Chemical Communications

Electronic Supporting Information

Access to unusual polycyclic spiro enones from 2,2⁻-bis(allyloxy)-1,1⁻-binaphthyls using Grubbs⁻ catalysts: An unprecedented *one-pot* RCM/Claisen sequence

Estefanía Piedra, Javier Francos, Noel Nebra, Francisco J. Suárez, Josefina Díez, and Victorio Cadierno*

Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" (Unidad Asociada al CSIC), Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Principado de Asturias, Spain. Fax: +34985103446; Tel: +34985103453; E-mail: vcm@uniovi.es.

were obtained General methods: All reagents from commercial suppliers and used without further purification with the exception of compounds 2,2⁻bis(allyloxy)-1,1⁻ (**1a**),¹ 6,6⁻dibromo-2,2⁻dihydroxy-1,1⁻ binaphthyl binaphthyl,² 7,7⁻dibromo-2,2⁻dihydroxy-1,1⁻binaphthyl,³ and 7,7⁻dimethoxy-2,2⁻dihydroxy-1,1⁻binaphthyl,⁴ which were prepared by following the methods reported in the literature. Flash chromatography was performed using Merck (230-400 mesh). Infrared silica qel 60 spectra were Perkin-Elmer 1720-XFT spectrometer. recorded on a NMR spectra were recorded on a Bruker DPX-300 instrument at 300 MHz (^{1}H) or 75.4 MHz (^{13}C) . The chemical shift values (δ) are given in parts per million and are referred to the residual peak of the deuterated solvent used $(CDCl_3)$. ESI-TOF high-resolution mass spectra were provided by the mass spectrometry service of the University of Seville (Spain).

Preparation of 2,2⁻bis(allyloxy)-6,6⁻dibromo-1,1⁻ **binaphthyl** (1b): A solution of 6,6⁻dibromo-2,2⁻dihydroxy-1,1⁻binaphthyl (4.44 g, 10 mmol) in 60 mL of dry acetone was treated, under nitrogen atmosphere, with KOH (1.68 g, 30 mmol) at 60 °C for 1 hour. Allyl bromide (2.2 mL, 25 mmol) was then added and the resulting solution heated at 60 °C for additional 24 hours. The mixture was cooled to room temperature, filtered, and the filtrate concentrated under reduced pressure to give a pale yellow solid. The crude product was purified by flash chromatography (silica gel; eluent AcOEt/hexane 1:20) to afford 1b as a white solid (0.40 q, 84%). IR (Nujol) v 1580 (C=C) cm⁻¹; ¹H NMR $(CDCl_3, 300 \text{ MHz}) \delta 4.55 \text{ (m, 4H)}, 5.05 \text{ (m, 4H)}, 5.76 \text{ (m, }$ 2H), 7.01 (d, J = 9.0 Hz, 2H), 7.30 (dd, J = 9.0 and 2.0 Hz, 2H), 7.42 (d, J = 9.0 Hz, 2H), 7.87 (d, J = 9.0 Hz, 2H), 8.04 (d, J = 2.0 Hz, 2H) ppm; ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 75.4 MHz) δ 70.2, 116.8, 117.1, 117.9, 120.2, 127.5, 128.9,

130.0, 130.3, 130.7, 132.9, 133.7, 154.7 ppm; HRMS (ESI-TOF) m/e (M⁺) 523.9803 (C₂₆H₂₀Br₂O₂ requires 523.9810).

Preparation of 2,2⁻-bis(allyloxy)-7,7⁻-dibromo-1,1⁻binaphthyl (1c): Compound 1c, isolated as a white solid in 81% yield (4.25 g), was prepared as described for 1b starting from 7,7⁻-dibromo-2,2⁻-dihydroxy-1,1⁻-binaphthyl (4.44 g, 10 mmol) and allyl bromide (2.2 mL, 25 mmol). IR (Nujol) ν 1615 (C=C) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 4.58 (br, 4H), 5.06 (m, 4H), 5.77 (m, 2H), 7.37-7.46 (m, 6H), 7.75 (d, J = 8.7 Hz, 2H), 8.93 (d, J = 9.0 Hz, 2H) ppm; ¹³C{¹H} NMR (CDCl₃, 75.4 MHz) δ 69.7, 115.6, 116.9, 118.7, 121.1, 127.1, 127.2, 127.7, 129.6, 129.7, 133.3, 135.3, 154.7 ppm; HRMS (ESI-TOF) m/e (M⁺) 523.9797 (C₂₆H₂₀Br₂O₂ requires 523.9810).

Preparation of 2,2⁻-bis(allyloxy)-7,7⁻-dimethoxy-1,1⁻binaphthyl (1d): Compound 1d, isolated as a white solid in 74% yield (3.15 g), was prepared as described for 1b starting from 7,7⁻-dimethoxy-2,2⁻-dihydroxy-1,1⁻-binaphthyl (4.26 g, 10 mmol) and allyl bromide (2.2 mL, 25 mmol). IR (Nujol) ν 1614 (C=C) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.60 (s, 6H), 4.64 (br, 4H), 5.15 (m, 4H), 5.89 (m, 2H), 6.74 (s, 2H), 7.16 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 8.9 Hz, 2H), 7.86 (d, J = 8.8 Hz, 2H), 7.95 (d, J = 8.9 Hz, 2H) ppm; ¹³C{¹H} NMR (CDCl₃, 75.4 MHz) δ 55.0, 69.8, 104.2, 113.0, 116.3, 116.5, 119.6, 125.1, 129.1, 129.7, 134.0, 135.6, 154.8, 158.3 ppm; HRMS (ESI-TOF) m/e (M⁺) 426.1833 (C₂₈H₂₆O₄ requires 426.1831).

General procedure for the catalytic reactions: Under nitrogen atmosphere, the corresponding $2,2^{-}$ -bis(allyloxy)-1,1⁻-binaphthyl derivative **1a-d** (0.5 mmol), the ruthenium catalyst [RuCl₂(=CHPh)(PCy₃)₂] (0.012 g, 0.015 mmol; 3 mol%

of Ru) and dichloromethane (10 mL) were introduced into a crimp-sealed thick-walled qlass tube equipped with а pressure sensor and a magnetic stirrer. The tube was then placed inside the cavity of a CEM Discover[®] S-Class microwave synthesizer and exposed to MW-irradiation at a constant temperature of 120 °C (temperature monitored by a built-in infrared sensor) for 3 hours (MW power 300 W; Pmax 70-100 psi). After removal of volatiles under vacuum, the solid residue was purified by column chromatography over silica gel. Thus, initial elution with EtOAc/hexanes (1:10) qave a colourless band from which spriro enones 2a-d were solvent removal. Further elution with obtained by EtOAc/hexanes (1:5)qave а second band from which could macrocycles 3a-b be isolated in pure form. Characterization data for all these new compounds are as follows:

2-vinyl-2,3-dihydro-2'H-spiro[benzo[f]chromene-1,1'naphthalen]-2'-one (2a): White solid; Yield: 0.133 g (79%);

IR (Nujol) v 1617 (C=C), 1660 (C=O) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.99 (m, 1H), 4.12 (dd, J = 11.1 and 3.4 Hz, 1H), 4.56 (t, J = 10.8 Hz, 1H), 4.66 (d, J = 17.0 Hz, 1H), 4.93 (d, J = 10.5 Hz, 1H), 5.50 (m, 1H), 6.38 (d, J = 9.5 Hz, 1H), 6.65

(d, J = 8.5 Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H), 7.01-7.27 (m, 5H), 7.42 (d, J = 8.5 Hz, 1H), 7.67 (m, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃, 75.4 MHz) δ 54.4, 56.9, 63.0, 115.7, 118.5, 119.0, 123.0, 123.8, 126.3, 126.9, 127.5, 128.5, 129.1, 129.9, 13021, 130.3, 130.7, 131.1, 131.6, 145.5, 147.6, 154.9, 201.5 ppm; HRMS (ESI-TOF) m/e (M⁺ + H) 339.1386 (C₂₄H₁₉O₂ requires 339.1385).

7^{,8-dibromo-2-vinyl-2,3-dihydro-2'H-}

spiro[benzo[f]chromene-1,1'-naphthalen]-2'-one (2b): White

solid; Yield: 0.181 g (73%); IR (Nujol) ν 1616 (C=C), 1655 (C=O) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.94 (m, 1H), 4.12 (dd, J = 10.5 and 2.6 Hz, 1H), 4.54 (t, J = 10.6 Hz, 1H), 4.72 (d, J = 17.2 Hz, 1H), 4.99 (d, J = 10.3 Hz, 1H), 5.49 (m, 1H), 6.40 (d,

 $J = 9.9 \text{ Hz}, 1\text{H}, 6.48 \text{ (d, } J = 9.2 \text{ Hz}, 1\text{H}, 6.64 \text{ (d, } J = 8.3 \text{ Hz}, 1\text{H}, 7.12-7.28 \text{ (m, } 3\text{H}), 7.54-7.65 \text{ (m, } 3\text{H}), 7.86 \text{ (br, } 1\text{H}) \text{ ppm; } {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR (CDCl}_{3}, 75.4 \text{ MHz}) \delta 56.4, 58.7, 64.9, \\ 117.4, 118.8, 121.2, 122.3, 122.8, 127.3, 129.4, 131.2, \\ 131.7, 132.1, 132.5, 132.6, 133.5, 133.6, 134.2, 135.5, \\ 145.9, 148.0, 157.3, 202.5 \text{ ppm; HRMS (ESI-TOF) } m/e \text{ (M}^+ + \text{H}) \\ 496.9590 \text{ (C}_{24}\text{H}_{17}\text{Br}_2\text{O}_2 \text{ requires } 496.9575). \\ \end{cases}$

6['],9-dibromo-2-vinyl-2,3-dihydro-2'H-

spiro[benzo[f]chromene-1,1'-naphthalen]-2'-one (2c): White

solid; Yield: 0.166 g (67%); IR (Nujol) v 1615 (C=C), 1651 (C=O) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.00 (m, 1H), 4.14 (dd, J = 11.2 and 3.7 Hz, 1H), 4.57 (t, J = 10.9 Hz, 1H), 4.74 (d, J = 17.0 Hz, 1H), 4.98 (d, J = 10.4 Hz, 1H), 5.47 (m,

1H), 6.44 (d, J = 9.9 Hz, 1H), 6.84 (d, J = 1.3 Hz, 1H), 6.94 (d, J = 1.8 Hz, 1H), 7.21-7.72 (m, 7H) ppm; ¹³C{¹H} NMR (CDCl₃, 75.4 MHz) δ 54.5, 56.4, 63.0, 114.5, 119.3, 119.7, 121.1, 125.7, 125.9, 126.6, 126.7, 128.7, 129.4, 130.1, 130.3, 130.4, 130.5, 130.8, 132.8, 144.4, 149.0, 155.7, 200.3 ppm; HRMS (ESI-TOF) m/e (M⁺ + H) 496.9592 (C₂₄H₁₇Br₂O₂ requires 496.9575).

6['],9-dimethoxy-2-vinyl-2,3-dihydro-2'H-

spiro[benzo[f]chromene-1,1'-naphthalen]-2'-one (2d): White

solid; Yield: 0.139 q (70%); IR (Nujol) ν 1621 (C=C), 1656 (C=O) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.06 (m, 1H), 3.34 (s, 3H), 3.61 (s, 3H), 4.12 (dd, J =11.0 and 3.7 Hz, 1H), 4.62 (t, J = 11.2Hz, 1H), 4.75 (d, J = 17.0 Hz, 1H), 4.98

(d, J = 10.4 Hz, 1H), 5.55 (m, 1H), 6.02 (d, J = 2.4 Hz,1H), 6.32 (d, J = 9.9 Hz, 1H), 6.39 (d, J = 2.6 Hz, 1H), 6.78 (d, J = 2.4 Hz, 1H), 6.81 (d, J = 2.6 Hz, 1H), 7.07 (d, J = 9.0 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.55-7.65(m, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃, 75.4 MHz) δ 54.6, 54.7, 55.2, 56.9, 63.1, 103.1, 112.3, 113.9, 115.3, 115.9, 116.4, 118.6, 124.2, 124.5, 125.4, 129.5, 129.9, 130.3, 130.9, 132.9, 144.8, 150.2, 155.5, 157.9, 162.0, 201.3 ppm; HRMS (ESI-TOF) m/e (M⁺ + H) 399.1592 (C₂₆H₂₃O₄ requires 399.1596).

(13E, 31E) -12, 15, 30, 33 - tetrahydrotetranaphtho [2, 1-b:1', 2'd:2'',1''-1:1''',2'''] [1,6,11,16] tetraoxacycloicosine (3a):

White solid; Yield: 0.014 g (8%); IR (Nujol) v 1591 (C=C) Cm^{-1} ; ¹H NMR $(CDCl_3)$, 300 MHz) δ 4.44 (m, 8H), 5.59 (br, 4H), 7.10-7.40 (m 16H), 7.82 (d, J = 8.9 Hz, 4H), 7.94 (d, J = 8.3 Hz, 4H) ppm; ${}^{13}C{}^{1}H$ NMR (CDCl₃, 75.4 MHz) δ 70.4, 116.8, 121.8, 125.4, 127.4, 128.2, 129.9, 131.1, 136.1, 155.7 ppm; HRMS (ESI-TOF) m/e (M⁺) 676.2611 (C₄₈H₃₆O₄ requires 676.2614).

(13E, 31E) -2,7,20,25-tetrabromo-12,15,30,33-

tetrahydrotetranaphtho[2,1-b:1',2'-d:2'',1''-1:1''',2'''n] [1,6,11,16] tetraoxacycloicosine (3b): White solid; Yield: 0.022 q (9%); IR (Nujol) v 1585 (C=C) cm⁻¹; ¹H NMR (CDCl₃,

300 MHz) δ 4.43 (m, 8H), 5.67 (br, 4H), 6.90 (d, J = 9.0 Hz, 4H), 7.13 (d, J = 9.0 Hz, 4H), 7.30 (m, 4H), 7.68 (d, J = 9.0 Hz,

4H), 8.08 (s, J = 1.7 Hz, 4H) ppm; ¹³C{¹H} NMR (CDCl₃, 75.4 MHz) δ 70.0, 117.3, 119.3, 121.1, 129.0, 129.6, 130.3, 131.6, 131.8, 132.0, 134.4, 155.7 ppm; HRMS (ESI-TOF) m/e (M⁺) 991.9042 (C₄₈H₃₂Br₄O₄ requires 991.9034).

Theoretical Calculations: The theoretical calculations were performed using the program package Gaussian03,⁵ at density functional theory (DFT) level by means of the hybrid B3LYP functional.⁶ In all geometry optimizations, Pople's 6-31G(d) split valence basis set was used for C, H and O were Frequency calculations performed elements. to determine whether the optimized geometries were minima on the potential energy surface. Optimized geometries of (SS) -3a and (*RS*)-**3a** are shown in Figures S1 and S2, respectively.

Figure S1. Optimized structure of (SS)-3a.

Figure S2. Optimized structure of (RS)-3a.

Cartesian coordinates and total electronic energies (Hartree) for the computed species (SS)-3a and (RS)-3a:

(SS)-**3a:** E(gas) : -2151.660805

С	7.368488	0.075914	1.887285
С	-4.017659	4.116627	2.215994
С	8.142743	-1.087474	1.652089
С	-4.814909	2.972042	2.465472
С	1.401880	-0.720719	2.836043
С	-0.629680	-2.153420	2.709704
С	0.013441	-1.039729	2.357931
С	-2.017476	-2.536608	2.289067
С	6.127336	0.223895	1.311730
С	-4.641238	1.819530	1.733543
С	-3.056172	4.076688	1.233399
С	7.649707	-2.082760	0.841618
С	1.664254	1.692317	1.288442
С	-4.603220	-2.850475	1.183292
С	2.471037	0.547581	1.056656
С	-3.657384	1.742211	0.705407

С	-2.849170	2.902547	0.459442
С	5.584610	-0.785319	0.464385
С	-3.824761	-1.688034	0.950717
С	-5.844354	-2.977295	0.602773
С	6.370863	-1.963386	0.232094
С	1.858807	2.836286	0.549669
С	-4.299365	-0.656319	0.145577
С	3.459576	0.561375	0.074063
С	-6.370728	-1.963220	-0.232475
С	-3.459601	0.561699	-0.074068
С	-1.858631	2.836408	-0.549987
С	4.299254	-0.656732	-0.145403
С	-7.649192	-2.082943	-0.842702
С	-5.584354	-0.785257	-0.464923
С	2.849510	2.902280	-0.459609
С	5.843970	-2.977961	-0.602202
С	3.657621	1.741839	-0.705435
С	-8.141773	-1.088074	-1.653983
С	3.056734	4.076378	-1.233569
С	-6.126601	0.223503	-1.313075
С	-2.471263	0.547784	-1.056868
С	-1.664374	1.692413	-1.288796
С	3.824147	-1.688934	-0.949653
С	-7.367423	0.075203	-1.889292
С	4.641567	1.819003	-1.733482
С	4.602446	-2.851516	-1.181983
С	4.018330	4.116174	-2.216069
С	4.815444	2.971478	-2.465435
С	-0.013885	-1.040119	-2.357380
С	2.016480	-2.537719	-2.287386
С	-1.402104	-0.720795	-2.835986
С	0.628961	-2.154145	-2.708582
Н	7.760507	0.859425	2.529862
Н	-4.168188	5.019298	2.800939

Η	9.121020	-1.188767	2.112930
Η	-5.571974	3.005901	3.244088
Η	1.784077	-1.533728	3.459767
Η	1.418906	0.195027	3.442608
Η	-0.142866	-2.883991	3.356714
Η	-2.635856	-2.726918	3.182003
Н	5.542924	1.118232	1.498190
Η	-5.257029	0.949262	1.932768
Η	-2.436433	4.947229	1.031367
Η	0.883194	1.673373	2.038404
Η	8.232165	-2.981592	0.653731
Η	-4.228977	-3.643455	1.819096
Η	-1.979086	-3.481341	1.722525
Η	-0.477117	-0.324295	1.704140
Η	-6.436901	-3.870105	0.785515
Η	1.237259	3.707842	0.737076
Η	-8.231758	-2.981678	-0.654693
Η	-1.236998	3.707878	-0.737522
Η	6.436386	-3.870888	-0.784763
Η	2.437072	4.946994	-1.031622
Η	-9.119778	-1.189637	-2.115344
Η	-5.542135	1.117781	-1.499623
Η	5.257264	0.948666	-1.932663
Η	-7.759067	0.858403	-2.532482
Η	-0.883448	1.673357	-2.038904
Η	4.169025	5.018801	-2.801039
Η	0.476699	-0.324610	-1.703695
Η	4.227756	-3.644959	-1.816954
Η	5.572581	3.005196	-3.243987
Η	1.977553	-3.482393	-1.720785
Η	-1.418664	0.194911	-3.442660
Η	-1.784281	-1.533754	-3.459793
Η	2.635153	-2.728303	-3.180058
Η	0.142085	-2.884748	-3.355499

0	2.349171	-0.613341	1.765054
0	-2.584869	-1.506519	1.500363
0	-2.349729	-0.613098	-1.765378
0	2.583877	-1.507758	-1.498531
(RS)	- 3a: E (gas)	-2151.574701	
С	7.311635	-1.289481	-1.771841
С	-4.631431	4.426671	0.827904
С	7.740919	-2.525906	-1.234294
С	-5.382845	3.323643	1.300239
С	1.527228	-0.072105	2.733825
С	-0.585101	-1.237863	3.047652
С	0.192515	-0.422689	2.291280
С	-1.974173	-1.716619	2.779638
С	6.164538	-0.679555	-1.307793
С	-5.075325	2.039133	0.906934
С	-3.601424	4.213845	-0.059717
С	7.020472	-3.120833	-0.216093
С	2.345442	1.979931	-1.755298
С	-4.589278	-2.491533	1.847922
С	2.748638	0.718898	-1.244119
С	-4.003295	1.777003	0.003358
С	-3.265002	2.903088	-0.492027
С	5.386979	-1.279018	-0.276244
С	-3.825338	-1.462834	1.221565
С	-5.873842	-2.766605	1.434825
С	5.827439	-2.533466	0.276562
С	2.896927	3.138993	-1.267179
С	-4.382869	-0.711953	0.187297
С	3.732533	0.650039	-0.247903
С	-6.477174	-2.035431	0.389085
С	-3.645586	0.444908	-0.407725
С	-2.209979	2.669745	-1.404618

С	4.209192	-0.666721	0.255521
С	-7.815572	-2.282638	-0.025950
С	-5.717192	-1.000889	-0.247424
С	3.859972	3.123355	-0.228666
С	5.062509	-3.147502	1.309197
С	4.277327	1.855503	0.295710
С	-8.391688	-1.542446	-1.031933
С	4.403482	4.317358	0.313275
С	-6.341801	-0.268409	-1.300264
С	-2.598786	0.270028	-1.306735
С	-1.883257	1.396324	-1.803837
С	3.493349	-1.288273	1.305722
С	-7.639283	-0.529767	-1.679130
С	5.206314	1.850019	1.376074
С	3.934074	-2.558256	1.817579
С	5.310282	4.277472	1.349527
С	5.695641	3.028652	1.895996
С	-0.047325	-1.249501	-2.440219
С	2.288946	-1.652536	-2.207617
С	-1.488869	-1.272415	-2.841497
С	0.931889	-2.135800	-2.616698
Η	7.894459	-0.809688	-2.562181
Η	-4.868066	5.437561	1.167038
Η	8.639392	-3.009997	-1.623481
Η	-6.217528	3.492502	1.984792
Η	1.764096	-0.471900	3.724138
Η	1.797080	0.986011	2.710505
Η	-0.152120	-1.630375	3.975005
Η	-2.622572	-1.471397	3.632456
Η	5.845506	0.273434	-1.731225
Η	-5.661087	1.205709	1.293213
Η	-3.026965	5.060770	-0.444927
Η	1.589494	2.020606	-2.537700
Η	7.367290	-4.059131	0.225235

Η	-4.168146	-3.078719	2.658235
Η	-1.923334	-2.810575	2.685198
Η	-0.167009	-0.052875	1.328277
Η	-6.437726	-3.565458	1.923088
Η	2.580817	4.098838	-1.683717
Η	-8.385092	-3.074121	0.468455
Η	-1.645949	3.519974	-1.796477
Η	5.380370	-4.120224	1.696734
Η	4.091433	5.279182	-0.103253
Η	-9.424482	-1.732255	-1.332758
Η	-5.775938	0.510667	-1.811698
Η	5.531528	0.895710	1.792350
Η	-8.093631	0.048555	-2.486866
Η	-1.067977	1.252158	-2.505678
Η	5.731213	5.202604	1.749125
Η	0.431619	-0.411877	-1.889181
Η	3.351005	-3.043012	2.601020
Η	6.388569	3.000423	2.740466
Η	2.754941	-2.207846	-1.388284
Η	-1.688470	-0.516926	-3.609269
Η	-1.794670	-2.240788	-3.250077
Η	2.991806	-1.614410	-3.048743
Н	0.802636	-3.133449	-3.055543
0	2.091864	-0.356439	-1.726020
0	-2.532132	-1.131933	1.604308
0	-2.291181	-1.017518	-1.665369
0	2.413532	-0.745496	1.786398

References:

- 1 H.-T. Stock and R. M. Kellogg, J. Org. Chem., 1996, 61, 3093.
- 2 K. Ding, Y. Wang, L. Zhang, Y. Wu and T. Matsuura, Tetrahedron, 1996, **52**, 1005.

6

- 3 M. Bandin, S. Casolari, P. G. Cozzi, G. Proni, E. Schmohel, G. P. Spada, E. Tagliavini and A. Umani-Ronchi, *Eur. J. Org. Chem.*, 2000, 491.
- 4 J. K. Joseph, S. L. Jain and B. Sain, *Catal. Commun.*, 2006, **7**, 184.
- 5 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. Ε. Scuseria, M. A. Robb, J. R. Cheeseman, J. Α. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Α. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. в. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, in Gaussian 03, Revision C.02: Gaussian, Inc., Wallingford CT, 2004.
 - (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b)
 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988,
 37, 785; (c) P. J. Stephens, F. J. Devlin, C. F.
 Chabalowski and M. J. Frisch, J. Phys. Chem., 1994,
 98, 11623.

Figure S3. The twisted conformation adopted by the 1,1'binaphthyl-2,2'-diyl unit in intermediate A.

Copies	of	the	$^{1}\mathbf{H}$	and	¹³ C{ ¹ H	} NMR	spectr	ra o	of a	11	new
compoun	ds:										
	8.0468 8.0468 7.8824 7.8525	7.4434 7.4135 7.3243 7.3178 7.2944		= -5.8006 -5.7911 -5.7831 -5.7743 -5.7743 -5.7675	5.7509 5.7414 5.7414 5.7339 5.0745 5.0687 5.0687 5.0667	-5.0321 -5.0263 -5.0212 -5.0123 -5.0153 -5.0044	4,5559 4,5560 4,5560 4,5598 4,5398 4,5340		*** Current E NAME EXPNO PROCNO *** Acquisitio	ata Paramete : Ja : ESPECT- : : n Parameters	rs *** vi -1 1 ; ***
Br									AQ_mod BF1 CPDPRGT NC NS	da 300.130000	qd 00 MHz -2 35
Br		0 (1b)							O1 O2 SW TE *** Processin	1500.6 1650.7 23.938 298 g Parameters	35 Hz 71 Hz 59 ppm .2 K ***
									*** 1D NMR I SR ppm_cm Hz_cm AQ_time	Plot Paramete 0.0 1.0 325.0 1.710490	ns *** 00 Hz 08 06 00 sec
ntegral			2512 2513 2513	8680	3910						
12.0 11.0	10.0	9.0	(010) 8.0	ni 7.0 6.0 (p	N 5.0 4.1 pm)	0 3.0	2.0 1.0	0.0	1		
			130.7100 130.2736 130.0555 130.0555 128.9136	120.2369 117.8804 117.1095 116.8186	70.1986				Current Da NAME EXPNO PROCNO *** Acquisition AQ_mod	ata Parameter Jav ESPECT~ Parameters qsir	s *** /i 1 3 ***
Br									BF1 CPDPRGT NC COLORNS	75.467719 - 8: 7545.9: 1200.5: 238.298	0 MHz 1 3 3 Hz 2 Hz 1 pom
Br			b)						TE : *** Processin LB : *** 1D NMR F SR : ppm_cm : Hz_cm :	200.500 298. g Parameters ' 3.00 lot Parameters -0.00 11.33 856.44	2 K 2 K 5 *** 0 Hz 5
									AQ_time :	0.910950) sec
				E.							
aasahibaali ayo suud oo bu	hiterative developed an east	1 within the memory			h, seense the second card only on the original on	ne a li sta concesta da la balla a del la bal	househilders at unsuch seen with all class	unerstates (. 100. 16			
200	180	160	140	120 (p	bw) bw)	60 ×	40 20	0			

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

