Solvent-Dependent Photoresponsive Conductivity of Azobenzene-Appended Ionic Liquids

Shiguo Zhang, Shimin Liu, Qinghua Zhang and Youquan Deng*

Centre for Green Chemistry and Catalysis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. Graduate School of Chinese Academy of Science, Beijing, 100039, China

Fax: +86-931-4968116; Tel: +86-931-4968116; E-mail: ydeng@licp.cas.cn

1. Synthesis of ILs

Scheme S1. Synthetic route of photoresponsive ionic liquids

1.1. Synthesis of 4-((2,6-dimethylphenyl)diazenyl)phenol (A5).

2,6-dimethyl aniline (30.30 g, 0.250 mol) and concentrated hydrochloric acid (67.4 mL) were dissolved in water (300 mL) and were kept at 0-5 °C. Sodium nitrite (17.23 g, 0.250 mol) was dissolved in 40 ml deionized water and the solution was added, dropwise, to the 2,6-dimethyl aniline solution. Then a solution of phenol (23.47 g, 0.250 mol), Na₂CO₃ (27.18 g, 0.257 mol), and NaOH (10.26 g, 0.257mol) dissolved in 150 mL deionized water was slowly added to the above solution. After being stirred for 4 h, the solution above was treated with hydrochloric acid to modulate the pH to 7. Then the solution was decanted and the precipitate was recrystallized by diethyl ether/hexane (1:9). The product was obtained as a slightly yellow solid (35.64 g, 63%). ¹H NMR (acetone-d6): δ = 2.290 (s, 6H), 7.010-7.032 (d, 2H), 7.129 (s, 3H), 7.817-7.839 (d, 2H), 9.101 (s, 1H).

1.2. Synthesis of 1-(4-((6-bromohexyl)oxy)phenyl)-2-(2,6-dimethylphenyl)diazene (B5).

A mixture of 1,6-dibromohexane (57.00 g, 0.234 mol), **A5** (17.64 g, 0.078 mol), and K₂CO₃ (40.00 g, 0.289 mol) in 300 mL acetonitrile were refluxed with stirring for 24 h. The mixture was poured into water and extracted with methylene chloride. The extract was dried over anhydrous magnesium sulfate and evaporated to dryness. A crude product was purified by column chromatography on silica gel using a 1/5 mixture of dichloromethane and petroleum ether as eluent, yield 77 % (23.41 g). ¹H NMR (CDCl₃): δ = 1.474-1.547 (m, 4H), 1.836-1.917 (m, 4H), 2.310 (s, 6H), 3.420-3.460 (t, 2H), 4.040-4.073 (t, 2H), 6.999-7.021 (d, 2H), 7.111 (s, 3H), 7.881-7.903 (d, 2H).

1.3. Synthesis of 1-butyl-3-(6-(4-((2,6-dimethylphenyl)diazenyl)phenoxy)hexyl)imidazolium bromide (C5).

A mixture of 1-butylimidazole (6.21 g, 0.050 mmol) and **B5** (21.41 g, 0.055 mol) in 150 mL acetonitrile were refluxed with stirring for 24 h. Two phases were formed at the end of the reaction. After removing solvent, the solid was washed with diethyl ether (3×30 mL), affording a pale yellow solid (19.27 g, 75%). **C5** ¹H NMR (acetone-d6): $\delta = 0.902$ -0.940 (t, 3H), 1.325-1.587 (m, 6H), 1.793-2.050 (m, 6H), 2.294 (s, 3H), 4.110-4.143 (t, 2H), 4.446-4.527 (m, 4H), 7.133-7.149 (m, 5H), 7.862-7.885 (d, 2H), 8.040-8.094 (d, 2H), 10.627 (s, 1H).

1.4. Synthesis of 1-butyl-3-(6-(4-((2,6-dimethylphenyl)diazenyl)phenoxy)hexyl)imidazolium bis(trifluoromethanesulfonyl)amide (D5).

A solution of LiNTf₂ (11.07 g, 0.039 mol) in 40 ml deionized water was added to a solution of C5 (18.00 g, 0.035 mol) dissolved in 100 mL deionized water. The mixture was stirred at room temperature for 4 h and two phases was formed. The bottom ILs was decanted and then was washed thoroughly with water (3 × 30 mL). The solvent was removed in vacuum to give the product as a red liquid (24.48 g, 98%). ¹H NMR (CDCl₃): δ = 0.941-0.978 (t, 3H), 1.330-1.577 (m, 6H), 1.810-1.946 (m, 6H), 2.305 (s, 6H), 4.022-4.053 (t, 2H), 4.170-4.243 (m, 4H), 6.985-7.008 (d, 2H), 7.102-7.119 (m, 3H), 7.277-7.298 (d, 2H), 7.871-7.893 (d, 2H), 8.919 (s, 1H); MS (ESI⁺) calcd: m/z: 433.2967 ([C₂₇H₃₇N₄O]⁺); found: m/z: 433.2956.

C1 ¹H NMR (acetone-d6): $\delta = 0.916-0.952$ (t, 3H), 1.284-1.419 (m, 2H), 1.924-1.980 (m, 2H), 2.420 (s, 3H), 4.454-4.491 (t, 2H), 4.658-4.681 (t, 2H), 4.973-4.998 (t, 2H), 7.213-7.235 (d, 2H), 7.363-7.384 (d, 2H), 7.781-7.802 (d, 2H), 7.883-7.906 (t, 3H), 8.080 (s, 1H), 10.330 (s, 1H).

C2 ¹H NMR (acetone-d6): $\delta = 0.919-0.956$ (t, 3H), 1.350-1.406 (m, 2H), 1.872-1.984 (m, 4H), 2.190-2.246 (m, 2H), 2.412 (s, 3H), 4.206-4.238 (d, 2H), 4.438-4.470 (d, 2H), 4.606-4.642 (d, 2H), 7.146-7.168 (d, 2H), 7.351-7.372 (d, 4H), 7.773-7.794 (d, 2H), 7.870-7.892 (d, 2H), 8.059-8.063 (d, 2H), 10.511 (s, 1H).

C3 ¹H NMR (acetone-d6): $\delta = 0.931-0.968$ (t, 3H), 1.335-1.568 (m, 6H), 1.770-1.985 (m, 6H), 2.421 (s, 3H), 3.999-4.030 (t, 2H), 4.311-4.403 (m, 4H), 6.958-6.996 (d, 2H), 7.284-7.304 (d, 2H), 7

2H), 7.422-7.478 (d, 2H), 7.769-7.790 (d, 2H), 7.860-7.897 (d, 2H), 10.526 (s, 1H).

C4 ¹H NMR (acetone-d6): $\delta = 0.921-0.957$ (t, 3H), 1.325-1.623 (m, 6H), 1.798-2.070 (m, 6H), 4.125-4.158 (t, 2H), 4.437-4.519 (m, 4H), 7.134-7.156 (d, 2H), 7.490-7.590 (m, 3H), 7.879-7.989 (m, 6H), 10.493 (s, 1H).

ILs D1. ¹H NMR (CDCl₃): $\delta = 0.917-0.965$ (t, 3H), 1.325-1.381 (m, 2H), 1.811-1.886 (m, 2H), 2.421 (s, 3H), 4.185 (t, 2H), 4.382 (t, 2H), 4.670 (t, 2H), 6.963-6.993 (d, 2H), 7.281-7.302 (m, 4H), 7.765-7.786 (d, 2H), 7.858-7.895 (d, 2H), 8.960 (s, 1H); MS (ESI⁺) calcd: m/z: 363.2185 ([C₂₂H₂₇N₄O]⁺); found: m/z: 363.2176.

ILs D2. ¹H NMR (CDCl₃): $\delta = 0.930-0.967$ (t, 3H), 1.301-1.395 (m, 2H), 1.791-1.897 (m, 4H), 2.075-2.150 (m, 2H), 2.422 (s, 3H), 4.056-4.085 (t, 2H), 4.143-4.180 (t, 2H), 4.282-4.320 (t, 2H), 6.948-6.986 (d, 2H), 7.282-7.341 (m, 4H), 7.769-7.790 (d, 2H), 7.850-7.896 (d, 2H), 8.899 (s, 1H); MS (ESI⁺) calcd: m/z: 391.2498 ([C₂₄H₃₁N₄O]⁺); found: m/z: 391.2493.

ILs D3. ¹H NMR (CDCl₃): $\delta = 0.965-0.984$ (t, 3H), 1.323-1.592 (m, 6H), 1.749-1.958 (m, 6H), 2.425 (s, 3H), 3.980-4.050 (t, 2H), 4.138-4.237 (m, 4H), 6.967-6.989 (d, 2H), 7.286-7.521 (d, 4H), 7.770-7.797 (d, 2H), 7.868-7.907 (d, 2H), 8.842-8.919 (s, 1H); MS (ESI⁺) calcd: m/z: 419.2811 ([C₂₆H₃₅N₄O]⁺); found: m/z: 419.2806.

ILs D4. ¹H NMR (CDCl₃): $\delta = 0.935 \cdot 0.971$ (t, 3H), 1.305 \cdot 1.588 (m, 6H), 1.800 \cdot 1.953 (m, 6H), 4.015 \cdot 4.046 (t, 2H), 4.172 \cdot 4.228 (m, 4H), 6.967 \cdot 6.997 (d, 2H), 7.262 \cdot 7.278 (2, 2H), 7.482 \cdot 7.521 (m, 3H), 7.864 \cdot 7.926 (m, 4H), 8.887 (s, 1H); MS (ESI⁺) calcd: m/z: 405.2654 ([C₂₂H₂₇N₄O]⁺); found: m/z: 405.2643.

2. Characterization

2.1. Gerneral method.

The ¹H NMR spectra were recorded on a Bruker AMX FT 400 MHz NMR spectrometer. Chemical shifts were reported in parts per million (ppm, δ). The viscosity was measured on a Brookfield DV-III+ viscometer. Measurements of phase transition temperatures, melting and freezing points were carried out on a Mettler-Toledo differential scanning calorimeter, model DSC822e, at a scan rate of 5 °C min⁻¹, and the data were evaluated using the Mettler-Toledo STARe software version 7.01. The UV-visible spectra were recorded on an Agilent 8453 diode array spectrophotometer. Standard 1-cm cell was housed and the temperature was controlled (±0.1 °C) by circulation of water. The UV (365 nm, with tunable intensity from 0 to 100 mW/cm²) and visible light source (>430 nm, with full power of 30 mW/cm²) were both LED cold light source.

2.2. Measurement of conductivity.

The ion conductivity was measured by using a Mettler–Toledo Seven Muliti meter. A home-made circular cell was housed and the temperature was controlled $(\pm 0.1 \text{ K})$ by circulation of water.

Scheme S2. Experimental setup for ionic conductivity measurement in this work

Fig. S1 Absorbance of **B5** and **D5** in ethanol $(5 \times 10^{-5} \text{ M})$

ILs	$T_{\rm m}$ [°C]	
C1	167	
C2	115	
C3	76	
C4	83	
C5	78	

Table S1. Thermal behavior of ILs C1-C5

Fig. S2 UV and visible light-induced absorbance changes of D1 THF ($1 \times 10-4$ mol/L). Left: 100 mW/cm2, from top to bottom, 0 s, 0.5 s, 1 s, 2 s, 4 s, 4.33 s, 7 s, 14.33 s, 25.33 s. Right: 30 mW/cm2, from bottom to top, time interval = 10 s.

Table S2. UV irradiation time for **D1** in THF $(1 \times 10^{-4} \text{ mol/L})$ to obtain stable conductivity and absorbance (PSS) under different light intensity.

Intensity (mW/am ²)	σ^{2}) $\sigma_{0} (\mu S/cm)^{a}$	$= (uS/am)^{b}$	Time (s)		
intensity (inw/ciii)		$o_t(\mu S/cm)$	conductivity	absorbance	
100	1.804	1.680	75	25	
50	1.798	1.680	107	52	
30	1.798	1.680	151	86	
20	1.801	1.681	201	130	
10	1.800	1.686	333	261	

^a initial conductivity. ^b conductivity after UV irradiation.

Fig. S3 Concentration-dependent conductivity of D2-D5 in THF and ethanol (25 °C)

 Table S3. Critical aggregate concentration (CAC, mol/L) values of ILs D1-D5 in THF and ethanol

	••••••	
ILs	THF	EtOH
D1	6.42×10^{-4}	3.07×10 ⁻³
D2	5.90×10 ⁻⁴	2.83×10 ⁻³
D3	5.12×10 ⁻⁴	2.57×10 ⁻³
D4	5.43×10 ⁻⁴	2.60×10 ⁻³
D5	7.44×10 ⁻⁴	3.75×10 ⁻³

Fig. S4 Concentration-dependent conductivity of D1 in cyclohexanone (25 °C)

	<i>E</i> _T (30)	Conductivity (uS/cm)							
Solvent		D2		D3		D4		D5	
		σ_0	$\sigma_{ m t}$	σ_0	$\sigma_{ m t}$	σ_0	$\sigma_{ m t}$	σ_0	$\sigma_{ m t}$
Methanol	55.4	15.83	15.81	14.72	14.70	15.00	14.99	14.58	14.56
Ethanol	51.9	5.01	4.98	4.52	4.49	4.64	4.61	4.44	4.41
Acetonitrile	45.6	15.70	15.64	14.68	14.63	14.94	14.90	14.43	14.39
Acetone	42.2	17.01	17.01	15.87	15.87	16.00	15.99	15.24	15.25
Cyclohexanone	39.8	3.33	3.33	3.21	3.21	3.21	3.21	3.18	3.18
Chloroform	39.1	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Diethyl ether	34.5	0.10	0.09	0.10	0.10	0.09	0.10	0.10	0.09
Dichloromethane	40.7	2.80	2.68	2.78	2.68	2.78	2.67	2.77	2.60
Tetrahydrofuran	37.4	1.778	1.666	1.720	1.630	1.744	1.649	1.739	1.671
Ethyl acetate	38.1	0.35	0.32	0.34	0.32	0.34	0.32	0.34	0.32

Table S4. Photoresponsive conductivity of ILs **D2-D5** in different solvents (25 °C, 10⁻⁴ mol/L).

