One Pot Iridium-Catalyzed Asymmetrical Double Allylations of Sodium Sulfide: a Fast and Economic Way to Construct Chiral C_2 -Symmetric Bis(1-Substituted-Allyl)Sulfane

Shengcai Zheng, Weiqing Huang, Ning Gao, Ruimin Cui, Min Zhang, Xiaoming Zhao*

Department of Chemistry, Tongji University, 1239 Siping Lu, Shanghai 200092,P.R. China; and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R.China E-mail: xmzhao08@mail.tongji.edu.cn

Supporting Information

Table of Contents	
General	S-1
General Procedure for the Iridium(I)-Catalyzed Diastereoselective Al	llylic Alkylation of
Na ₂ S • 9H ₂ O:	
HPLC Chromatograms of the Chiral Compounds	S-7
NMR Spectra of the compounds 4, 5, 6 and 7	S-19
X-ray Crystallography of (<i>R</i> , <i>R</i>)- 6f	S-41

General: All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. All glassware was oven or flame dried immediately prior to use. All solvents were purified and dried according to standard methods prior to use, unless stated otherwise.

All reagents were obtained from commercial sources and used without further purification. ¹H NMR spectra were obtained at 300 MHz or 400 MHz and recorded relative to tetramethylsilane signal (0 ppm) or residual protio-solvent. ¹³C NMR spectra were obtained at 75 MHz or 100 MHz and chemical shifts were recorded relative to the solvent resonance (CDCl₃, 77.0 ppm). ¹⁹F NMR spectra were obtained at 282 MHz, and CF₃CO₂H was used as internal standard. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

The phosphoramidite ligands¹, substituted allylic carbonates² were prepared according to known procedures.

Reference:

a) A. Alexakis, S. Rosset, J. Allamand, S. March, F. Guillen, C. Benhaim, *Synlett* 2001, 9, 1375; b) R. Naasz, L. A. Arnold, A. J. Minnaard, B. L. Feringa, *Angew. Chem. Int. Ed.* 2001, 40, 927; c) K. Tissot-Croset, D. Polet, A. Alexakis, *Synthesis* 2004, 15, 2586.

P. G. M. Wuts, S. W. Ashford, A. M. Anderson,; J. R. Atkins, Org. Lett. 2003, 5, 1483.
6f was prepared according to the literature: Q. Yao, Org. Lett. 2002, 4, 427.

General procedure for the iridium-catalyzed regio-, diastereo-, and enantioselective allylic alkylation of Na₂S • 9H₂O:

[Ir(COD)Cl]2 (0.002)mmol, 1 mol%), phosphoramidite ligand **1**a [O,O'-(S)-(1,1'-dinaphthyl-2,2'-diyl)-N,N'-di-(S,S)-[phenylethylphosphoramidite](0.004)mmol, 2 mol%) were dissolved in THF (0.5 mL) and propylamine (0.2 mL) in a dry Schlenk tube filled with argon. The reaction mixture was heated at 50°C for 30 min and then the volatile solvents were removed under vacuum to give a yellow solid. After that, allylic carbonate 3 (0.20 mmol, 100 mol%), Sodium sulfide hydrate 2c (0.60 mmol, 300 mol %), cesium fluoride (0.60 mmol, 300 mol%), and DCM (2.0 mL) were added. The reaction was stirring at room temperature until 3 was completely consumed. Then the crude reaction mixture was filtrated with celite and the solvent was removed under reduced pressure. The crude residue was purified by flash column chromatography (petroleum ether/dichloromethane) to give the desired products 4.

bis((*R*)-1-(4-methoxyphenyl)allyl)sulfane (4a): colorless oil, 99% yield, b/l = >99/1 DL/Meso = 98/2, >99% *ee*. The *ee* of the product was determined by HPLC. [Diacel CHIRALPAK AD-H (0.46 cm x 25 cm); hexane/2-propanol = 98/2; flow rate = 0.7 mL/min; detection wavelength = 214 nm; $t_R = 11.544$ (meso), 14.450 (major) min]. $[\alpha]_D^{20} = -142.0^{\circ}$ (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.24$ (d, J = 8.4 Hz, 4H), 6.84 (d, J = 8.8 Hz, 4H), 6.04 (ddd, J = 16.8, 10.2, 8.7 Hz, 2H), 5.16(ddd, J = 10.2, $\underline{J^8} = 1.5$, $\underline{J^8} = 0.6$ Hz, 2H), 5.13(ddd, J = 16.8, $\underline{J^8} = 1.2$, $\underline{J^8} = 0.9$ Hz, 2H) 4.27 (d, J = 8.7 Hz, 1H), 3.77 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 158.7$, 138.2, 132.0, 128.9, 115.5, 113.9, 55.2, 51.7. HRMS (EI) calcd for C₂₀H₂₂O₂S (M⁺): 326.1341, Found: 326.1345. IR(KBr): v_{max} (cm⁻¹) = 3902, 3852, 3751, 3648, 3629, 2834, 1866, 1772, 1538, 1504, 1456, 1247, 1174, 1032, 830, 419.

bis((*R*)-1-(3-methoxyphenyl)allyl)sulfane (4b): colorless oil, 99% yield, b/l = >99/1, DL/Meso = 97/3, 97% *ee.* The *ee* of the product was determined by HPLC. [Diacel CHIRALCEL OJ-H (0.46 cm x 25 cm); hexane/2-propanol = 80/20; flow rate = 0.7 mL/min; detection wavelength = 214 nm; t_R = 31.400 (major), 34.869 (meso), 56.381 (minor) min]. [α]_D²⁰ = -110.0° (c 0.7, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.23 (t, *J* = 7.8 Hz, 2H), 6.91 (d, *J* = 7.8 Hz, 2H), 6.87 (s, 2H), 6.79 (d, *J* = 8.1 Hz, 2H), 6.05 (ddd, *J* = 17.4, 9.6, 9.0 Hz, 2H), 5.18 (d, *J* = 9.3 Hz, 2H), 5.16 (d, *J* = 17.4 Hz, 2H), 4.29 (d, *J* = 8.7 Hz, 2H), 3.79 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.7, 141.5, 137.9, 129.5, 120.2, 115.9, 113.3, 112.9, 55.1, 52.5. HRMS (EI) calcd for C₂₀H₂₂O₂S (M⁺): 326.1341, Found: 326.1344. IR(KBr): v_{max} (cm⁻¹) = 3851, 3749, 3645, 3000, 2967, 2833, 1595, 1485, 1264, 1149, 1047, 919, 764, 693, 455.

bis((*R*)-1-*p*-tolylallyl)sulfane (4c): colorless oil, 99% yield, b/l = >99/1, DL/Meso = 96/4, >99% *ee.* The *ee* of the product was determined by HPLC. [Diacel CHIRALCEL OJ-H (0.46 cm x 15 cm); hexane/2-propanol = 97/3; flow rate = 1.0 mL/min; detection wavelength = 214 nm; t_R = 8.245 (major), 12.279 (minor), 14.984 (meso) min]. [α]_D²⁰ = -97.8° (c 0.3, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ = 7.21 (d, *J* = 7.8 Hz, 4H), 7.12 (d, *J* = 7.8 Hz, 4H), 6.05 (ddd, *J* = 16.8, 9.9, 8.7 Hz, 2H), 5.15 (d, *J* = 9.3 Hz, 2H), 5.13 (d, *J* = 17.4 Hz, 2H), 4.28 (d, *J* = 8.7 Hz, 2H), 2.32 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ = 138.2, 137.0, 136.9, 129.3, 127.8, 115.7, 52.2, 20.9. HRMS (EI) calcd for C₂₀H₂₂S (M⁺): 294.1442, Found: 294.1444. IR(KBr): v_{max} (cm⁻¹) = 2913, 2847, 1681, 1509, 1010, 798, 506, 470.

bis((*R***)-1-phenylallyl)sulfane (4d)**: colorless oil, 99% yield, b/l = 96/4, DL/Meso = 95/5, 96% *ee*. The *ee* of the product was determined by HPLC. [Diacel CHIRALCEL OJ-H (0.46 cm x 25 cm); hexane/2-propanol = 90/10; flow rate = 0.7 mL/min; detection wavelength = 214 nm; $t_R = 28.335$ (meso), 29.566 (minor), 30.970 (major) min]. $[\alpha]_D^{20} = -130.4^\circ$ (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.32-7.23$ (m, 10H), 6.07 (ddd, *J* = 17.1, 9.6 Hz, 8.7, 2H), 5.18 (d, *J* = 9.6, 2H), 5.15 (d, *J* = 17.1, 2H), 4.32 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 140.1$, 138.1, 128.6, 127.9, 127.3, 115.9, 52.4. HRMS (EI) calcd for C₁₈H₁₈S (M⁺): 226.1129, Found: 226.1128. IR(KBr): v_{max} (cm⁻¹) = 3903, 3853, 3750, 3735, 3675, 3648, 3628, 3566, 3028, 1868, 1770, 1730, 1679, 1557, 1505, 1455, 985, 914, 696, 423.

bis((*R*)-1-(4-chlorophenyl)allyl)sulfane (4e): colorless oil. 80% yield, b/l = >99/1, DL/Meso = 96/4, >99% ee. The ee of the product was determined by HPLC. [Diacel CHIRALPAK AD-H (0.46 cm x 25 cm); hexane/2-propanol = 98/2; flow rate = 0.7 mL/min; detection wavelength = 214 nm; t_R = 5.382 (meso), 5.662 (major) min]. [α]_D²⁰ = -166.8° (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ = 7.29 (d, *J* = 8.4 Hz, 4H), 7.23 (d, *J* = 8.4 Hz, 4H), 6.00 (ddd, *J* = 17.1, 9.9, 8.4 Hz, 2H), 5.20 (d, *J* = 10.5 Hz, 2H), 5.14 (d, *J* = 17.1 Hz, 2H), 4.26 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 138.4, 137.3, 133.2, 129.3, 128.8, 116.6, 51.7. HRMS (EI) calcd for C₁₈H₁₆SCl₂ (M⁺): 334.0350, Found: 334.0349. IR(KBr): v_{max} (cm⁻¹) = 3903, 3869, 3852, 3837, 3750, 3735, 3710, 3689, 3676, 3648, 3627, 3565, 3077, 1718, 1651, 1557, 1539, 1505, 1487, 1455, 1091, 1013, 920, 820.

bis((*R*)-1-(4-bromophenyl)allyl)sulfane (4f): colorless oil, 72% yield, b/l = 98/2, DL/Meso = 97/3, >99% ee. The ee of the product was determined by HPLC. [Diacel CHIRALCEL AY-H (0.46 cm x 25 cm); hexane/2-propanol = 99.5/0.5; flow rate = 0.8 mL/min; detection wavelength = 214 nm; t_R = 6.285 (meso), 7.103 (major) min]. [α]_D²⁰ = -117.6° (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ = 7.44 (d, *J* = 8.4 Hz, 4H), 7.17 (d, *J* = 8.4 Hz, 4H), 5.99 (ddd, *J* = 16.8, 9.9, 8.7 Hz, 2H), 5.20 (d, *J* = 9.9 Hz, 2H), 5.13 (d, *J* = 16.8 Hz, 2H), 4.24 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 138.8, 137.3, 131.7, 129.7, 121.2, 116.6, 51.7. HRMS (EI) calcd for C₁₈H₁₆S ⁷⁹Br₂ (M⁺): 421.9339, Found: 421.9348. IR(KBr): v_{max} (cm⁻¹) = 3903, 3852, 3802, 3751, 3734, 3676, 3649, 3628, 3567, 2925, 2363, 1870, 1732, 1717.89, 1653, 1560, 1486, 1455, 1286, 1071, 1009, 919, 815, 750, 517, 418.

bis((*R***)-1-(3-(trifluoromethyl)phenyl)allyl)sulfane (4g)**: colorless oil, 67% yield, b/l = 97/3, DL/Meso = 96/4, >99% ee. The ee of the product was determined by HPLC. [Diacel CHIRALCEL OJ-H (0.46 cm x 15 cm); hexane/2-propanol = 99.8/0.2; flow rate = 1.0 mL/min; detection wavelength = 214 nm; t_R = 3.162 (meso), 3.631 (major) min]. $[\alpha]_D^{20}$ = -113.8° (c 0.7, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ = 7.54-7.51 (m, 6H), 7.49-7.39 (m, 2H), 6.05 (ddd, *J* = 17.1, 9.9, 8.7 Hz, 2H), 5.26 (d, *J* = 9.9 Hz, 2H), 5.19 (d, *J* = 17.1 Hz, 2H), 4.37 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 140.8, 136.9, 131.4, 131.1 (q, *J* = 30.0 Hz), 129.2, 124.8 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 270.7 Hz), 117.2, 52.1. ¹⁹F NMR (282 MHz, CDCl₃) δ = -62.60(s). HRMS (EI) calcd for C₂₀H₁₆F₆S (M⁺): 402.0877, Found: 402.0878. IR(KBr): v_{max} (cm⁻¹) = 3851, 3733, 3646, 1714, 1633, 1555, 1447, 1332, 1165, 1125, 1073, 924, 770, 702, 418.

bis((*R*)-1-(thiophen-2-yl)allyl)sulfane (4h): colorless oil. 99% yield, b/l = >99/1, DL/Meso = >99/1, >99% ee. The ee of the product was determined by HPLC. [Diacel CHIRALCEL OJ-H (0.46 cm x 15 cm); Hexane/ n-propanol (0.1%DEA) =99/1 (v/v); flow rate = 1.0 mL/min; detection wavelength = 214 nm; t_R = 13.363 (meso), 14.090 (major), 19.642 (minor) min]. [α]_D²⁰ = -63.6° (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ = 7.23 (d, *J* = 5.1 Hz, 2H), 7.08-6.89 (m, 4H), 6.06 (ddd, *J* = 16.8, 9.9, 8.7 Hz, 2H), 5.24 (d, *J* = 9.0 Hz, 2H), 5.19 (d, *J* = 15.9 Hz, 2H), 4.65 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 143.3, 137.6, 126.7, 125.2, 124.9, 116.6, 47.7. HRMS (EI) calcd for C₁₄H₁₄S ₃(M⁺): 278.0258, Found: 278.0260. IR(KBr): v_{max} (cm⁻¹) = 3903, 3852,

3819, 3749, 3735, 3675, 3648 3628, 3566, 3080, 1869, 1716, 1653, 1635, 1558, 1541, 1506, 1232, 986, 920, 853, 696.

di(*S*)-**pent-1-en-3-ylsulfane 4i**: colorless oil, 84% yield, b/l = 81/19, DL/Meso =85/15, 98% ee. Determination of the ee of **4i** was performed by GC on a Rtx-13100 (30m x 0.25mm x 0.25um) column, He-flow 1.0 ml/min., split ratio: 100:1. oven temp. 150 °C, Hold 10 min, inlet temp: 250 °C., t_R =3.226 (major), 3.415 (minor), 4.103 (meso) min. $[\alpha]_D^{20} = -85.0^\circ$ (c 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) $\delta = 5.57$ (dt, J = 16.8, 10.0 Hz, 2H), 5.05 (dd, J = 10.0, $\underline{J}^{\delta} = 1.6$ Hz, 2H), 4.94 (ddd, J = 16.8, $\underline{J}^{\delta} = 1.6$ Hz, $\underline{J}^{\delta} = 0.4$ Hz, 2H), 3.08-3.00 (m, 2H), 1.70-1.48 (m, 4H), 0.95 (t, J = 7.6 Hz, 6H).

4,4'-(1*R***,1***'R***)-1,1'-sulfonylbis(prop-2-ene-1,1-diyl)bis(bromobenzene) (6f)** ³: white powder. mp: 147.6-149.5, 73% yield, 99% ee. The ee of the product was determined by [Diacel CHIRALPAK AD (0.46 cm x 25 cm); Hexane/*i*-propanol=90/10 (v/v); flow rate = 1.0 mL/min; detection wavelength = 214 nm; $t_R = 21.719$ (major)]. [α]_D²⁰ = -69.0° (c 0.6, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ = 7.52 (d, *J* = 8.4 Hz, 4H), 7.24 (d, *J* = 8.0 Hz, 4H), 6.28 (ddd, *J* = 16.8, 10.0, 8.8 Hz, 2H), 5.56 (d, *J* = 10.4 Hz, 2H), 5.40 (d, *J* = 17.2 Hz, 1H), 4.76 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 132.1, 131.4, 130.2, 129.8, 123.8, 123.6, 69.0. HRMS (ESI-) calcd for C₁₈H₁₅O₂SBr₂(M⁻): 452.9159, Found: 452.9165. IR(KBr): v_{max} (cm⁻¹) = 3850, 3647, 1482, 1402, 1314, 1275, 1257, 1128, 1071, 1005, 939, 833, 762, 749, 713, 630, 510.

(*S*)-3-((*S*)-but-3-en-2-ylsulfonyl)but-1-ene (6j): (51% one pot yield from 3j, DL/Meso =89/11,b/l =87/13, 99% ee. The ee of the product was determined by [Diacel CHIRALCEL IC (0.46 cm x 15 cm); Hexane/ n-propanol=90/10 (v/v); flow rate = 1.0 mL/min; detection wavelength = 214 nm; $t_R = 29.080$ (major), 34.088 (minor) min]. $[\alpha]_D^{20} = -118.3^\circ$ (c 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) $\delta = 5.86$ (ddd, J = 17.2, 10.4, 8.8 Hz, 2H), 5.41 (d, J = 10.0Hz, 2H), 5.34 (d, J = 17.2 Hz, 2H), 3.88 (dq, J = 8.8, 7.2 Hz, 1H).

(2*S*,5*S*)-2,5-dimethyl-2,5-dihydrothiophene 1,l-dioxide (7j): To a solution of 6j (17.0 mg, 0.1 mmol) in 4 mL CH₂Cl₂ was added Grubbs catalyst 1st (3.3 mg, 0.004 mmol) and the reaction mixture was heated to reflux under Ar over night and could be monitored by TLC. The reaction was then cooled to rt and concentrated to dryness under vacuum after 6j was completely consumed. Flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) gave 7j (12.3 mg, 86% yield, 94% ee) as a colorless thick oil. The ee of the product was determined by [Diacel CHIRALPAK AD-H (0.46 cm x 25 cm); Hexane/*i*-propanol=90/10 (v/v); flow rate = 1.0 mL/min; detection wavelength = 214 nm; t_R = 15.424 (minor), 17.364 (major) min] to be 94%. [α]_D²⁰ = -128.2° (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ =5.95 (s, 1H), 3.73 (q, *J* = 6.8 Hz, 1H), 1.44 (d, *J* = 7.2 Hz, 3H).

1

2

11.544 MM

14.450 BV

148.55974

0.2849 6285.32959

2.3090

97.6910

0.2351

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	8.245	60716124	95.5165	1630.170	1.834	
2	12.279	293811	0.4622	3637.236	1.013	4.947
3	14.984	2556169	4.0213	1528.926	1.091	2.305

Signal 2: DAD1 C, Sig=214,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Area %
1	28.805	BV	0.7885	1114.59607	56.3202
2	30.255	VV	0.7390	422.14209	21.3307
3	31.476	VB	0.7354	442.29727	22.3491

Totals :

1979.03543

Signal 2: DAD1 C, Sig=214,16 Ref=off

Peak #	ak RetTime Type # [min]		Width [min]	Area [mAU*s]	Area %	
1	28.335	MM	0.5436	50.97386	4.9860	
2	29.566	MM	0.6712	19.84482	1.9411	
3	30.970	MM	0.8289	951.51422	93.0728	
Total	s:			1022.33290		

Totals :

516.61265

< Chromatogram >

< Chromatogram >

<column< th=""><th>Performance</th><th>Report></th></column<>	Performance	Report>
--	-------------	---------

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	6.285	373963	2.9947	5111.440	1.354	
2	7.103	12113495	97.0053	4338.391	2.158	2.089

< Chromatogram >

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	3.194	640033	49.7984	2404.719	1.272	
2	3.655	321517	25.0160	2128.590		1.597
3	4.716	323697	25.1856	1830.644	1.175	2.800
	× × ×					

< Chromatogram >

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	3.162	101463	4.1895	2513.122	1.189	
2	3.631	2303395	95.1091	2079.799	1.236	1.643
3	5.041	16988	0.7014	10159.847	1.153	5.439

<Column Performance Report>

Peak No.	Time	Area	Area %	Plate number	Tailing	Resolution
1	13.363	164194	0.7609	10088.564	0.858	
2	14.090	21362529	99.0000	3419.560	1.871	0.972
3	19.642	51585	0.2391	6865.840	1.075	5.808

			[[pn 5]	[PA]	8
1	3.228	BB	0.0284	6.49595	3.53871	53 63368
2	3.415	BB	0.0308	5.16381e-1	2.53605e-1	4 26349
3	4.103	BB	0.0336	5.09937	2.32008	42.10283

S15

Run Mode: Analysis Peak Measurement: Area Calc. T	Type: %	Normalize	Results:	No
---	---------	-----------	----------	----

Pea	k	tR	Result	Sep.	W 1/2	Effic	ciency			Tailing
No.	Name	(min)		Code	(sec)	Plates	Plates/m	k'	R	(5.0%)
1		14.916	43.922	BB	20.35	10722	71481	13.92		1.10
2		21.456	28.242	BB	34.90	7545	50297	20.46	8.4	1.75
3		24.446	27.836	BB	35.40	9518	63456	23.45	3.0	1.14

Run	Mode: An	alysis Pea	k Measuremen	t: Area	Calc.	Type: %	Normaliz	e Resul	ts:	No
	Peak	tR	Result	Sep.	W 1/2	Effic	ciency		5	Tailing
No.	Nam 	ne (min)		Code	(sec)	Plates	Plates/m 	k'	R 	(5.0%)
1		21.719	100.000	BB	37.60	6660	44398	20.72		1.67

NMR Spectra of the compounds 4, 5, 6 and 7.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

X-ray Crystallography of (R,R)-6f

Single Crystal X-Ray Analysis. A representative crystal was surveyed on a Bruker APEX diffractometer. All crystallographic calculations were facilitated by the SHELXL-97 system.

_computing_data_collection	'Bruker SMART'
_computing_cell_refinement	'Bruker SMART'
_computing_data_reduction	'Bruker SAINT'
_computing_structure_solution	'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement	'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics	ХР
_computing_publication_material	XCIF

Table 1. Crystal data and structure refinement for xl.

Identification code	xl
Empirical formula	C18 H16 Br2 O2 S
Formula weight	456.19
Temperature	293(2) K

	Wavelength	0.71073 A
	Crystal system, space group	Triclinic, P1
	Unit cell dimensions	a = 6.941(6) A alpha = 90.096(10) deg.
deg.		b = 7.130(6) A beta = 90.099(12)
90.03	5(12) deg.	c = 18.450(15) A gamma =
	Volume	913.0(13) A^3
	Z, Calculated density	2, 1.659 Mg/m^3
	Absorption coefficient	4.560 mm^-1
	F(000)	452
	Crystal size	0.25 x 0.08 x 0.04 mm
	Theta range for data collection	2.21 to 27.53 deg.
	Limiting indices	-9<=h<=7, -9<=k<=8, -23<=l<=22
	Reflections collected / unique	4462 / 4462 [R(int) = 0.0000]
	Completeness to theta = 27.53	90.3 %
	Absorption correction	None
	Refinement method	Full-matrix least-squares on F ²
	Data / restraints / parameters	4462 / 11 / 367
	Goodness-of-fit on F^2	1.060
	Final R indices [I>2sigma(I)]	R1 = 0.0775, wR2 = 0.2218
	R indices (all data)	R1 = 0.0942, $wR2 = 0.2412$
	Absolute structure parameter	0.49(3)
	Largest diff. peak and hole	0.800 and -1.459 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for xl. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	у	Z	U(eq)
 Br(1)	6980(2)	21779(2)	2571(1)	72(1)
Br(2)	1982(2)	23244(2)	-9538(1)	72(1)
Br(3)	6627(2)	23245(2)	-2432(1)	72(1)
Br(4)	11627(2)	21776(2)	-4539(1)	72(1)
O(1)	5830(30)	24920(18)	-6238(7)	114(7)
O(2)	2570(30)	24921(19)	-5773(7)	107(6)
O(3)	7590(30)	20055(19)	-1216(7)	118(7)
O(4)	10910(30)	20069(17)	-775(7)	102(5)
S(1)	4260(9)	25942(5)	-5996(2)	72(1)
S(2)	9239(9)	19022(6)	-997(2)	74(1)
C(1)	5981(14)	24439(12)	-3309(4)	53(3)
C(2)	4265(12)	25414(14)	-3402(4)	54(3)
C(3)	3907(11)	26355(14)	-4048(4)	61(4)
C(4)	5265(13)	26320(13)	-4601(4)	49(3)
C(5)	6981(12)	25344(14)	-4508(4)	61(4)
C(6)	7339(12)	24404(13)	-3862(5)	65(4)
C(7)	4911(18)	27505(17)	-5270(6)	47(3)
C(8)	6620(20)	28684(17)	-5476(9)	63(4)
C(9)	6490(30)	30516(19)	-5468(10)	76(5)
C(10)	3558(19)	27496(16)	-6726(6)	48(3)
C(11)	1860(20)	28666(16)	-6494(8)	58(4)
C(12)	1960(30)	30531(18)	-6502(9)	73(5)
C(13)	3165(14)	26388(12)	-7390(4)	53(3)
C(14)	4543(11)	26393(12)	-7936(5)	57(3)
C(15)	4198(12)	25436(13)	-8580(4)	52(3)
C(16)	2475(14)	24474(12)	-8679(4)	53(3)
C(17)	1097(11)	24469(13)	-8133(5)	67(4)
C(18)	1442(12)	25426(13)	-7489(4)	58(4)
C(19)	11011(15)	20503(12)	-3691(4)	54(3)
C(20)	9288(13)	19543(14)	-3592(4)	63(4)
C(21)	8936(11)	18614(14)	-2944(5)	60(4)

C(22)	10307(14)	18645(14)	-2394(4)	52(3)
C(23)	12030(13)	19605(16)	-2492(5)	76(6)
C(24)	12383(12)	20534(15)	-3141(5)	67(4)
C(25)	9930(20)	17434(18)	-1713(7)	52(3)
C(26)	11630(20)	16260(20)	-1480(9)	80(6)
C(27)	11560(30)	14410(20)	-1457(10)	73(5)
C(28)	8530(20)	17469(16)	-272(7)	49(3)
C(29)	6840(20)	16230(20)	-475(9)	74(6)
C(30)	6890(30)	14370(20)	-479(10)	68(4)
C(31)	8149(14)	18592(12)	404(4)	51(3)
C(32)	6425(12)	19545(14)	508(4)	70(5)
C(33)	6088(11)	20486(14)	1156(5)	65(4)
C(34)	7475(14)	20474(13)	1700(4)	53(3)
C(35)	9199(12)	19520(14)	1596(4)	67(4)
C(36)	9536(11)	18580(13)	948(5)	60(4)

Br(1)-C(34)	1.888(7)
Br(2)-C(16)	1.842(6)
Br(3)-C(1)	1.884(6)
Br(4)-C(19)	1.861(6)
O(1)-S(1)	1.384(18)
O(2)-S(1)	1.443(16)
O(3)-S(2)	1.422(17)
O(4)-S(2)	1.439(17)
S(1)-C(7)	1.797(13)
S(1)-C(10)	1.812(11)
S(2)-C(25)	1.803(13)
S(2)-C(28)	1.807(12)
C(1)-C(2)	1.3900
C(1)-C(6)	1.3900
C(2)-C(3)	1.3900
C(3)-C(4)	1.3900
C(4)-C(5)	1.3900
C(4)-C(7)	1.518(13)
C(5)-C(6)	1.3900
C(7)-C(8)	1.501(9)
C(8)-C(9)	1.309(10)
C(10)-C(13)	1.482(14)
C(10)-C(11)	1.506(9)
C(11)-C(12)	1.331(9)
C(13)-C(14)	1.3900
C(13)-C(18)	1.3900
C(14)-C(15)	1.3900
C(15)-C(16)	1.3900
C(16)-C(17)	1.3900
C(17)-C(18)	1.3900
C(19)-C(20)	1.3900
C(19)-C(24)	1.3900
C(20)-C(21)	1.3900
C(21)-C(22)	1.3900
C(22)-C(23)	1.3900
C(22)-C(25)	1.548(13)
C(23)-C(24)	1.3900
C(25)-C(26)	1.512(10)
C(26)-C(27)	1.321(10)
C(28)-C(31)	1.505(14)

Table 3. Bond lengths [A] and angles [deg] for xl.

C(28)-C(29)	1.510(10)
C(29)-C(30)	1.327(9)
C(31)-C(32)	1.3900
C(31)-C(36)	1.3900
C(32)-C(33)	1.3900
C(33)-C(34)	1.3900
C(34)-C(35)	1.3900
C(35)-C(36)	1.3900
O(1)-S(1)-O(2)	117.9(10)
O(1)-S(1)-C(7)	111.7(9)
O(2)-S(1)-C(7)	107.7(7)
O(1)-S(1)-C(10)	107.1(7)
O(2)-S(1)-C(10)	107.6(8)
C(7)-S(1)-C(10)	104.0(6)
O(3)-S(2)-O(4)	117.5(10)
O(3)-S(2)-C(25)	109.4(8)
O(4)-S(2)-C(25)	108.5(9)
O(3)-S(2)-C(28)	107.9(9)
O(4)-S(2)-C(28)	109.2(7)
C(25)-S(2)-C(28)	103.4(6)
C(2)-C(1)-C(6)	120.0
C(2)-C(1)-Br(3)	122.4(5)
C(6)-C(1)-Br(3)	117.5(5)
C(1)-C(2)-C(3)	120.0
C(4)-C(3)-C(2)	120.0
C(3)-C(4)-C(5)	120.0
C(3)-C(4)-C(7)	118.6(7)
C(5)-C(4)-C(7)	121.2(7)
C(6)-C(5)-C(4)	120.0
C(5)-C(6)-C(1)	120.0
C(8)-C(7)-C(4)	113.0(11)
C(8)-C(7)-S(1)	110.8(9)
C(4)-C(7)-S(1)	107.5(8)
C(9)-C(8)-C(7)	120.3(14)
C(13)-C(10)-C(11)	112.7(11)
C(13)-C(10)-S(1)	109.8(7)
C(11)-C(10)-S(1)	109.8(9)
C(12)-C(11)-C(10)	120.6(13)
C(14)-C(13)-C(18)	120.0
C(14)-C(13)-C(10)	118.1(8)
C(18)-C(13)-C(10)	121.8(8)
C(15)-C(14)-C(13)	120.0
C(14)-C(15)-C(16)	120.0

C(15)-C(16)-C(17)	120.0	
C(15)-C(16)-Br(2)	120.3(5)	
C(17)-C(16)-Br(2)	119.6(5)	
C(18)-C(17)-C(16)	120.0	
C(17)-C(18)-C(13)	120.0	
C(20)-C(19)-C(24)	120.0	
C(20)-C(19)-Br(4)	123.3(5)	
C(24)-C(19)-Br(4)	116.7(5)	
C(19)-C(20)-C(21)	120.0	
C(20)-C(21)-C(22)	120.0	
C(23)-C(22)-C(21)	120.0	
C(23)-C(22)-C(25)	121.9(8)	
C(21)-C(22)-C(25)	117.9(8)	
C(22)-C(23)-C(24)	120.0	
C(23)-C(24)-C(19)	120.0	
C(26)-C(25)-C(22)	114.1(11)	
C(26)-C(25)-S(2)	110.4(10)	
C(22)-C(25)-S(2)	106.8(8)	
C(27)-C(26)-C(25)	122.4(14)	
C(31)-C(28)-C(29)	112.2(11)	
C(31)-C(28)-S(2)	109.7(7)	
C(29)-C(28)-S(2)	112.8(10)	
C(30)-C(29)-C(28)	124.2(14)	
C(32)-C(31)-C(36)	120.0	
C(32)-C(31)-C(28)	121.7(7)	
C(36)-C(31)-C(28)	118.3(7)	
C(31)-C(32)-C(33)	120.0	
C(34)-C(33)-C(32)	120.0	
C(35)-C(34)-C(33)	120.0	
C(35)-C(34)-Br(1)	121.0(5)	
C(33)-C(34)-Br(1)	119.0(5)	
C(34)-C(35)-C(36)	120.0	
C(35)-C(36)-C(31)	120.0	

Symmetry transformations used to generate equivalent atoms:

U12	U11	U2:	2	U33	U23	U13
Br(1)	95(1)	81(1)	40(1)	-13(1)	20(1)	-5(1)
Br(2)	98(1)	81(1)	38(1)	-12(1)	-15(1)	9(1)
Br(3)	98(1)	79(1)	39(1)	15(1)	-15(1)	-5(1)
Br(4)	96(1)	79(1)	41(1)	14(1)	19(1)	6(1)
O(1)	240(20)	62(8)	44(7)	-17(6)	-26(9)	61(10)
O(2)	203(17)	76(9)	43(7)	18(6)	-12(8)	-69(10)
O(3)	240(20)	65(8)	47(7)	16(6)	30(10)	82(11)
O(4)	200(17)	58(7)	47(7)	-10(6)	12(8)	-48(8)
S(1)	145(4)	40(2)	31(2)	-3(2)	-9(2)	7(2)
S(2)	149(4)	43(2)	29(2)	-2(1)	16(2)	3(2)
C(1)	84(10)	43(7)	32(6)	-9(5)	0(6)	9(6)
C(2)	82(10)	45(8)	37(7)	14(6)	8(6)	6(6)
C(3)	66(9)	83(11)	35(7)	-14(7)	16(6)	5(7)
C(4)	65(8)	59(9)	22(6)	-3(5)	17(5)	10(6)
C(5)	83(10)	49(9)	52(9)	-4(7)	20(7)	19(7)
C(6)	96(12)	52(9)	46(8)	7(7)	5(8)	13(8)
C(7)	68(8)	48(7)	24(5)	-1(5)	13(5)	0(6)
C(8)	94(11)	48(10)	45(9)	13(7)	27(8)	12(7)
C(9)	87(12)	90(14)	50(10)	9(9)	3(8)	-21(9)
C(10)	84(9)	33(6)	27(6)	11(5)	4(6)	-1(6)
C(11)	87(11)	46(9)	41(8)	3(6)	8(7)	-3(7)
C(12)	92(12)	75(12)	53(10)	-23(8)	-2(8)	25(9)
C(13)	79(10)	42(8)	37(7)	6(6)	3(6)	-1(6)
C(14)) 71(9)	57(9)	44(8)	3(7)	7(7)	-2(6)
C(15)) 78(9)	52(8)	27(6)	1(5)	15(6)	1(6)
C(16)	84(10)	43(7)	31(6)	-2(5)	-5(6)	9(6)
C(17)	76(10)	69(10)	56(10)	-4(8)	8(8)	-14(8)
C(18)	76(10)	62(10)	35(7)	6(7)	10(6)	-8(7)
C(19)	97(11)	35(7)	29(6)	-6(5)	16(6)	3(6)
C(20)	105(12)	47(8)	35(7)	6(6)	1(7)	-14(7)
C(21)	63(9)	79(10)	38(7)	-15(7)	1(6)	-3(7)

Table 4. Anisotropic displacement parameters (A² x 10³) for xl. The anisotropic displacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

C(22)	69(9)	60(9)	26(6)	0(6)	6(6)	-1(6)
C(23)	85(11)	102(14)	40(9)	21(9)	-24(8)	-25(10)
C(24)	80(11)	65(10)	55(9)	4(8)	18(8)	-14(8)
C(25)	86(10)	42(7)	28(6)	-1(5)	4(6)	1(6)
C(26)	86(12)	115(17)	38(9)	14(9)	-5(8)	-31(11)
C(27)	86(11)	62(11)	70(11)	10(9)	2(9)	25(8)
C(28)	90(10)	30(6)	27(6)	3(5)	-1(6)	9(6)
C(29)	73(11)	110(16)	39(8)	-23(9)	-7(7)	30(10)
C(30)	84(11)	56(10)	64(11)	8(8)	9(8)	-13(8)
C(31)	87(10)	34(7)	34(6)	11(5)	0(6)	8(6)
C(32)	110(13)	74(11)	26(7)	-10(7)	-2(7)	32(10)
C(33)	65(9)	75(10)	54(9)	4(8)	8(7)	11(7)
C(34)	72(9)	49(8)	37(7)	11(6)	22(6)	5(6)
C(35)	90(11)	75(11)	36(7)	-12(7)	-10(7)	6(8)
C(36)	74(9)	64(10)	41(8)	-5(7)	7(7)	8(7)

	X	у	Z	U(eq)
 H(2B) H(3B)	3357 2759	25438 27008	-3032	65
H(5A)	7889	25321	-4878	73
H(6A)	8487	23751	-3800	78
H(7A)	3818	28339	-5175	56
H(8A)	7765	28110	-5609	75
H(9A)	5346	31093	-5335	91
H(9B)	7554	31240	-5596	91
H(10A)	4639	28341	-6826	58
H(11A)	734	28081	-6345	69
H(12A)	3087	31122	-6652	88
H(12B)	906	31241	-6358	88
H(14A)	5696	27037	-7870	69
H(15A)	5121	25440	-8945	63
H(17A)	-56	23826	-8199	80
H(18A)	519	25423	-7124	69
H(20A)	8371	19523	-3960	75
H(21A)	7783	17972	-2878	72
H(23A)	12948	19626	-2125	91
H(24A)	13536	21176	-3206	80
H(25A)	8841	16596	-1815	63
H(26A)	12767	16855	-1347	95
H(27A)	10432	13783	-1588	87
H(27B)	12633	13726	-1311	87
H(28A)	9622	16643	-171	59
H(29A)	5691	16815	-605	89
H(30A)	8021	13752	-352	82
H(30B)	5803	13692	-609	82
H(32A)	5496	19554	144	84
H(33A)	4934	21124	1225	77
H(35A)	10127	19512	1961	80
H(36A)	10690	17942	879	72

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (A 2 x 10 3) for xl.