Design and Synthesis of New Chiral Phosphorus-Olefin Bidentate Ligands and Their Use in the Rhodium-Catalyzed Asymmetric Addition of Organoboroxines to N -Sulfonyl Imines

Ryo Shintani,* Rintaro Narui, Yosuke Tsutsumi, Sayuri Hayashi, and Tamio Hayashi*
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Supporting Information

I. General

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under argon.

THF and dioxane were purified by passing through neutral alumina columns under nitrogen. DMF was distilled over CaH_{2} under vacuum. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled over CaH_{2} under nitrogen. $\mathrm{Et}_{3} \mathrm{~N}$ was distilled over KOH under nitrogen. $\mathrm{C}_{6} \mathrm{H}_{6}$ was distilled over benzophenone ketyl under nitrogen. Pentane was distilled over benzophenone ketyl in the presence of triglyme under nitrogen.

2-methyl-2-propenyl bromide (Aldrich), NaH (Kanto Chemical; $60 \mathrm{wt} \%$ in mineral oil), Grubbs catalyst (Aldrich; 2nd generation), trifluoroacetic acid (Wako Chemicals), chlorodiphenylphosphine (Wako Chemicals), and methanesulfonyl chloride (Wako Chemicals) were used as received.
(S)-2, ${ }^{1}(7 R)-7,{ }^{2}$ 2-(benzyloxymethyl)-2-propenol, ${ }^{3}$ 2-phenyl-2-propenyl bromide, ${ }^{4}$ $\mathrm{Rh}(\mathrm{acac})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2},{ }^{5}$ and $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}{ }^{6}$ were synthesized following the literature procedures. Imines 5 and $\mathbf{8}$ were prepared from the corresponding aldehydes and sulfonamides following the literature procedure. ${ }^{7}$ Organoboroxines were prepared by dehydration of the corresponding organoboronic acids following the literature procedure. ${ }^{8}$

All other chemicals and solvents were purchased from Aldrich, Wako Chemicals, TCI, or Kanto Chemical and used as received.

[^0]
II. Synthesis of Ligands and Complexes

(S)-1a

(S)-2
(S)-S1
(S)-3a
(S)-S2
(S)-1a

2-Methyl-2-propenyl bromide ($726 \mathrm{mg}, 5.38 \mathrm{mmol}$) and $\mathrm{NaH}(256 \mathrm{mg}, 6.40 \mathrm{mmol} ; 60$ $\mathrm{wt} \%$ in mineral oil) were successively added to a solution of (S) - $2(1.01 \mathrm{~g}, 4.08 \mathrm{mmol}$) in DMF (9.0 mL) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1.5 h at room temperature. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ and this was extracted with $\mathrm{EtOAc} /$ hexane (1/10). The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with $\mathrm{EtOAc} /$ hexane $=1 / 20$ to afford compound (S)-S1 as a colorless oil ($1.17 \mathrm{~g}, 3.88 \mathrm{mmol} ; 95 \%$ yield). $[\alpha]^{25}{ }_{\mathrm{D}}-55.4\left(c 1.02, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 5{ }^{\circ} \mathrm{C}\right): \delta 7.25\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.00\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}\right.$ $=17.0,10.2$, and $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.04\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=18.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.77(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{bs}, 1 \mathrm{H}), 3.75-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.46\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=16.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.16-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.91\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.6 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50{ }^{\circ} \mathrm{C}\right): \delta 155.4,142.8,139.0,137.5,129.5,128.4,126.4,116.2,111.6$, $79.7,61.5,52.2,39.2,28.6,20.1$. HRMS (ESI-TOF) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 324.1934, found 324.1930.

Grubbs catalyst ($66.3 \mathrm{mg}, 78.1 \mu \mathrm{~mol}$; 2nd generation) was added to a solution of (S)-S1 $(1.16 \mathrm{~g}, 3.85 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(38 \mathrm{~mL})$ and the mixture was stirred for 6 h at $60^{\circ} \mathrm{C}$. The solvent was removed under vacuum, and the residue was chromatographed on silica gel with $\mathrm{EtOAc} /$ hexane $=1 / 20$ to afford compound (S) - $\mathbf{3 a}$ as a colorless oil $(1.03 \mathrm{~g}, 3.77 \mathrm{mmol} ; 98 \%$ yield, $\sim 6 / 4$ mixture of rotamers). $[\alpha]^{25}+177\left(c 1.10, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 0.8 \mathrm{H}\right)$, $7.12\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1.2 \mathrm{H}\right), 5.26(\mathrm{~s}, 0.4 \mathrm{H}), 5.23(\mathrm{~s}, 0.6 \mathrm{H}), 4.73-4.67(\mathrm{~m}, 0.4 \mathrm{H}), 4.61-4.55$ $(\mathrm{m}, 0.6 \mathrm{H}), 4.02\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=15.0 \mathrm{~Hz}, 0.6 \mathrm{H}\right), 3.89\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=14.9 \mathrm{~Hz}, 0.4 \mathrm{H}\right), 3.70\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=\right.$ 14.9 Hz and $\left.{ }^{4} J_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 0.6 \mathrm{H}\right), 3.56\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=15.0 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=4.8 \mathrm{~Hz}, 0.4 \mathrm{H}\right), 3.17$ $\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=12.9 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=3.4 \mathrm{~Hz}, 0.4 \mathrm{H}\right), 3.13\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=3.4 \mathrm{~Hz}$, $0.6 \mathrm{H}), 2.84\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 0.4 \mathrm{H}\right), 2.69\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=12.9 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}$ $=8.1 \mathrm{~Hz}, 0.6 \mathrm{H}), 1.66(\mathrm{~s}, 1.8 \mathrm{H}), 1.63(\mathrm{~s}, 1.2 \mathrm{H}), 1.55(\mathrm{~s}, 5.4 \mathrm{H}), 1.50(\mathrm{~s}, 3.6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 154.2,154.0,138.2,135.2,135.1,129.9,129.6,128.2,127.9,126.2,126.0,123.5$, $123.3,79.5,79.1,65.9,65.6,56.9,56.6,41.3,39.8,28.70,28.66,14.2,14.1$. HRMS (ESITOF) calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$296.1621, found 296.1617.

Trifluoroacetic acid (7.5 mL) was added to a solution of (S)-3a ($1.03 \mathrm{~g}, 3.77 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(37 \mathrm{~mL})$ and the mixture was stirred for 1.5 h at room temperature. The solvent was removed under vacuum, and the remaining trifluoroacetic acid was further removed by dissolving the residue in $\mathrm{C}_{6} \mathrm{H}_{6}$ and concentrated under vacuum for three times, followed by the same sequence with hexane for three times. The residue thus obtained was chromatographed on silica gel with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 10$ to afford compound (S) - $\mathbf{S 2}$ as a purple solid ($1.03 \mathrm{~g}, 3.59 \mathrm{mmol} ; 95 \%$ yield). $[\alpha]^{25}{ }_{\mathrm{D}}+54.5\left(c 0.32, \mathrm{CHCl}_{3}\right.$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.30(\mathrm{bs}, 1 \mathrm{H}), 9.23(\mathrm{bs}, 1 \mathrm{H}), 7.31\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.20\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.70-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.84\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}\right.$
$=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.15\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.6 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.6 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=8.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $162.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=35.9 \mathrm{~Hz}\right), 135.8,135.3,129.2,128.8,127.2,122.4,117.0\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=293 \mathrm{~Hz}\right)$, 66.9, 53.9, 39.3, 13.6. HRMS (ESI-TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}\right)$174.1277, found 174.1278.
$1 \mathrm{M} \mathrm{NaOHaq}(15 \mathrm{~mL})$ was added to a solution of $(S)-\mathbf{S 2}(1.03 \mathrm{~g}, 3.59 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5.0$ mL) and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was dissolved in THF (9.0 mL), and $\mathrm{Et}_{3} \mathrm{~N}(2.20 \mathrm{~mL}, 15.8 \mathrm{mmol})$ and chlorodiphenylphosphine ($710 \mu \mathrm{~L}, 3.95 \mathrm{mmol}$) were successively added to it with additional THF (2.0 mL). The mixture was stirred for 9 h at room temperature, and the volatiles were removed under vacuum. This was chromatographed on silica gel with degassed $\mathrm{Et}_{3} \mathrm{~N} /$ hexane $=1 / 2$ to afford compound (S)-1a as a yellow oil $\left(1.06 \mathrm{~g}, 2.97 \mathrm{mmol} ; 83 \%\right.$ yield). $[\alpha]^{25}{ }_{\mathrm{D}}+235$ (c 1.03, THF).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.58\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.48\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H})$, 7.18-7.05 (m, 9H), $5.27-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.68(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{bs}, 2 \mathrm{H}), 3.44\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=\right.$ $12.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.9 \mathrm{~Hz}$, and $\left.{ }^{4} J_{\mathrm{HH}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.75\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=12.8 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 140.2\left(\mathrm{~d}, J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 139.5\left(\mathrm{~d}, J_{\mathrm{CP}}=18.1 \mathrm{~Hz}\right), 139.4$, $137.1,134.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{CP}}=19.6 \mathrm{~Hz}\right), 132.6(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=19.6 \mathrm{~Hz}\right), 130.0,128.61\left(\mathrm{~d}, J_{\mathrm{CP}}=5.7 \mathrm{~Hz}\right), 128.59\left(\mathrm{~d}, J_{\mathrm{CP}}=4.7 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{CP}}=4.1\right.$ $\mathrm{Hz}), 126.3,125.2\left(\mathrm{~d}, J_{\mathrm{CP}}=6.7 \mathrm{~Hz}\right), 73.1\left(\mathrm{~d}, J_{\mathrm{CP}}=30.5 \mathrm{~Hz}\right), 57.6\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 45.2(\mathrm{~d}$, $J_{\mathrm{CP}}=5.7 \mathrm{~Hz}$), 14.0. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 43.5(\mathrm{~s})$. HRMS (ESI-TOF) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NP}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$358.1719, found 358.1717.

2-(Benzyloxymethyl)-2-propenyl methanesulfonate

$\mathrm{Et}_{3} \mathrm{~N}(5.40 \mathrm{~mL}, 38.7 \mathrm{mmol})$ and mthanesulfonyl chloride ($1.50 \mathrm{~mL}, 19.4 \mathrm{mmol}$) were successively added to a solution of 2-(benzyloxymethyl)-2-propenol ($2.75 \mathrm{~g}, 15.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 50 min at $0{ }^{\circ} \mathrm{C}$ and the reaction was quenched with saturated $\mathrm{NaHCO}_{3} a q$. This was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was washed with saturated NaClaq , dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with $\mathrm{EtOAc} /$ hexane $=1 / 4$ to afford 2-(benzyloxymethyl)-2-propenyl methanesulfonate as a colorless oil ($2.88 \mathrm{~g}, 11.2 \mathrm{mmol}$; 73% yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.40-5.37(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H})$, $4.08(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 139.1,137.8,128.5,127.9,127.8,118.2,72.5$, 70.2, 70.1, 37.8. HRMS (ESI-TOF) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 279.0662$, found 279.0663 .

(S)-1b

This was synthesized from (S)-2 and 2-(benzyloxymethyl)-2-propenyl methanesulfonate, following the procedure for (S)-1a. Brown oil. 62% overall yield. $[\alpha]^{25}{ }_{\mathrm{D}}+187$ ($c 0.56$, THF).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.57\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.46\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.21-7.11(\mathrm{~m}, 13 \mathrm{H})$, 7.09-7.04 (m, 3H), 5.56-5.53 (m, 1H), 4.80-4.73 (m, 1H), 4.15 (d, $\left.{ }^{2} J_{\mathrm{HH}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{HH}}=12.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.86-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.38\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=12.7 \mathrm{~Hz}\right.$,
${ }^{3} J_{\mathrm{HH}}=4.2 \mathrm{~Hz}$, and $\left.{ }^{4} J_{\mathrm{HH}}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.80\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=12.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=9.3 \mathrm{~Hz}\right.$, and ${ }^{4} J_{\mathrm{HH}}=$ $0.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 139.8\left(\mathrm{~d}, J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right), 139.3\left(\mathrm{~d}, J_{\mathrm{CP}}=18.1 \mathrm{~Hz}\right), 139.2$, 139.0 , 138.9, $134.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{CP}}=20.2 \mathrm{~Hz}\right)$, $132.6\left(\mathrm{~d}, J_{\mathrm{CP}}=19.1 \mathrm{~Hz}\right), 130.0,128.64\left(\mathrm{~d}, J_{\mathrm{CP}}=6.2 \mathrm{~Hz}\right), 128.59\left(\mathrm{~d}, J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right), 128.5(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=5.2 \mathrm{~Hz}\right), 127.9,127.7,127.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.7 \mathrm{~Hz}\right), 126.4,72.9\left(\mathrm{~d}, J_{\mathrm{CP}}=31.5 \mathrm{~Hz}\right), 72.0,66.9$, $54.6\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 44.7\left(\mathrm{~d}, J_{\mathrm{CP}}=5.2 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 44.8(\mathrm{~s})$. HRMS (ESITOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NOP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 464.2138$, found 464.2130 .

(S)-1c

This was synthesized from (S)-2 and 2-phenyl-2-propenyl bromide, following the procedure for (S)-1a. Pink solid. 85% overall yield. $[\alpha]^{25}{ }_{\mathrm{D}}+224$ (c 0.53, THF).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.65-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.05$ $(\mathrm{m}, 9 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 5 \mathrm{H}), 6.00\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=4.9 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.92-4.85(\mathrm{~m}$, $1 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.52\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=12.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.2 \mathrm{~Hz}\right.$, and $\left.{ }^{4} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.80$ $\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=12.8 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 139.9\left(\mathrm{~d}, J_{\mathrm{CP}}=8.3 \mathrm{~Hz}\right)$, $139.6,139.14\left(\mathrm{~d}, J_{\mathrm{CP}}=17.6 \mathrm{~Hz}\right), 139.09,134.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d}, J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right)$, $134.2,132.7\left(\mathrm{~d}, J_{\mathrm{CP}}=20.2 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, J_{\mathrm{CP}}=19.6 \mathrm{~Hz}\right), 130.0,128.72\left(\mathrm{~d}, J_{\mathrm{CP}}=6.2 \mathrm{~Hz}\right)$, $128.68\left(\mathrm{~d}, J_{\mathrm{CP}}=8.8 \mathrm{~Hz}\right), 128.66\left(\mathrm{~d}, J_{\mathrm{CP}}=6.2 \mathrm{~Hz}\right), 128.6,127.8,126.4,125.9,125.5\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $6.7 \mathrm{~Hz}), 73.6\left(\mathrm{~d}, J_{\mathrm{CP}}=31.0 \mathrm{~Hz}\right), 54.5\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 45.1\left(\mathrm{~d}, J_{\mathrm{CP}}=6.2 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 44.2$ (s). HRMS (ESI-TOF) calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 420.1876$, found 420.1864.

$\mathbf{R h}(\mathbf{a c a c})((S)-1 a)$ (4)

A solution of $(S) \mathbf{- 1 a}(318 \mathrm{mg}, 0.890 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(4.0 \mathrm{~mL})$ was added slowly over 25 min to a solution of $\mathrm{Rh}(\mathrm{acac})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(214 \mathrm{mg}, 0.829 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(1.0 \mathrm{~mL})$ at $30^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at $30^{\circ} \mathrm{C}$. The reaction mixture was filtered through PTFE membrane with $\mathrm{C}_{6} \mathrm{H}_{6}$ and the solvent was removed under vacuum. The solid thus obtained was washed with hexane and dried under vacuum to afford complex 4 as a yellow solid (396 $\mathrm{mg}, 0.708 \mathrm{mmol} ; 85 \%$ yield). $[\alpha]^{25}{ }_{\mathrm{D}}-20.5$ (c 0.52 , THF). Recrystallization of this complex from benzene/pentane afforded single crystals suitable for X-ray crystallographic analysis.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 8.25-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.94$ $(\mathrm{m}, 8 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.84\left(\mathrm{t}, J_{\mathrm{HH}}=14.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.63(\mathrm{dd}$, ${ }^{2} J_{\mathrm{HH}}=12.8 \mathrm{~Hz}$ and $\left.{ }^{3} J_{\mathrm{HP}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.44-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 127.9\left(\mathrm{~d},{ }^{1} J_{\text {PRh }}=202 \mathrm{~Hz}\right)$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{PRh}: \mathrm{C}$, 62.26; H, 5.59. Found: C, 62.27; H, 5.52.

General Procedure for $[\mathbf{R h C l}((S)-1)]_{2}$

A solution of (S)-1 (1.0 equiv) in $\mathrm{C}_{6} \mathrm{H}_{6}$ (ca. 5.0 mL for 1.0 mmol of $(S) \mathbf{- 1}$) was added slowly over 20 min to a solution of $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}(1.1$ equiv Rh$)$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ (ca. 2.5 mL for 1.0 mmol of (S)-1) at $30^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at $30^{\circ} \mathrm{C}$. The reaction mixture was filtered through PTFE membrane with $\mathrm{C}_{6} \mathrm{H}_{6}$ and the solvent was removed under vacuum. The solid thus obtained was washed with hexane and dried under vacuum to afford complex $[\operatorname{RhCl}((S)-1)]_{2}$, which was directly used as a catalyst for the addition reaction.

III. Catalytic Reactions

General Procedure for Table 1.

$4 \mathrm{M} \mathrm{KOHaq}(10 \mu \mathrm{~L}, 40 \mu \mathrm{~mol})$ was added to a solution of $[\operatorname{RhCl}((S)-1 \mathbf{c})]_{2}(5.6 \mathrm{mg}, 10$ $\mu \mathrm{mol} \mathrm{Rh})$, imine $5(0.200 \mathrm{mmol})$, and organoboroxine (0.600 mmol B) in dioxane (0.50 mL), and the mixture was stirred for 6 h at $60^{\circ} \mathrm{C}$. This was directly passed through a pad of silica gel with EtOAc and the solvent was removed under vacuum. The residue was purified by silica gel preparative TLC to afford compound 6 .

Entry 1. (CAS 796966-21-7 for (R)-enantiomer) White solid. 90% yield.
The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 16.8 min [minor enantiomer], 22.0 min [major enantiomer]. 97% ee. $[\alpha]^{20}{ }_{\mathrm{D}}+6.1$ (c $0.93, \mathrm{CHCl}_{3}$). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.24-7.14(\mathrm{~m}, 7 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 4 \mathrm{H})$, $5.53\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $143.5,140.2,139.2,137.4,133.5,129.5,128.9,128.8,128.7,127.9,127.4,127.3,60.9,21.6$.

Entry 3. (CAS 831225-96-8 for (R)-enantiomer) White solid. 71% yield.
The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 16.1 min [minor enantiomer], 25.0 min [major enantiomer]. 95% ee. $[\alpha]^{20}{ }_{\mathrm{D}}-8.7$ (c 1.00, CHCl_{3}). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.54\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.28-7.22$ $(\mathrm{m}, 5 \mathrm{H}), 7.13\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.18(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 144.4,143.7,139.9,137.2$, $129.8(\mathrm{q}$, $\left.{ }^{2} J_{\mathrm{CF}}=31.6 \mathrm{~Hz}\right), 129.6,129.0,128.2,127.9,127.4,127.3,125.5,124.1\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}\right)$, 61.1, 21.5.

[^1]

Entry 4. (CAS 796966-22-8 for (R)-enantiomer) Pale yellow solid. 90\% yield.
The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 20.3 min [minor enantiomer], 32.1 min [major enantiomer]. 97% ee. $[\alpha]^{20}{ }_{\mathrm{D}}+20.4$ (c $1.00, \mathrm{CHCl}_{3}$). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.55\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.13\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.99\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.72\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.52(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 159.1,143.2,140.9,137.6,132.9,129.4,128.7,128.6,127.6,127.4,127.3,114.0$, 60.9, 55.4, 21.6.

(R)-6d

Entry 5. (CAS 898269-04-0 for (R)-enantiomer) White solid. 95\% yield.
The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 15.0 min [major enantiomer], 17.6 min [minor enantiomer]. 94% ee. $[\alpha]^{20}{ }_{\mathrm{D}}+27.5$ (c 1.01, CHCl_{3}). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.51\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.24-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.1\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 6.97\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.78\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$ and ${ }^{4} J_{\mathrm{HH}}=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.76\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.65\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 156.5,142.9,140.7,137.6,129.7,129.2$, 129.1, 128.2, 127.8, 127.2, 127.1, 126.9, 120.8, 111.2, 59.1, 55.4, 21.5.

(R)-6e

Entry 6. (CAS $158568-79-7$ for (R)-enantiomer) Gray solid. 83% yield.
The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $90 / 10$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 24.6 min [minor enantiomer], 26.6 min [major enantiomer]. 96% ee. $[\alpha]^{20}{ }_{\mathrm{D}}+14.8$ (c 1.02, CHCl_{3}). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.58\left(\mathrm{~d},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.26-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.16\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.19\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=3.3\right.$ and $\left.1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.99\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 152.4, 143.3, 142.7, 138.4, 137.5, 129.5, 128.7, 128.1, 127.4, 127.2, 110.4, 108.5, 55.6, 21.6.

(S)-6f

Entry 7. The reaction was conducted for 24 h using 0.4 equiv of KOH . White solid. 73% yield.

The ee was determined on a Daicel Chiralcel OJ-H column with hexane/2-propanol = $98 / 2$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 72.4 min [major enantiomer], 87.2 min [minor enantiomer]. 97% ee. $[\alpha]^{20}{ }_{\mathrm{D}}-11.8$ (c 1.01, CHCl_{3}). The absolute configuration was assigned by analogy with entry1.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H})$, $5.57-5.53(\mathrm{~m}, 1 \mathrm{H}), 4.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $1.98-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.32(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 143.2,139.6$, $137.9,135.7,129.4,128.5,127.5,127.0,125.9,63.4,25.2,25.0,22.4,22.1,21.6$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 70.35 ; \mathrm{H}, 6.79$. Found: C, 70.27 ; $\mathrm{H}, 6.57$.

Entry 8. (CAS 1112116-79-6 for (S)-enantiomer) The reaction was conducted in dioxane/ $\mathrm{H}_{2} \mathrm{O}(100 / 1)$. White solid. 73% yield.

The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 9.6 min [minor enantiomer], 15.3 min [major enantiomer]. 96% ee. $[\alpha]^{20}{ }_{D}-27.0\left(c 0.64, \mathrm{CHCl}_{3}\right)$. The absolute configuration was assigned by analogy with entry 1 .
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.45\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.11-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.03\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.02$ $(\mathrm{m}, 3 \mathrm{H}), 0.98-0.80(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 142.7,140.1,137.9,129.2,128.1,127.14$, 127.12, 126.9, 63.6, 43.9, 29.9, 29.6, 26.3, 26.0, 21.5.

Entry 9. (CAS 796966-17-1 for (S)-enantiomer) White solid. 83\% yield.
The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 17.1 min [major enantiomer], 22.9 min [minor enantiomer]. 96% ee. $[\alpha]^{20}{ }_{\mathrm{D}}-4.7$ (c $0.99, \mathrm{CHCl}_{3}$). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{9}$

Entry 10. (CAS 796966-18-2 for (S)-enantiomer) Pale brown solid. 87% yield.
The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 19.9 min [major enantiomer], 31.3 min [minor enantiomer]. 96% ee. $[\alpha]^{20}{ }_{\mathrm{D}}-19.1$ (c 1.00, CHCl_{3}). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{9}$

(S)-6h

Entry 11. (CAS 738626-20-5 for (S)-enantiomer) The reaction was conducted for 24 h using 0.4 equiv of KOH. Pale yellow solid. 70% yield.

The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 12.9 min [minor enantiomer], 15.6 min [major enantiomer]. 96% ee. $[\alpha]^{20}{ }_{\mathrm{D}}+10.3$ (c $0.99, \mathrm{CHCl}_{3}$). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 4 \mathrm{H})$, $7.08-7.02(\mathrm{~m}, 4 \mathrm{H}), 5.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.96\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.16$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 143.3,140.1,138.4,137.6,135.6,130.8,129.4,128.7,127.7$, 127.3, 127.2, 126.3, 58.2, 21.6, 19.5.

(S)-6i

Entry 12. (CAS 1171048-75-1 for racemate) White solid. 93\% yield.
The ee was determined on two Daicel Chiralpak AD-H columns with hexane/2-propanol $=80 / 20$, flow $=0.3 \mathrm{~mL} / \mathrm{min}$. Retention times: 94.7 min [minor enantiomer], 103.1 min [major enantiomer]. 98% ee. $[\alpha]^{20}{ }_{\mathrm{D}}-14.9\left(c 0.99, \mathrm{CHCl}_{3}\right)$. The absolute configuration was assigned by analogy with entry 1 .
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.78-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.67\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H})$, $7.55\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.14(\mathrm{~m}$, $3 \mathrm{H}), 7.03\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.74\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.29(\mathrm{bs}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 143.3,140.5,137.7,137.5,133.1,132.7,129.4,128.7,128.6,128.1,127.7$, $127.64,127.59,127.3,126.5,126.3,126.2,125.3,61.6,21.5$.

(S)-6j

Entry 13. (CAS 1032583-00-8 for racemate) Pale brown solid. 88% yield.
The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 15.1 min [major enantiomer], 19.8 min [minor enantiomer]. 96% ee. $[\alpha]^{20}{ }_{\mathrm{D}}+3.3$ (c 1.02, CHCl_{3}). The absolute configuration was assigned by analogy with entry 1 .
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.56\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.1\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 143.3,142.0$, $140.3,137.6,129.5,128.7,127.8,127.31,127.26,126.8,126.6,123.0,57.7,21.6$.

Entry 14. White solid. 86\% yield.
The ee was determined on a Daicel Chiralcel OJ-H column with hexane/2-propanol = $98 / 2$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 72.7 min [minor enantiomer], 82.6 min [major enantiomer]. 89% ee. $[\alpha]^{20}{ }_{\mathrm{D}}+11.2\left(c 1.00, \mathrm{CHCl}_{3}\right)$. The absolute configuration was assigned by analogy with entry 1 .

(R)-6k

Entry 15. (CAS 796966-23-9 for (R)-enantiomer) Pale yellow solid. 91\% yield.
The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 26.1 min [major enantiomer], 35.1 min [minor enantiomer]. 95% ee. $[\alpha]^{20}{ }_{\mathrm{D}}-13.7$ (c 1.03, CHCl_{3}). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{9}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.55\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.19-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.8\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 6.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.73\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.49\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 159.2,143.4$, 139.4, 137.4, 133.4, 132.4, 129.5, 128.8, 128.6, 127.3, 114.1, 60.4, 55.4, 21.6.

Procedure for Equation 3.

$4 \mathrm{M} \mathrm{KOHaq}(10 \mu \mathrm{~L}, 40 \mu \mathrm{~mol})$ was added to a solution of $[\operatorname{RhCl}((S)-1 \mathbf{c})]_{2}(5.6 \mathrm{mg}, 10$ $\mu \mathrm{mol} \mathrm{Rh}$), imine $8(64.9 \mathrm{mg}, 0.200 \mathrm{mmol})$, and phenylboroxine ($62.3 \mathrm{mg}, 0.600 \mathrm{mmol} \mathrm{B}$) in dioxane (0.50 mL), and the mixture was stirred for 6 h at $60^{\circ} \mathrm{C}$. This was directly passed through a pad of silica gel with EtOAc and the solvent was removed under vacuum. The residue was purified by silica gel preparative TLC with EtOAc/hexane/ $\mathrm{MeOH}=3 / 16 / 2$ and then with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $/ \mathrm{MeOH}=100 / 20 / 1$ to afford compound 9 (CAS 840529-66-0) as a white solid ($61.3 \mathrm{mg}, 0.152 \mathrm{mmol} ; 76 \%$ yield).

The ee was determined on a Daicel Chiralcel OD-H column with hexane/2-propanol = $80 / 20$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$. Retention times: 27.5 min [minor enantiomer], 50.6 min [major enantiomer]. 94% ee. $[\alpha]^{20}{ }_{\mathrm{D}}+1.2$ (c 1.00, CHCl_{3}). The absolute configuration was determined by comparison of the optical rotation with the literature value. ${ }^{10}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.78\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.24-7.19$ $(\mathrm{m}, 5 \mathrm{H}), 7.09\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.28(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 149.9,146.2,139.1,138.3,134.2,129.1,129.0$, 128.9, 128.44, 128.42, 127.4, 124.1, 61.2 .

[^2]Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

IV. X-ray Crystal Structure of $\mathbf{R h}(\mathbf{a c a c})((S)$-1a)

Data Collection

A yellow $\mathrm{C}_{6} \mathrm{H}_{6}$ solution of $\mathrm{Rh}(\mathrm{acac})((S)$-1a) was prepared. Crystals suitable for X-ray analysis were obtained by diffusion of pentane at room temperature.

A yellow prism crystal of $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{PRh}$ having approximate dimensions of 0.20×0.10 x 0.10 mm was mounted on a glass fiber. All measurements were made on a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation.

Indexing was performed from 3 oscillations that were exposed for 90 seconds. The crystal-to-detector distance was 127.40 mm .

Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions:

$$
\begin{aligned}
& \mathrm{a}=8.270(3) \AA \\
& \mathrm{b}=11.652(5) \AA \\
& \mathrm{c}=26.490(8) \AA \\
& \mathrm{V}=2552.7(15) \AA^{3}
\end{aligned}
$$

For $\mathrm{Z}=4$ and F.W. $=559.45$, the calculated density is $1.456 \mathrm{~g} / \mathrm{cm}^{3}$. The systematic absences of:
$h 00: h \pm 2 n$
$0 \mathrm{k} 0: \mathrm{k} \pm 2 \mathrm{n}$
001: $1 \pm 2 n$
uniquely determine the space group to be:

$$
\mathrm{P} 2_{1} 2_{1} 2_{1}(\# 19)
$$

The data were collected at a temperature of $-150 \pm 1^{\circ} \mathrm{C}$ to a maximum 2θ value of 55.0°. A total of 42 oscillation images were collected. A sweep of data was done using ω scans from 130.0 to 190.0° in 5.0° step, at $\chi=45.0^{\circ}$ and $\phi=0.0^{\circ}$. The exposure rate was $500.0\left[\mathrm{sec} . /^{\circ}\right]$. A second sweep was performed using ω scans from 0.0 to 160.0° in 5.0° step, at $\chi=45.0^{\circ}$
and $\phi=180.0^{\circ}$. The exposure rate was $500.0\left[\mathrm{sec} . /^{\circ}\right]$. The crystal-to-detector distance was 127.40 mm . Readout was performed in the 0.100 mm pixel mode.

Data Reduction

Of the 22742 reflections that were collected, 5782 were unique $\left(\mathrm{R}_{\mathrm{int}}=0.102\right)$.
The linear absorption coefficient, μ, for Mo-K α radiation is $7.565 \mathrm{~cm}^{-1}$. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods ${ }^{11}$ and expanded using Fourier techniques. ${ }^{12}$ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement ${ }^{13}$ on F was based on 18345 observed reflections ($\mathrm{I}>2.00 \sigma(\mathrm{I}$)) and 339 variable parameters and converged (largest parameter shift was 0.01 times its esd) with unweighted and weighted agreement factors of:

$$
\begin{gathered}
\mathrm{R}=\Sigma\|\mathrm{Fol}-|\mathrm{Fc} \| / \Sigma| \mathrm{Fol}=0.0594 \\
\mathrm{R}_{\mathrm{W}}=\left[\Sigma \mathrm{w}(|\mathrm{Fol}-| \mathrm{Fcl})^{2} / \Sigma \mathrm{w} \mathrm{Fo}^{2}\right]^{1 / 2}=0.0818
\end{gathered}
$$

The standard deviation of an observation of unit weight ${ }^{14}$ was 1.00 . A Chebychev polynomial weighting scheme was used. ${ }^{15}$ Plots of $\Sigma \mathrm{w}$ ($\left.|\mathrm{Fol}|-\mid \mathrm{Fc\mid}\right)^{2}$ versus \mid Fol, reflection order in data collection, $\sin \theta / \lambda$ and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 3.06 and $-3.34 \mathrm{e}^{-} / \AA^{3}$, respectively. The absolute structure was deduced based on Flack parameter, $0.04(3)$, refined using 2473 Friedel pairs. ${ }^{16}$

Neutral atom scattering factors were taken from Cromer and Waber. ${ }^{17}$ Anomalous dispersion effects were included in Fcalc; ${ }^{18}$ the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley. ${ }^{19}$ The values for the mass attenuation coefficients are those of Creagh and

[^3]Hubbell. ${ }^{20}$ All calculations were performed using the CrystalStructure ${ }^{21,22}$ crystallographic software package.

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 819417). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/conts/retrieving.html.

[^4]
Experimental Details

A. Crystal Data

Empirical Formula	$\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{PRh}$
Formula Weight	559.45
Crystal Color, Habit	yellow, prism
Crystal Dimensions	0.20 X 0.10 X 0.10 mm
Crystal System	orthorhombic
Lattice Type	Primitive
Indexing Images	3 oscillations @ 90.0 seconds
Detector Position	127.40 mm
Pixel Size	0.100 mm
Lattice Parameters	$\mathrm{a}=8.270(3) \AA$
	$\mathrm{b}=11.652(5) \AA$
c $=26.490(8) \AA$	
Space Group	$\mathrm{V}=2552.7(15) \AA^{3}$
Z value	$\mathrm{P} 2_{1} 2_{1} 2_{1}(\# 19)$
Dcalc	4
F000	$1.456 \mathrm{~g} / \mathrm{cm}^{3}$
$\mu($ MoK $\alpha)$	1152.00

B. Intensity Measurements

Diffractometer	Rigaku RAXIS-RAPID
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71075$ graphite monochromated
Detector Aperture	$280 \mathrm{~mm} \times 256 \mathrm{~mm}$
Data Images	42 exposures
ω oscillation Range $(\chi=45.0, \phi=0.0)$	$130.0-190.0^{\circ}$
Exposure Rate	500.0 sec. $/^{\circ}$
ω oscillation Range $(\chi=45.0, \phi=180.0)$	$0.0-160.0^{\circ}$
Exposure Rate	$500.0 \mathrm{sec} . /^{\circ}$
Detector Position	127.40 mm
Pixel Size	0.100 mm
2θ max	55.0°
No. of Reflections Measured	Total: 22742
Unique: $5782($ Rint $=0.102)$	

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F
Function Minimized	$\Sigma \mathrm{w}(\mathrm{IFol}-\mid \mathrm{Fcl})^{2}$
Least Squares Weights	Chebychev polynomial with 3 parameters $63.9849,68.2451,17.9686$
2өmax cutoff	55.0°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (I>2.00б(I))	18345
No. Variables	339
Reflection/Parameter Ratio	54.12
Residuals: R (I>2.00 $\sigma(\mathrm{I})$)	0.0594
Residuals: Rw (I>2.00 $\sigma(\mathrm{I})$)	0.0818
Goodness of Fit Indicator	1.003
Flack parameter	$0.04(3)$
Max Shift/Error in Final Cycle	0.006
Maximum peak in Final Diff. Map	$3.06 \mathrm{e}^{-} / \AA^{3}$
Minimum peak in Final Diff. Map	$-3.34 \mathrm{e}^{-/ / \AA^{3}}$

V. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

compound 1b

compound 1b

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

$\mathrm{Rh}(\mathrm{acac})(\mathbf{1 a})$

| compound 6a | |
| :--- | :--- | :--- |

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications

compound $\mathbf{6 f}$

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

compound 6h

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications
compound $6 \mathbf{i}$

Electronic Supplementary Material (ESI) for Chemical Communications

Electronic Supplementary Material (ESI) for Chemical Communications
compound 9

Electronic Supplementary Material (ESI) for Chemical Communications

[^0]: ${ }^{1}$ Luly, J. R.; Dellaria, J. F.; Plattner, J. J.; Soderquist, J. L.; Yi, N. J. Org. Chem. 1987, 52, 1487.
 ${ }^{2}$ Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 4611.
 ${ }^{3}$ Russo, F.; Wångsell, F.; Sävmarker, J.; Jacobsson, M.; Larhed, M. Tetrahedron 2009, 65, 10047.
 ${ }^{4}$ Miyamura, H.; Akiyama, R.; Ishida, T.; Matsubara, R.; Kobayashi, S. Tetrahedron 2005, 61, 12177.
 ${ }^{5}$ Cramer, R. Inorg. Synth. 1974, 15, 16.
 ${ }^{6}$ Cramer, R. Inorg. Synth. 1974, 15, 14.
 ${ }^{7}$ (a) Love, B. E.; Raje, P. S.; Williams II, T. C. Synlett 1994, 493. (b) Brichacek, M.; Lee, D.; Njardarson, J. T. Org. Lett. 2008, 10, 5023. (c) Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75.
 ${ }^{8}$ Chen, F.-X.; Kina, A.; Hayashi, T. Org. Lett. 2006, 8, 341.

[^1]: ${ }^{9}$ Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584.

[^2]: ${ }^{10}$ Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. Org. Lett. 2005, 7, 307.

[^3]: ${ }^{11}$ SIR92: Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.; Polidori, G.; Camalli, M. J. Appl. Cryst. 1994, 27, 435.
 ${ }^{12}$ DIRDIF99: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands (1999).
 ${ }^{13}$ Least Squares function minimized:

 $$
 \Sigma w\left(\left|\mathrm{~F}_{\mathrm{O}}-|-| \mathrm{F}_{\mathrm{C}}\right)^{2} \quad \text { where } \mathrm{w}=\right.\text { Least Squares weights. }
 $$

 ${ }^{14}$ Standard deviation of an observation of unit weight:
 $\left[\Sigma w\left(\mid \mathrm{F}_{\mathrm{O}}--\mathrm{F}_{\mathrm{C}}\right)^{2} /\left(\mathrm{N}_{\mathrm{O}}-\mathrm{N}_{\mathrm{V}}\right)\right]^{1 / 2}$
 where: $\mathrm{N}_{\mathrm{O}}=$ number of observations, $\mathrm{N}_{\mathrm{V}}=$ number of variables
 ${ }^{15}$ Carruthers, J. R.; Watkin, D. J. Acta Crystallogr. 1979, A35, 698.
 ${ }^{16}$ Flack, H. D. Acta Crystallogr. 1983, A39, 876.
 ${ }^{17}$ Cromer, D. T.; Waber, J. T. "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).
 ${ }^{18}$ Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
 ${ }^{19}$ Creagh, D. C.; McAuley, W. J. "International Tables for Crystallography", Vol C, (A. J. C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

[^4]: ${ }^{20}$ Creagh, D. C.; Hubbell, J. H. "International Tables for Crystallography", Vol C, (A. J. C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).
 ${ }^{21}$ CrystalStructure 3.8: Crystal Structure Analysis Package, Rigaku and Rigaku Americas (2000-2007). 9009 New Trails Dr. The Woodlands TX 77381 USA.
 ${ }^{22}$ CRYSTALS Issue 11: Carruthers, J. R.; Rollett, J. S.; Betteridge, P. W.; Kinna, D.; Pearce, L.; Larsen, A.; Gabe, E. Chemical Crystallography Laboratory, Oxford, UK (1999).

