	-0.878777	2.707463
С	2.476183	-2.589455	0.085891	Н	2.303194	-0.002022	4.02791
С	3.350053	3.529366	0.94116	Н	3.111764	0.876424	2.708559
С	1.222997	-0.000919	2.182417	Н	3.622991	-3.080323	1.899328
С	-3.143067	1.239635	-0.170829	Н	4.275769	-3.801061	0.422766
С	-2.475488	2.589433	0.086539	Н	2.806373	-4.459899	1.145828
С	-3.144379	-1.238451	-0.170026	Н	-3.627886	-3.078906	1.899573
С	3.143478	-1.239427	-0.171011	Н	-2.809856	-4.458722	1.14802
С	4.401872	1.204554	-0.784069	Н	-4.278073	-3.800338	0.422219
С	-4.400967	1.205946	-0.785112	Н	-2.980452	3.5127	-1.834567
С	3.143977	1.238656	-0.169806	Н	-1.477248	2.578792	-1.854506
С	2.50625	-0.001367	2.955817	Н	-1.526011	4.177127	-1.074808
С	3.348403	-3.530876	0.93853	Н	1.527341	4.176858	-1.072098
С	-3.351611	-3.52983	0.939434	Н	1.47715	2.578538	-1.851771
С	-2.089973	3.254502	-1.251333	Н	2.980805	3.511706	-1.833143
С	2.090705	3.253962	-1.249121	Н	-2.980321	-3.510476	-1.834526
С	-2.090592	-3.253232	-1.249719	Н	-1.527477	-4.176313	-1.072858
С	2.090263	-3.253765	-1.252244	Н	-1.476537	-2.577512	-1.851532
С	2.543522	-0.000413	0.132743	Н	1.477336	-2.577721	-1.854843
С	-2.506268	-0.000874	2.95579	Н	1.526407	-4.176527	-1.0761
С	5.029299	-0.000318	-1.083144	Н	2.980588	-3.511543	-1.835898
Н	-1.550081	-2.420198	0.647189	Н	-3.110395	-0.879936	2.709542
Н	4.893268	-2.139228	-1.038252	Н	-3.113237	0.875259	2.706393
Н	-2.805234	4.4594	1.147471	Н	-2.303241	0.001209	4.027887
Н	-3.621391	3.079453	1.900777	Н	6.006164	-0.000288	-1.557615

Table 4. Cartesian coordination (x, y, z) of optimized structure for **3**

Br	3.81389	-0.015813	2.065608	С	2.045068	-3.168429	3.213137
Ν	1.094114	-0.00657	0.984991	С	2.061879	3.134458	3.244834
Ν	2.934399	-0.000316	-0.703355	С	-4.061846	1.937098	2.617124
Ν	-3.060549	-1.232014	-1.313121	С	-4.5251	-2.050678	1.133262
Ν	-3.050994	1.249249	-1.309983	С	0.473692	-3.353405	-2.202675
С	1.956707	0.006733	-1.707462	С	-5.977817	2.512065	1.06699
С	4.34307	-0.001123	-1.082096	С	-0.302266	-3.595971	2.360722
С	-1.251262	-0.002091	0.217618	С	-1.362108	-3.741115	-3.883821
С	-4.485203	0.015785	-2.75402	С	4.942196	-3.251351	0.229788
С	0.639028	0.007243	-1.381282	С	4.422775	-3.524469	-2.241123
С	0.651661	-0.010894	2.372187	С	-4.087153	-1.934392	2.607715
С	-4.041955	1.229681	-2.24613	С	-6.000504	-2.492182	1.048133
С	-2.797372	-2.565589	-0.739992	н	-1.548626	-0.012912	1.265463
С	0.097544	0.000103	-0.035252	н	-5.262153	0.019722	-3.50674
В	2.487984	-0.00685	0.65852	н	-0.074877	0.011561	-2.196304
С	-2.780017	2.579021	-0.731355	н	-0.239685	2.120765	4.864732
С	0.447135	1.219436	3.035733	н	6.877525	-2.14093	-1.817506
В	-2.408446	0.005344	-0.814851	н	3.285531	2.409331	-0.800669
С	-0.077651	1.186779	4.334334	н	-5.32252	2.915254	-1.89486
С	5.003824	-1.233895	-1.275329	н	-5.384143	2.268806	-3.544954
С	0.438131	-1.244917	3.02595	н	-4.011259	3.261135	-3.00121
С	-3.568634	2.989379	0.368343	н	-1.192109	5.493824	-1.431462
С	5.008457	1.230845	-1.263767	н	1.213965	2.390244	1.421578
С	6.347207	-1.204873	-1.669314	н	3.018306	0.890668	-3.36826
С	-3.591239	-2.977694	0.355292	н	1.534792	0.018031	-3.807093
С	4.348315	2.581833	-0.999775	н	3.015674	-0.863612	-3.37727
С	-1.895902	3.463468	-1.387357	н	6.885837	2.135726	-1.796818
С	-4.722135	2.489189	-2.705418	н	-0.254881	-2.155666	4.847977
С	-1.854692	4.790024	-0.937508	н	-1.220129	-5.483943	-1.449065
С	0.871337	2.561829	2.447177	н	-4.077394	4.668659	1.610846
С	2.402954	0.013252	-3.143597	н	-0.774064	-0.020007	5.975369
С	-4.049831	-1.202813	-2.250733	н	6.009073	3.485107	0.10827
С	6.351859	1.200368	-1.657766	н	4.887406	2.552041	1.111833
С	-0.08626	-1.218738	4.324869	н	4.421801	4.160544	0.510524
C	-1.881332	-4.779631	-0.953959	н	-4,449658	1.063186	0.703335
C	-3.479464	4.328009	0.77111	н	-2.644826	-6.258748	0.409194
C	-0.366357	-0.017481	4.968131	н	8.060077	-0.003098	-2.172066
C	4.953014	3.234544	0.260358	н	1.18887	-2.409649	1.399663
C	-4.504279	2.063004	1.144836	н	-1.073008	1.986311	-2.702614
C	-2.679685	-5.219606	0.095281	н	-4.112071	-4.660826	1.587549
C	7.017676	-0.002548	-1.865944	н	3.276684	-2.409894	-0.821506
C	0.852144	-2.585682	2.426471	н	-4.02456	-3.225258	-3.026765
C	-1.914986	-3.45068	-1.397275	н	-5.400892	-2.227795	-3.551518
C	-0.984814	3 066193	-2 548807	н	-5 329233	-2 892396	-1 908719
C C	-3 509714	-4 318747	0 751567	н	5 474653	3 798501	-2 44114
C C	4 338526	-2 584659	-1 023555	н	3 901327	4 464689	-1 996321
C C	-4 734229	-2 45697	-2 718077	н	4 000856	3 088704	-3 110588
C C	4 43773	3 532645	-2 208463	н	-2 606677	6 265671	0.435791
č	-2.647395	5,228321	0.116699	н	-1 083312	-1,970768	-2,704352
č	-0.996923	-3 051132	-2 552342	H	-1 106515	3 197931	1 777374
c	-0 278191	3 577584	2.379748	н	0 06949	4 513124	1 927156
č	-1 357362	3 759464	-3 876603	н	-0 66392	3 820619	3 376693
č	0.48824	3.366736	-2.207943	H	-2.356593	3.487512	-4.231253
-	5 U						

Table 5. Cartesian coordination (x, y, z) of optimized structure for 4

Н	-0.645634	3.474452	-4.659437	Н	-6.344056	2.556145	0.035311
Н	-1.322642	4.850134	-3.780046	Н	-0.680012	-3.846157	3.358935
Н	0.667055	4.444625	-2.129868	Н	0.037532	-4.52896	1.89706
Н	1.143236	2.983211	-2.997347	Н	-1.134426	-3.208007	1.769023
Н	0.780925	2.902356	-1.262861	Н	-1.324952	-4.831988	-3.790785
Н	1.754279	-3.43029	4.236938	Н	-0.648016	-3.451679	-4.662855
Н	2.860759	-2.443761	3.267032	Н	-2.360764	-3.470778	-4.241428
Н	2.417156	-4.078365	2.727809	Н	5.997118	-3.504444	0.074041
Н	1.765845	3.392455	4.268095	Н	4.40779	-4.177566	0.472264
Н	2.441649	4.045067	2.76677	Н	4.880225	-2.576301	1.087435
Н	2.87377	2.405583	3.300167	Н	3.986594	-3.070426	-3.138576
Н	-3.030811	1.58087	2.704186	Н	3.882896	-4.456298	-2.037006
Н	-4.713403	1.23465	3.148168	Н	5.458345	-3.792301	-2.477555
Н	-4.12677	2.900274	3.134872	Н	-4.158816	-2.899779	3.120456
Н	-4.464173	-1.048933	0.696948	Н	-4.736984	-1.231243	3.139973
Н	0.761032	-2.888938	-1.255961	Н	-3.054566	-1.584008	2.700494
Н	1.134077	-2.971111	-2.98819	Н	-6.149386	-3.483934	1.488427
Н	0.650374	-4.431517	-2.122771	Н	-6.362998	-2.530403	0.014899
Н	-6.120167	3.502823	1.511639	Н	-6.636869	-1.789347	1.597278
Н	-6.615557	1.810244	1.615828				

References

[1] J. Feldman, S. J. MacLain, A. Parthasarathy, W. J. Marshall, J. C. Calabrese, S. D. Arthur, *Organometallics* **1997**, *16*, 4511.

[2] Sheldrick, G. M. SHELX-97 Program for Crystal Structure Determination, Universität Göttingen (Germany) 1997.

^{[3] (}a) Gussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004; (b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; (c) C. Lee, W. Yang, R. G. Part, Phys. Rev. B 1988, 37, 785; (d)B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200.