Electronic Supplementary Information

Practical manganese-catalysed highly enantioselective cis-dihydroxylation of electron-deficient alkenes and detection of cis-dioxomanganese(V) intermediate by high-resolution ESI-MS analysis

Toby Wai-Shan Chow, Yungen Liu and Chi-Ming Che*

Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Tachnology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong

Table of Contents

NMR spectroscopy and mass spectrometry S3
Preparation of $\left[\mathrm{Mn}^{\mathrm{II}}((S, S)-\mathrm{BQCN}) \mathrm{Cl}_{2}\right](\mathbf{1})$ S3
General procedure for asymmetric cis-dihydroxylation of alkenes with Oxone S3 catalysed by 1Characterization of cis-diol productsS3-S6
Detection of reaction intermediates by ESI-MS S6,S7
Table S1 Crystal data and structural refinement for complex 1 S8
Table S2 Oxidation of methyl cinnamte (2a) with oxone at room S9 temperature using various manganese complex in situ generated from reaction of ligand with $\mathrm{Mn}(\mathrm{II})$ and $\mathrm{Mn}(\mathrm{III})$ salt
Fig. S1-S12 HPLC spectra
Fig. S1 Chiral HPLC chromatographic analysis of cis-diol of 2a S10,S11
Fig. S2 Chiral HPLC chromatographic analysis of cis-diol of 2b S12
Fig. S3 Chiral HPLC chromatographic analysis of cis-diol of 2c S13
Fig. S4 Chiral HPLC chromatographic analysis of cis-diol of 3a S14
Fig. S5 Chiral HPLC chromatographic analysis of cis-diol of 3b S15,S16
Fig. S6 Chiral HPLC chromatographic analysis of cis-diol of 4a S17Fig. S7 Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{4 b}$S18
Fig. S8 Chiral HPLC chromatographic analysis of cis-diol of 5a S19
Fig. S9 Chiral HPLC chromatographic analysis of cis-diol of 5b S20
Fig. S10 Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{6 a}$ S21
Fig. S11 Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{6 b}$ S22
Fig. S12-21 ESI mass spectra
Fig. S12 ESI spectrum of the reaction mixture between 1 and S23 Oxone at different reaction times
Fig. S13 ESI spectrum of $[\mathrm{Mn}(\mathrm{BQCN}) \mathrm{Cl}]^{+}$for complex 1 S24
Fig. S14 ESI spectrum of $[\mathrm{Mn}(\mathrm{BQCN})(\mathrm{O})]^{2+}$ in the reaction of $\mathbf{1}$ S25 with Oxone
Fig. S15 ESI spectrum of $[\mathrm{BQCN}-\mathrm{Me}]^{+}$in the reaction of $\mathbf{1}$ with S26Oxone
Fig. S16 ESI spectrum of $\left[\mathrm{BQCN}+\mathrm{H}^{+}\right]^{+}$in the reaction of $\mathbf{1}$ with S27
Oxone
Fig. S17 ESI spectrum of $[\mathrm{Mn}(\mathrm{BQCN})]^{+}$in the reaction of $\mathbf{1}$ with S28Oxone
Fig. S18 ESI spectrum of $\left\{\left[\mathrm{Mn}_{2}(\mathrm{BQCN})_{2}(\mathrm{O})_{3}\right]-2 \mathrm{H}^{+}\right\}^{2+}$ in the S29reaction of $\mathbf{1}$ with Oxone
Fig. S19 Collision-induced dissociation of $[\mathrm{Mn}(\mathrm{BQCN}) \mathrm{Cl}]^{+}$for S301
Fig. S20 Collision-induced dissociation of $\left\{\left[\mathrm{Mn}_{2}(\mathrm{BQCN})_{2}(\mathrm{O})_{3}\right]\right.$ - S31$\left.2 \mathrm{H}^{+}\right\}^{2+}$ in the reaction of $\mathbf{1}$ with Oxone
Fig. S21 Collision-induced dissociation of $\left[\mathrm{Mn}(\mathrm{BQCN}) \mathrm{O}_{2}\right]^{+}$in S32the reaction of $\mathbf{1}$ with Oxone

NMR spectroscopy and mass spectrometry

${ }^{1} \mathrm{H}$ NMR and ${ }^{13}$ NMR spectra were recorded on a Bruker DPX-300 spectrometer, with chemaical shifts relative to tetramethylsilane. EI mass spectra were measured on a Finnigan MAT 95 mass spectrometer. ESI mass spectra were obstianed on a Waters Micromess Q-Tof Premier quadrupole time-of-flight tandem mass spectrometer.

Preparation of $\left[\mathrm{Mn}^{\mathrm{II}}((S, S)-B Q C N) \mathrm{Cl}_{2}\right](1)$

A mixture of (S, S)-BQCN $(0.50 \mathrm{mmol})$ and $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2.50 \mathrm{mmol})$ in acetonitrile/ methanol ($1: 2 \mathrm{v} / \mathrm{v}, 15 \mathrm{~mL}$) was refluxed for 18 h . The mixture was then filtered and concentrated by rotary evaporation, followed by addtion of diethyl ether for precipitation of $\mathbf{1}$. The resulted yellow crude product was washed by small amount of methanol and recrystallized from acetonitle-diethyl ether to give $\mathbf{1}$ as a yellow crystalline solid. Yield: 94\%. ESI-MS: $m / z 486.1$ ([Mn $\left.\left.{ }^{\mathrm{II}}((S, S)-\mathrm{BQCN}) \mathrm{Cl}\right]^{+}\right)$.

General procedure for asymmetric cis-dihydroxylation of alkenes with Oxone catalysed by 1

A solution of Oxone $(1.0 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(3.0 \mathrm{mmol})$ in water $(6 \mathrm{~mL})$ was added in two portions to a solution of alkene (0.5 mmol) and $\mathbf{1}(2-5 \mathrm{~mol} \%)$ in acetonitrile (6 mL) at room temperature within 5 min . The reaction mixture was stirred and monitored by TLC. Upon quenching by aqueous saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution, the mixture was extracted with ethyl acetate (10 mL) conatining 1,4-dichlorobenzene (GC internal standard, 0.1 mmol) and the aliquot of the extract was analyzed by GC. Afterwards, the mixture was further extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and the oragnic crude products were identified and quantified by ${ }^{1} \mathrm{H}$ NMR analysis. The cis-diol product was isolated after purification by column chromatography on silica gel. The enatiomeric excess of purified cis-diol product was determined by chiral HPLC (Chiralpak OD-3 and AD-3).

Characterization of cis-diol products

The previously known cis-diol products corresponding to substrates $\mathbf{2 a}, \mathbf{4 a}, \mathbf{5 a}, \mathbf{6 b}$ and 7 were characterised on the basis of the spectral data described in literature.
(a) B. Plietker, M. Niggemann and A. Pollrich, Org.
Biomol. Chem., 2004, 2, 1116; (b) B. Plietker and M.
Niggemann, J. Org. Chem., 2005, 70, 2402.

(product for 2b)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.54(\mathrm{~d}, J=4.46 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10(\mathrm{~d}, J=4.44 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.46 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.49(\mathrm{~d}, J=7.13 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 76.38,77.19,122.56,127.01$, 128.03, 128.82, 129.24, 130.38, 142.13, 151.97, 172.55. EI-MS: $m / z 258[M]^{+}$; HRMS (EI): m / z for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$, calcd 258.0887, found 258.0880.

(product for 2c)

(product for 3a)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 4.26(\mathrm{~d}, J=3.61$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91$ (d, $3.57 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28-7.46 (m, 5H). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.97,74.96,74.99,83.35,126.64$, 128.03, 128.42, 140.22, 172.00. EI-MS: $m / z 238[\mathrm{M}]^{+}$; HRMS (EI): m / z for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$, calcd 238.1200, found 238.1195 .
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.56$ (br, 2H), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), $4.60(\mathrm{~d}, J=6.25 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=12.15 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}$, $J=12.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 53.16,68.05,72.23,72.31,128.44,128.71,128.73$, 134.93, 171.51, 172.04. EI-MS: $m / z 254$ [M] ${ }^{+}$; HRMS (EI): m / z for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}$, calcd 254.0785, found 254.0784.

(product for 3b)

(product for 3c)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.24(\mathrm{~d}, J=7.07 \mathrm{~Hz}, 2 \mathrm{H})$, $4.61(\mathrm{~d}, J=6.63 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=12.18 \mathrm{~Hz}, 2 \mathrm{H})$, 5.27 (d, $J=12.17,2 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{N}$ MR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 68.21,72.22,128.53,128.82,134.89$, 171.50. EI-MS: $m / z 239$ [M - $\left.\mathrm{PhCH}_{2}\right]^{+}$; HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{6}$, calcd 239.0550, found 239.0551 .
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.19(\mathrm{~d}, J=5.55 \mathrm{~Hz}, 2 \mathrm{H})$, $4.60(\mathrm{~d}, J=4.98 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=11.94 \mathrm{~Hz}, 2 \mathrm{H})$, $5.08(\mathrm{~d}, J=11.94 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.35$ $(\mathrm{m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 68.19, 73.04, 128.74, 128.83, 128.86, 134.63, 170.97. EI-MS: m/z 239 [M - $\left.\mathrm{PhCH}_{2}\right]^{+}$; HRMS (EI): m / z for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{6}$, calcd 239.0550, found 239.0550 .

(product for 4b)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{t}, J=7.13 \mathrm{~Hz}, 3 \mathrm{H}), 1.05$ $(\mathrm{t}, J=7.11 \mathrm{~Hz}, 3 \mathrm{H}), 2.60-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.87(\mathrm{~m}, 1 \mathrm{H})$, 3.02-3.13 (m, 1H), 3.49-3.61 (m, 1H), $4.30(\mathrm{~d}, J=6.06 \mathrm{~Hz}$, $1 \mathrm{H}), 4.74(\mathrm{~d}, J=6.05 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.40(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.64,13.88,40.52,40.91,72.82,76.11$, 126.70, 128.23, 128.42, 139.26, 171.18. EI-MS: m/z 238 [M + $\left.\mathrm{H}^{+}\right]^{+}$; HRMS (EI): m / z for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}$, calcd 238.1438, found 238.1440.

(product for $\mathbf{5 b}$)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.25(\mathrm{~d}, J=2.76 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (d, $J=2.62 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (t, $J=7.40 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25-7.37$ (m, $5 \mathrm{H}), 7.48(\mathrm{~d}, J=7.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.37 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 75.50,77.69,121.48,125.57$, 127.59, 128.39, 129.10, 129.80, 138.91, 143.11, 173.28. EI-MS: $m / z 257$ [M] ${ }^{+}$; HRMS (EI): m / z for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}$, calcd 257.1046, found 257.1040.

(product for $\mathbf{6 a}$)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.81-3.92(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=$ $3.39 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.23 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=12.23$, $1 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 64.17$, 67.69, 71.97, 128.38, 128.67, 128.76, 135.13, 173.02. EI-MS: $m / z 196[M]^{+}$; HRMS (EI): m / z for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$, calcd 196.0730, found 196.0730.

Detection of reaction intermediates by ESI-MS

A solution of complex 1 in a mixture of acetonitrile and distilled water ($10: 1 \mathrm{v} / \mathrm{v}$) was treated with Oxone (2 equiv.) and NaHCO_{3} (6 equiv.). The reaction mixture at different reaction time was introduced into the ESI source by a syringe pump operating at a flow of $5 \mu \mathrm{~L} \mathrm{~min}$. For accurate mass measurement, sodium formate was used as an internal reference. The mass resolution was fixed at about 8000 (full width at half-height) with mass accuracy limited within 10 ppm . The TOF-MS mass spectra were acquired in the mass range 100-1200 Th with an accumulation time of 1 sec and interscan time of 0.1 sec . In the MS/MS experiments, the parent ions were separately mass-selected by the first quadrupole mass analyzer (operating at about unit mass resolution). The selected ion was transmitted into a T-wave collision cell (filled with argon gas at $7.01 \times 10^{-3} \mathrm{Torr}$, measured in the quadrupole mass-analyzer
housing) where it underwent collision-induced dissociation at a collision energy of $10-25 \mathrm{eV}$ (laboratory frame). The parent ion and fragment ions were analyzed by the TOF mass analyzer and detected by a multichannel plate (MCP) detector at 1.8 kV . The MS/MS spectrum was obtained by averaging 150-200 scans.

Table S1. Crystal data and structural refinement for complex 1.

	$1 \cdot \mathrm{MeCN}$
Formula	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{MnN}_{4} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
Mr	563.42
Crystal system	Monoclinic-P
Space group	P2 $1_{\text {(\#4) }}$
$a, ~ \AA$	11.3578(13)
b, \AA	8.7479(10)
c, \AA	14.5673(17)
α, deg	90
β, deg	103.890(2)
$\gamma, \operatorname{deg}$	90
$F(000)$	586
V, \AA^{3}	1405.0(3)
Z	2
$\rho_{\text {calc, }}, \mathrm{g} \mathrm{cm}^{-3}$	1.332
$\mu\left(\mathrm{MoK}_{\alpha}\right), \mathrm{mm}^{-1}$	0.685
$2 \theta_{\text {max }}$, deg	57.48
Reflections collected	9382
Independent reflections	5814
Parameters	329
Final R indices	$R 1=0.0287$
$\left(F^{2}>2 \sigma\left(F^{2}\right)\right.$	$R \mathrm{~W}=0.0671$
Goodness-of-fit	1.015
Flack parameter	0.031(13)
Largest diff. peak/hole, e \AA^{-3}	0.20/-0.19

Table S2 Oxidation of methyl cinnamte (2a) with Oxone at room temperature using various manganese complexes in situ generated from reaction of ligand with $\mathrm{Mn}(\mathrm{II})$ or Mn (III) salt ${ }^{a}$

S, S-BQCN

6-Me ${ }_{2}$-BPBP

6-Me2-BPMCN

Entry	Ligand used	Mn salt used	Conv.$(\%)^{b}$	Yield based on conversion (\%)		D/E
				cis-Diol ${ }^{\text {b }}$	Epoxide ${ }^{\text {b }}$	
1	---	$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	5	0	56	---
2	S, S-BQCN	$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	93	$66^{\text {c }}$	19	3.5
3		$\mathrm{Mn}(\mathrm{OTf})_{2}$	97	28	52	0.54
4	$6-\mathrm{Me}_{2}$-BPBP	$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	7	0	73	---
5		$\mathrm{Mn}(\mathrm{OTf})_{2}$	27	23	43	0.53
6	6-Me ${ }_{2}$-BPMCN	$\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	7	0	91	---
7		$\mathrm{Mn}(\mathrm{OTf})_{2}$	24	11	42	0.26

${ }^{a}$ Reaction conditions: Mn salt ($5 \mathrm{~mol} \%, 0.025 \mathrm{mmol}$) and ligand ($5 \mathrm{~mol} \% 0.025 \mathrm{mmol}$) was stirred in MeCN (6 mL) for 10 min . After addition of methyl cinnamate ($\mathbf{2 a}$) (0.5 mmol), Oxone (2 equiv.) and NaHCO_{3} (6 equiv.) in $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ were added in 2 portions within 5 min , R.T., $2 \mathrm{~h} .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Isolated yield.

Chiral HPLC chromatographic analysis of cis-diol of 2a

- Column: Analytical Chiralpak OD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
* Condition: isopronanol $/ n$-hexane (7:93) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of 2a.

(II): cis-Diol from asymmetric cis-dihydroxylation of 2a with Oxone catalysed by $\mathbf{1}$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTirne [min]	Type	Width [min]	$\begin{gathered} \mathrm{Area} \\ {\left[\mathrm{mu}^{+} \mathrm{T} \mathrm{~J}^{+}\right]} \end{gathered}$	Height [mLU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	21.407	MF	0. 6646	1.08976e4	273.27890	96.3402
2	24.920	FM	0.7951	413.98526	8. 67786	3.6598

(III) cis-Diol from asymmetric cis-dihydroxylation of 2a with Oxone catalysed by the manganese complex in situ generated from reaction of $\mathrm{Mn}(\mathrm{OAc})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with S, S-BQCN.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mu}^{+} \mathrm{J}\right]} \end{gathered}$	Heicht [muT]	Area 8
1	21.420		0.6816	1.81322 E 4	443.35577	90.75 .54
2	24.931		0.7750	1847.00012	39.71991	9.2446

(IV) cis-Diol from gram-scale asymmetric cis-dihydroxylation of 2a with Oxone catalysed by 1 .

Fig. S1 Chiral HPLC chromatographic analysis of cis-diol of 2a. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of $\mathbf{2 a}$ catalysed by 1. (III) Asymmetric cis-dihydroxylation of 2a catalysed by in situ generated manganese complex. (IV) Gram-scale asymmetric cis-dihydroxylation of 2a catalysed by $\mathbf{1}$.

Chiral HPLC chromatographic analysis of cis-diol of 2b

* Column: Analytical Chiralpak OD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
a Condition: isopronanol $/ n$-hexane (7:93) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of 2b

(II): cis-Diol from asymmetric cis-dihydroxylation of $\mathbf{2 b}$ with Oxone catalysed by $\mathbf{1}$.

Fig. S2 Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{2 b}$. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of 2b catalysed by 1.

Chiral HPLC chromatographic analysis of cis-diol of 2c

* Column: Analytical Chiralpak OD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
* Condition: isopronanol $/ n$-hexane (1:99) at $0.5 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of 2c

(II): cis-Diol from asymmetric cis-dihydroxylation of $\mathbf{2 c}$ with Oxone catalysed by $\mathbf{1}$.

Fig. S3 Chiral HPLC chromatographic analysis of cis-diol of 2c. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of 2c catalysed by 1.

Chiral HPLC chromatographic analysis of cis-diol of 3a

* Column: Analytical Chiralpak OD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
* Condition: isopronanol $/ n$-hexane (10:90) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of 3a

(II): cis-Diol from asymmetric cis-dihydroxylation of 3a with Oxone catalysed by $\mathbf{1}$.

Fig. S4 Chiral HPLC chromatographic analysis of cis-diol of 3a. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of 3a catalysed by 1.

Chiral HPLC chromatographic analysis of cis-diol of 3b

* Column: Analytical Chiralpak OD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
* Condition: isopronanol $/ n$-hexane ($10: 90$) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of 3b

(II): cis-Diol from asymmetric cis-dihydroxylation of $\mathbf{3 b}$ with Oxone catalysed by $\mathbf{1}$.

(II): cis-Diol from gram-scale asymmetric cis-dihydroxylation of 3b with Oxone catalysed by 1 .

Fig. S5 Chiral HPLC chromatographic analysis of cis-diol of 3b. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of 3b catalysed by 1. (III) Gram-scale asymmetric cis-dihydroxylation of 3b catalysed by $\mathbf{1}$.

Chiral HPLC chromatographic analysis of cis-diol of 4a

* Column: Analytical Chiralpak AD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
a Condition: isopronanol $/ n$-hexane ($10: 90$) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of $\mathbf{4 a}$.

(II): cis-Diol from asymmetric cis-dihydroxylation of $\mathbf{4 a}$ with Oxone catalysed by $\mathbf{1}$.

Fig. S6 Chiral HPLC chromatographic analysis of cis-diol of 4a. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of 4a catalysed by 1.

Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{4 b}$

* Column: Analytical Chiralpak AD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
a Condition: isopronanol $/ n$-hexane ($10: 90$) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of 4b.

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\text { minin] }} \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{+} \mathrm{B}\right]} \end{gathered}$	Heicfht $\text { [} \mathrm{mBU}]$	$\begin{gathered} \text { Area } \\ \frac{8}{8} \end{gathered}$
1	21.959	WINI	0.4884	1.078.57e4	368.08688	50.1169
2	25.843	IWIM	0.5871	1.07354@4	304.73276	49.88

(II): cis-Diol from asymmetric cis-dihydroxylation of $\mathbf{4 b}$ with Oxone catalysed by $\mathbf{1}$.

Fig. S7 Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{4 b}$. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of 4b catalysed by 1.

Chiral HPLC chromatographic analysis of cis-diol of 5a

* Column: Analytical Chiralpak AD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
a Condition: isopronanol $/ n$-hexane ($10: 90$) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of $\mathbf{5 a}$.

(II): cis-Diol from asymmetric cis-dihydroxylation of $\mathbf{5 a}$ with Oxone catalysed by $\mathbf{1}$.

Fig. S8 Chiral HPLC chromatographic analysis of cis-diol of 5a. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of 5a catalysed by 1.

Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{5 b}$

* Column: Analytical Chiralpak AD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
* Condition: isopronanol $/ n$-hexane ($10: 90$) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of $c i s$-diol of $\mathbf{5 b}$.

(II): cis-Diol from asymmetric cis-dihydroxylation of $\mathbf{5 b}$ with Oxone catalysed by $\mathbf{1}$.

Fig. S9 Chiral HPLC chromatographic analysis of cis-diol of 5b. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of 5b catalysed by 1.

Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{6 a}$

* Column: Analytical Chiralpak AD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
* Condition: isopronanol $/ n$-hexane ($7: 93$) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of $\mathbf{6 a}$.

(II): cis-Diol from asymmetric cis-dihydroxylation of $\mathbf{6 a}$ with Oxone catalysed by $\mathbf{1}$.

Fig. S10 Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{6 a}$. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of $\mathbf{6 a}$ catalysed by 1.

Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{6 b}$

* Column: Analytical Chiralpak OD-3 ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm} \times 3 \mu \mathrm{~m}$).
a Condition: isopronanol $/ n$-hexane (7:93) at $1.0 \mathrm{~mL} / \mathrm{min}$, enantiomeric excess determined at 210 nm .
(I): Racemic standard of cis-diol of $\mathbf{6 b}$.

(II): cis-Diol from asymmetric cis-dihydroxylation of $\mathbf{6 b}$ with Oxone catalysed by $\mathbf{1}$.

Fig. S11 Chiral HPLC chromatographic analysis of cis-diol of $\mathbf{6 b}$. (I): Racemic cis-diol standard. (II): Asymmetric cis-dihydroxylation of $\mathbf{6 b}$ catalysed by $\mathbf{1}$.

A: $[\mathrm{BQCN}-\mathrm{Me}]^{+}$
B: $\left[\mathrm{BQCN}+\mathrm{H}^{+}\right]^{+}$
$\mathrm{C}:[\mathrm{Mn}(\mathrm{BQCN})]^{+}$
D: $\left\{\left[\mathrm{Mn} 2(\mathrm{BQCN})_{2}(\mathrm{O})_{3}\right]-2 \mathrm{H}^{+}\right\}^{2+}$
$\mathrm{E}:\left[\mathrm{Mn}(\mathrm{BQCN})(\mathrm{O})_{2}\right]^{+}$

Fig. S12 Electrospray ionization mass spectrometric measurements of the reaction mixture of $\mathbf{1}$ with Oxone (2 equiv.) in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(10: 1 \mathrm{v} / \mathrm{v})$ at different reaction time $(t): 0 \mathrm{sec}$ (i.e. before addition of Oxone), 30 sec and 15 min .

Fig. S13 Electrospray ionization mass spectrometric measurement of $[\mathrm{Mn}(\mathrm{BQCN}) \mathrm{Cl}]^{+}$for $\mathbf{1}$ in MeCN : (Upper) Simulated isotope pattern of $\left[\mathrm{MnC}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Cl}\right]^{+}$and (Lower) Experimental mass measurement.

Fig. S14 Electrospray ionization mass spectrometric measurement of $[\mathrm{Mn}(\mathrm{BQCN}) \mathrm{O}]^{2+}$ in the reaction of $\mathbf{1}$ with Oxone (2 equiv.): (Upper) Simulated isotope pattern of $\left[\mathrm{MnC}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}\right]^{2+}$ and (Lower) Experimental mass measurement.

Fig. S15 Electrospray ionization mass spectrometric measurement of $\left[\mathrm{BQCN}+\mathrm{H}^{+}\right]^{+}$ in the reaction of $\mathbf{1}$ with Oxone (2 equiv.): (Upper) Simulated isotope pattern of $\left[\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{4}\right]^{+}$and (Lower) Experimental mass measurement.

Fig. S16 Electrospray ionization mass spectrometric measurement of [BQCN-Me] ${ }^{+}$in the reaction of 1 with Oxone (2 equiv.): (Upper) Simulated isotopic pattern of $\left[\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{4}\right]^{+}$and (Lower) Experimental mass measurement.

Fig. S17 Electrospray ionization mass spectrometric measurement of $[\mathrm{Mn}(\mathrm{BQCN})]^{+}$ in the reaction of $\mathbf{1}$ with Oxone (2 equiv.): (Upper) Simulated isotope pattern of $\left[\mathrm{MnC}_{26} \mathrm{H}_{28} \mathrm{~N}_{4}\right]^{+}$and Lower) Experimental mass measurement.

Fig. S18 Electrospray ionization mass spectrometric measurement of $\left\{\left[\mathrm{Mn}_{2}(\mathrm{BQCN})_{2}(\mathrm{O})_{3}\right]-2 \mathrm{H}^{+}\right\}^{2+}$ in the reaction of $\mathbf{1}$ with Oxone (2 equiv.): (Upper) Simulated isotope pattern of $\left[\mathrm{Mn}_{2} \mathrm{C}_{52} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{O}_{3}\right]^{2+}$ and (Lower) Experimental mass measurement.

Fig. S19 Collision-induced dissociation of $[\mathrm{Mn}(\mathrm{BQCN}) \mathrm{Cl}]^{+}$for $\mathbf{1}$ in MeCN recorded at the collision energy of 25 eV .

Fig. S20 Collision-induced dissociation of $\left\{\left[\mathrm{Mn}_{2}(\mathrm{BQCN})_{2}(\mathrm{O})_{3}\right]-2 \mathrm{H}^{+}\right\}^{2+}$ for the reaction of $\mathbf{1}$ with Oxone (2 equiv.) recorded at the collision energy of 12 eV .

$\mathrm{C}_{17} \mathrm{H}_{2} \mathrm{~N}_{3}$
$\mathrm{MW}: 268$

M.W.: 129:

$\underset{435.1399}{\left[\mathbf{L}+\mathbf{K}^{+}\right]^{+}}$
TOF MSMS 482.99ES+

Fig. S21 Collision-induced dissociation of $\left[\mathrm{Mn}(\mathrm{BQCN})(\mathrm{O})_{2}\right]^{+}$for the reaction of $\mathbf{1}$ with Oxone (2 equiv.) recorded at the collision energy of $10 \mathrm{eV} . \mathrm{L}=\mathrm{BQCN}=$ $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4}$.

