Imides: Forgotten Players in the Ugi Reaction. One pot multicomponent synthesis of

quinazolinones

Riccardo Mossetti, Tracey Pirali, Dèsirèe Saggiorato, and Gian Cesare Tron

Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche; Università degli Studi del Piemonte Orientale "A. Avogadro", Via Bovio 6, 28100 Novara, Italy.

Contents:

- Experimental section
- Synthesis of imide 9 using different experimental conditions
- References
- Copies of ¹H and ¹³C spectra

Experimental section

Commercially available reagents and solvents were used without further purification and were purchased All the liquid aldehydes were distilled before their use. When needed, the reactions were performed in flame- or oven-dried glassware under a positive pressure of dry N_2 .

NMR spectra were recorded with a JEOL ECP 300 MHz spectrometer and the δ values are in part per million. Mass spectra were recorded using a Thermo Finningan LCQ Deca XP-*plus* equipped with an ESI source and an ion trap detector. Column chromatography was performed on silica gel Merck Kieselgel (0.063-0.200 mm; 70-230 mesh ASTM). Thin layer chromatography (TLC) was carried out on 5 x 20 cm plates with a layer thickness of 0.25 mm (Merck Silica gel 60 F₂₅₄). When necessary they were developed with KMnO₄ or Dragendorff reagent. Elemental analysis (C, H, N) of the compounds are within \pm 0.4% of the calculated values.

General procedure for the synthesis of the quinazolinones.

Carbonyl compound (1 eq), carboxylic acid (1 eq) and isocyanide (1 eq) were added sequentially to a solution of amine (1 eq) in dry CH_2Cl_2 . 4 Å molecular sieves were added and the reaction was stirred at room temperature until the complete formation of the imide. CH_2Cl_2 was evaporated and the reaction crude was dissolved in dry toluene. Triphenylphospine (1 eq) was added and after 10 minutes, the reaction was heated at reflux until the complete disappearance of the iminophosphorane. The solvent was evaporated and the crude reaction mixture was purified by column chromatography.

Compounds 12^1 , 13^2 , 25^3 , 26^4 , 27^5 , 40^6 , and 55^7 were synthesized as described previously.

- Synthesis of imide 9 using different experimental conditions

SOLVENT	CONDITIONS	YIELD
Toluene	2h, reflux	38 %
DCM	overnight, r.t.	64 %
Toluene	2h, r.t.	59 %
DCM	1h, Molecular Sieves 4 Å, r.t.	80 %

References:

- (1) Grolla, A. A.; Podesta, V.; Chini, M. G.; Di Micco, S.; Vallario, A.; Genazzani, A. A.; Canonico, P. L.; Bifulco, G.; Tron, G. C.; Sorba, G.; Pirali, T. J. Med. Chem. **2009**, *52*, 2776-2785.
- (2) Boeyens, J. C. A.; Cook, L. M.; Ding, Y.; Fernandes, M. A.; Reid, D. H Org. Biomol. Chem. 2003, 1, 2168-2172.
- (3) O'Neil, I.; Murray, C. L.; Hunter, R. C.; Kalindjian, S. B.; Jenkins, T. C. Synlett 1997, 75-78.
- (4) Bose, D. S.; Chary, M. V. Synthesis 2010, 643-650.
- (5) Mohapatra, D. K.; Maity, P. K.; Shabab, M.; Khan, M. I. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 5241-5245.
- (6) Vasilevsky, Sergey F.; Govdi, Anastasiya I.; Shults, El'vira E.; Shakirov, Makhmut M.; Sorokina, Irina V.; Tolstikova, Tatyana G.; Baev, Dmitry S.; Tolstikov, Genrikh A.; Alabugin, Igor V. *Bioorg. Med. Chem.* 2009, 17, 5164-5169.
- (7) Thanigaimalai, P.; Lee, K.-C.; Bang, S.-C.; Lee, J.-H.; Yun, C.-Y.; Roh, E.; Hwang, B.-Y.; Kim, Y.; Jung, S.-H.

2-(1-(benzyl(methyl)amino)heptyl)-3-pentylquinazolin-4(3H)-one (10)

Eluant: PE/EtOAc 95:5

Yield: 80 %; Yellow oil.

¹H-NMR (300 MHz, CDCl₃, 323 K) δ 8.28 (d,J = 8.8 Hz, 1-*H*), 7.69 (br s, 2-H), 7.44 (m, 1-H), 7.30-7.20 (m, 5-H), 4.49 (m, 1-H), 4.04 (m, 1-H), 3.87 (d, J = 13.4 Hz, 1-H), 3.83 (dd, J = 10.4/3.0 Hz, 1-H), 3.55 (d, J = 13.4 Hz, 1-H), 2.46 (m, 1-H), 2.30 (s, 3-H), 1.81 (m, 2-H), 1.55-1.10 (m, 11-H), 0,91 (br s, 6-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K) δ 165.1, 156.7, 149.0, 141.4, 135.9, 130.9, 130.5, 129.8, 129.3, 128.9, 128.8 123.2, 68.9, 59.7, 45.0, 40.5, 33.9, 31.7, 31.5, 29.8 (2C), 24.9 (2c9, 24.7, 16.4, 16.2; MS (ESI) *m/z* 434 (100%) (M+H)⁺. C₂₈H₃₉N₃O : calcd. C 77.55, H 9.07, N 9.69 ; found C 77.64, H 9.12, N 9.84.

3-cyclohexyl-2-(cyclohexyl(morpholino)methyl)quinazolin-4(3H)-one (28)

Eluant: PE/EtOAc 9:51

Yield: 81 %; Yellowish amorphous solid.

¹H-NMR (300 MHz, CDCl₃, 323 K, referered to main rotamer) δ 8.17 (d, J = 8.9 Hz, 1-H), 7.63-7.55 (m, 2-H), 7.35 (t, J = 7.0 Hz, 1-H), 4.08 (m, 1-H9, 3.58 (br s, 5-H), 2.73 (m, 5-H), 1.99-1.10 (m, 20-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K, referred to

main rotamer) δ 162.9, 155.3, 146.1, 133.5, 127.1, 126.2 (2C), 121.8, 69.4, 67.6, 59.5, 49.4, 38.7, 31.1, 30.0, 28.5, 26.7, 25.9, 25.1.; MS (ESI) *m/z* 410 (100%) (M+H)⁺. C₂₅H₃₅N₃O : calcd. C 73,31, H 8.61, N 10.26 ; found C 72.90, H 8.40, N 10.30.

3-benzyl-7-chloro-2-(cyclohexyl(piperidin-1-yl)methyl)quinazolin-4(3H)-one (29)

Eluant: PE/EtOAc 97:3 to 95:5.

Yield: 78 %; Yellowishi amorphous solid.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.25 (d, J = 8.5 Hz, 1-H), 7.69 (d, J = 1.9 Hz, 1-H), 7.40-7.14 (m overlapping, 6-H), 5.93 (d, J = 16.2 Hz, 1-H), 5.04 (d, J = 16.2 Hz, 1-H), 3.40 (d, J = 10.4 Hz, 1-Hz), 2.81 (m, 1-H), 2.66 (m, 1-H), 2.36 (m, 1-H), 1.71-1.19 (m overlapping, 16-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 162.5, 157.0, 148.0, 140.2, 136.8, 128.7, 128.5, 127.5, 127.1, 127.0, 126.6, 119.0, 70.1, 50.5, 45.9, 38.2, 30.9, 30.6, 27.1, 26.5, 26.0, 25.9, 24.9; MS (ESI) *m/z* 450 (100%) (M+H)⁺. C₂₇H₃₂ClN₃O : calcd. C 72.06, H 7.17, N 9.34 ; found C 72.10, H 7.10, N 9.58.

3-benzyl-2-(cyclohexyl(pyrrolidin-1-yl)methyl)-6-methoxyquinazolin-4(3H)-one (30).

Eluant: PE/EtOAc 8:2.

Yield: 64 %; Brown oil.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 7.68 (d, J = 2.7 Hz, 1-H), 7.61 (d, J = 8.5 Hz, 1-H), 7.35-7.10 (m, 6-H), 5.69 (d, J = 15.6 Hz, 1-H), 5.27 (d, J = 15.6 Hz, 1-H), 3.90 (s, 3-H), 3.83 (d, J = 9.1 Hz, 1-H), 2.82 (br s, 1-H), 2.60 (br s, 1-H), 2.20 (m, 1-H), 1.97-0.80 (m overlapping, 18-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 162.6, 158.3, 153.6, 141.6, 136.7, 129.2, 128.7, 127.6, 127.2, 124.7, 121.1, 106.1, 65.2, 55.8, 48.5, 46.4, 40.1, 29.9, 26.4, 26.1, 23.4; MS (ESI) *m/z* 432 (100%) (M+H)⁺. C₂₇H₃₃N₃O : calcd. C 75.14, H 7.71, N 9.74; found C 75.10, H 7.80, N 9.84.

3-cyclohexyl-2-(1-(dibenzylamino)-2-phenylethyl)-6-methoxyquinazolin-4(3H)-one (31).

Eluant: PE/EtOAc 98:2 then 95:5.

Yield: 53 %; Orange solid. M.p. 178-179 °C

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 7.63 (d, J = 8.8 Hz, 1-H), 7.53 (d, J = 2.8 Hz, 1-H), 7.34-7.10 (m, 16-H), 4.40 (dd, J = 12.6/3.3 Hz, 1-H), 4.24 (d, J = 13.7 Hz, 1-H), 3.87 (br s overlapping, 5-H), 3.79 (d, J = 13.7, 1-H), 3.40 (dd, J = 12.6/3.3 Hz, 1-H), 2.86 (m, 1-H), 2.25 (m, 1-H), 1.77-1.10 (m, 8-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 163.0, 158.3, 151.9, 140.7, 139.4, 139.1, 129.3, 129.2, 128.6, 128.5, 128.3, 127.2, 126.0, 124.1, 122.8, 105.3, 62.1, 58.0, 55.6, 54.6, 30.7, 28.7, 28.0, 25.6, 25.2, 24.9 ; MS (ESI) *m/z* 558 (100%) (M+H)⁺. C₃₇H₃₉N₃O₂ : calcd. C 79.68, H 7.05, N 7.53 ; found C 80.05, H 7.30, N 7.83.

7-chloro-3-cyclohexyl-2-(morpholino(phenyl)methyl)quinazolin-4(3H)-one (32).

Eluant: PE/EtOAc 9:1

Yield: 80 %; Magenta oil.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.05 (d, J = 8.5 Hz, 1-H), 7.71 (d, J = 1,9 Hz, 1-H), 7.50-7.20 (m, 6-H), 4.86 (br s, 1-H9, 3.77 (br s, 4-H), 2.84 (br s, 4-H), 2.61-2.37 (br s, 4-H), 1.75-1.00 (m, 10-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 162.3, 156.7, 147.4, 140.0, 135.2, 128.6 (2C), 128.2, 128.0, 127.4, 126.8, 120.5, 67.0, 58.8, 52.6, 28.4, 28.2, 26.5, 26.0, 25.; MS (ESI) *m/z* 438 (100%) (M+H)⁺. C₂₅H₂₈ClN₃O₂ : calcd. C 68.56, H 6.44, N 9.59 ; found C 68.30, H 6.13, N 9.40.

2-([1,1'-biphenyl]-4-yl(morpholino)methyl)-3-phenethylquinazolin-4(3H)-one (33).

Eluant: PE/EtOAc 9:1

Yield: 74 %; White solid. M.p.=198.5-200.2 °C

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.31 (d, J = 8.4, 1-H), 7.9-7.10 (m, 17-H), 4.64 (s, 1-H), 4.47 (m, 1-H), 4.13 (m, 1-H), 3.75 (br s, 4-H), 2.89 (br s, 2-H), 2.61 (br s, 4-H; ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 162.4, 154.4, 146.8, 141.6, 140.2, 138.2, 134.2, 130.1, 128.9(5C), 127.9, 127.6, 127.5, 127.0, 126.9, 126.6, 120.8, 67.0, 51.8, 45.2, 34.5; MS (ESI) *m/z* 502 (100%) (M+H)⁺. C₃₃H₃₁N₃O₂ : calcd. C 79,01, H 6.23, N 8.38 ; found C 79.40, H 6.40, N 8.10.

2-(1-(benzyl(methyl)amino)heptyl)-3-(3,4,5-trimethoxyphenyl)quinazolin-4(3H)-one (34).

Eluant: PE/EtOAc 8:2

Yield: 70 %; Yellow oil.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.29 (d, J = 7.2 Hz, 1-H), 7.73 (br s, 2-H), 7.45 (m, 1-H), 7.30-7.05 (m, 5-H), 6.74 (s, 1-H), 6.43 (s, 1-H), 4.07 (d, J = 13.7 Hz, 1-H), 3.89 (s, 3-H), 3.81 (s, 3-H), 3.60 (s, 3-H), 3.54 (m, 1-H), 3.33 (d, J = 13.7 Hz, 1-H), 2.88 (m, 1-H), 2.01 (s, 3-H), 1.73 (m, 1-H), 1.22 (br s, 9-H), 0.86 (br s, 3-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 163.0, 155.6, 153.6, 153.5, 147.0, 140.1, 138.2, 134.3, 132.5, 128.6, 128.5, 128.4, 128.1, 127.8, 127.5, 126.9, 126.7, 121.1, 107.4, 105.2, 64.4, 60.9, 56.1, 55.8, 55.5, 38.7, 31.6, 29.2, 26.8, 24.7, 22.6, 14.1; MS (ESI) *m/z* 530 (100%) (M+H)⁺. C₃₂H₃₉N₃O₄ : calcd. C 72.56, H 7.42, N 7.93 ; found C 72.70, H 7.88, N 8.20.

3-benzyl-2-(1-(benzyl(methyl)amino)heptyl)-6-nitroquinazolin-4(3H)-one (35).

Eluant: PE/EtOAc 8:2

Yield: 73 %; Orange oil.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 9.20 (s, 1-H), 8.51 (dd, J = 8.4/2.4 Hz, 1-H), 7.85 (d, J = 8.9 Hz, 1-H), 7.35-7.19 (br s, 8-H), 7.02 (br d, 2-H), 6.05 (d, J = 15.9 Hz, 1-H), 5.33 (d, J = 15.9 Hz, 1-H), 3.84 (m overlapped 2-H), 5.58 (d, J = 13.4 Hz, 1-H), 2.33 (br s, 4-H), 1.68 (br s, 1-H), 1.16 (br s, 9-H), 0.85 (br s, 3-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 162.0, 158.7, 150.7, 145.7, 138.9, 136.3, 129.3, 128.9, 128.5, 128.1, 127.6, 127.3, 126.0, 123.8, 120.9, 64.5, 57.7, 45.5, 38.2, 31.6, 28.9, 26.4,

22.5, 22.1, 14.1 ; MS (ESI) m/z 499 (100%) (M+H)⁺. C₃₀H₃₄N₄O₃ : calcd. C 72.26, H 6.87, N 11.24 ; found C 72.47, H 6.88, N 6.88, N 6.87, N 11.24 ; found C 72.47, H 6.88, N 6.88,

11.52.

2-((4-chlorophenyl)(pyrrolidin-1-yl)methyl)-3-pentylquinazolin-4(3H)-one (36).

Eluant: PE/EtOAc 9 :1

Yield: 60 %; Yellow oil.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.17 (d, J = 8.5 Hz, 1-H), 7.80 (m, 1-H), 7.67 (m,1-H), 7.50-7.10 (m, 5-H), 4.53 (s, 1-H9, 4.17 (m, 1-H), 3.87 (m, 1-H), 2.64 (br s, 2-H), 2.50 (br s, 2-H), 1.78 (br s, 4-H), 1.50-1.10 (m, 6-H), 0.84 (br s, 3-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 162.2, 155.0, 146.9, 136.2, 134.3, 134.0, 130.2, 128.9, 127.7, 126.8, 126.6, 120.7, 53.0, 43.3, 29.1, 28.3, 23.3, 22.3, 13.9; MS (ESI) *m/z* 410 (100%) (M+H)⁺. C₂₄H₂₈ClN₃O : calcd. C 70.31, H 6.88, N 10.25 ; found C 70.00, H 6.50, N 10.50.

7-chloro-2-((3-methoxyphenyl)(morpholino)methyl)-3-pentylquinazolin-4(3H)-one (37).

Eluant: PE/EtOAc 8 :2

Yield: 53 %; Orange oil.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.13 (d, J = 8.5 Hz, 1-H), 7.79 (d, J = 1.9 Hz, 1-H), 7.38 (dd, J = 8.5/2.2 Hz, 1-H), 7.25 (t, J = 8.3 Hz, 1-H), 7.02 (br s, 1-H), 6.99 (s, 1-H), 6.83 (dd, J = 8.4/1.9 Hz, 1-H), 4.64 (br s, 1-H), 4.15 (m, 1-H), 3.81 (m, 1-H), 3.74 (br s, 7-H), 2.72 (m, 1-H), 2.58 (m, 1-H), 1.55 (br s, 1-H), 1.30 (br s, 5-H), 0.88 (br t, 3-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 161.7, 160.0, 156.1, 147.8, 140.2, 136.8, 129.8, 128.1, 127.4, 127.3, 121.8, 119.2, 115.5, 113.5, 67.0, 55.3, 52.0, 43.5, 29.1, 28.4, 22.3, 13.9; MS (ESI) *m/z* 456 (100%) (M+H)⁺. C₂₅H₃₀ClN₃O₂ : calcd. C 65.85, H 6.63, N 9.22 ; found C 66.10, H 6.83, N 9.00.

7-chloro-2-(morpholino(thiophen-2-yl)methyl)-3-pentylquinazolin-4(3H)-one (38).

Eluant: PE/EtOAc 9 :1

Yield: 61 %; Yellow oil.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.15 (d, J = 8.5 Hz, 1-H), 7.77 (d, J = 1.8 Hz, 1-H), 7.36 (m, 2-H), 7.03 (d, J = 3.2 Hz, 1-H), 6.97 (t, J = 4.9 Hz, 1-H), 5.09 (s, 1-H), 4.19 (m, 1-H), 4.10 (m, 1-H), 3.69 (br s, 4-H), 2.72 (m, 1-H), 2.56 (m, 1-H), 1.69 (br s, 2-H), 1.38 (br s, 4-H), 0.91 (br t, 1-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 161.6, 154.9, 147.3, 140.2, 136.2, 128.6, 128.2, 127.9, 127.6, 127.1, 125.9, 119.3, 67.0, 50.6, 43.7, 29.2, 28.9, 22.3, 14.0; MS (ESI) *m/z* 432 (100%) (M+H)⁺. C₂₂H₂₆ClN₃O₂S : calcd. C 61.17, H 6.07, N 9.73 ; found C 61.43, H 6.20, N 9.40.

7-chloro-2-(1-morpholinoheptyl)-3-phenylquinazolin-4(3H)-one (39).

Eluant: PE/EtOAc 8 :2

Yield: 45 %; Orange oil.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.20 (d, J = 8.5 Hz, 1-H), 7.75(d, J = 1.9 Hz, 1-H), 7.55-7.35 (m, 5-H), 7.14 (m, 1-H), 3.52 (m, 4-H), 3.23 (dd, J = 10.4/3.8 Hz, 1-H), 2.63 (m, 2-H), 2.10 (m, 3-H), 1.53 (m, 1-H), 1.27 (br s, 8-H), 1.06 (m, 1-H), 0.86 (t, J = 6.3 Hz, 3-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 162.3, 155.9, 147.9, 140.5, 136.8, 130.2, 129.4, 129.2, 129.1, 128.5, 128.1, 127.5, 127.3, 119.8, 67.4, 64.9, 48.9, 31.6, 29.3, 26.7, 24.2, 22.6, 14.1; MS (ESI) *m/z* 440 (100%) (M+H)⁺. C₂₅H₃₀ClN₃O₂ : calcd. C 68.25, H 6.87, N 9.55 ; found C 68.46, H 6.90, N 9.90.

3-benzyl-2-(morpholinomethyl)quinazolin-4(3H)-one (45).

Eluant: PE/EtOAc 8 :2 then 5 :5

Yield: 30 %; colorless oil

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.32 (d, J = 8.5 Hz, 1-H), 7.8-7.60 (m, 2-H), 7.49 (t, J = 8.3 Hz, 1-H), 7.30-7.10 (m, 5-H), 5.75 (s, 2-H), 3.65 (br s, 4-H), 3.50 (s, 2-H), 2.52 (s, 4-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 162.6, 152.8, 146.9, 136.8, 134.4, 128.9, 127.5, 127.4, 127.2, 127.1, 126.2, 120.9, 66.8, 63.1, 53.6, 45.9; MS (ESI) *m/z* 336 (100%) (M+H)⁺. C₂₀H₂₁N₃O₂ : calcd. C 71.62, H 6.31, N 12.53 ; found C 71.80, H 6.40, N 12.70.

tert-butyl (3-(benzyl(1-(3-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)amino)propyl)carbamate

(56).

Eluant: PE/EtOAc 9 :1 then 8 :2

Yield: 40 %; Yellow oil.

¹H-NMR (300 MHz, CDCl₃, 323 K, referred to the main rotamer) δ 8.23 (d, J = 8.4 Hz, 1-H), 7.65 (d, J = 1.8 Hz, 1-H), 7.36 (dd, J = 8.5/1.6 Hz, 1-H), 7.30-7.10 (m, 8-H), 6.84 (m, 2-H), 5.96 (d, J = 15.9 Hz, 1-H), 4.48 (d, J = 15.9 Hz, 1-H), 4.01 (d, J = 15.1 Hz, 1-H), 3.75 (d, J = 15.1 Hz, 1-H), 3.52 (d, J = 9.9 Hz, 1-H), 2.98 (m, 4-H), 2.63 (m, 1-H), 1.5 (m, 2-H), 1.40 (br s, 9-H), 1.03 (d, J = 6.3 Hz, 3-H), 0.11 (d, J = 6.3 Hz, 3-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K, referred to the main rotamer) δ 162.3, 158.1, 155.9, 147.8, 140.5, 140.4, 136.5, 128.7, 128.6, 128.5, 128.4, 127.6, 127.2, 127.0, 126.9, 126.6, 119.0, 78.8, 67.3, 55.8, 49.2, 45.7, 38.7, 29.6, 28.4, 20.7, 19.8 (2C); MS (ESI) *m/z* 589 (100%) (M+H)⁺. C₃₄H₄₁ClN₄O₃ : calcd. C 69.31, H 7.01, N 9.51 ; found C 69.30, H 7.12, N 9.68.

tert-butyl (3-((1-(3-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)amino)propyl)carbamate (57).

Compound **56** (300 mg) was stirred in dry methanol under a hydrogen atmosphere (1 atm) in the presence of Pearlman's catalyst at room temperature for 8 h. The crude reaction was filtered through a Celite pad and evaporated to give **57** as a yellow oil which was directly used for the following step.

tert-butyl(3-(N-(1-(3-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)-4-

methylbenzamido)propyl)carbamate

To a cooled solution (0 °C) of 255 mg of 57 (0,51 mmol, 1 eq) in 3 ml of dry CH_2Cl_2 , 2,2, eq of TEA were added. Then, 1 eq of 4-methylbenzoyl chloride (1 eq) was added dropwise. The reaction was stirred at room temperature overnight. The mixture was extracted with CH_2Cl_2 , and the organic layer was washed with water (x1),brine (x1), and dried over sodium sulfate. Evaporation of the solvent gave a crude product which was purified by column cromatography using PE/EtOAc 95 :5 then PE/EtOAc 8 :2 as eluant to give 112 mg of the desired product as yellow oil.

¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.29 (d, J = 8.5 Hz,1-H), 7.74 (d, J = 1.6 Hz, 1-H), 7.50-7.10 (m, 10-H), 6.10 (d, J = 15.6 Hz, 1-H), 5.68 (d, J = 10.7, 1-H), 5.21 (d, J = 15.6 Hz, 1-H), 3.96 (br t, NH), 3.55-3.25 (n, 2-H), 2.80-2.50 (m, 3-H), 2.34 (s, 3-H), 1.33 (br s, 10-H), 0.92 (d, J = 6.9 Hz, 3-H), 0.73 (m, 1-H), 0.33 (d, J = 6.9 Hz, 3-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 173.1, 162.2, 156.0, 155.8, 147.6, 140.9, 139.0, 136.9, 133.7, 129.3, 129.0, 128.8, 128.2, 127.7, 127.3, 126.9, 126.0, 119.4, 79.3, 59.6, 45.6, 42.0, 37.7, 30.8, 28.9, 28.4, 21.5, 19.2, 18.4; MS (ESI) *m/z* 617 (100%) (M+H)⁺. C₃₅H₄₁ClN₄O₄ : calcd. C 68.11, H 6.70, N 9.08 ; found C 68.34, H 6.90, N 8.75.

N-(3-aminopropyl)-N-(1-(3-benzyl-7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methylpropyl)-4-methylbenzamide (58).

To a cooled solution (0 °C) of 100 mg of the protected compound (1 eq ; 0.16 mmol) in dry CH₂Cl₂, 20 eq of trifluoroacetic acid (3,24 mmol, 369,6 mg, 248 μ L) were added. The reaction was stirred at room temperature for 3 h. NaOH 4 M was added until pH > 12 and the aqueous layer was extracted with CH₂Cl₂ (x3). The combined organic phases were then washed with brine and dried over sodium sulphate. Evaporation of the solvent gives ispinesib as a colorless oil. (Yield= 70 % on two steps). ¹H-NMR (300 MHz, CDCl₃, 323 K,) δ 8.29 (d, J = 8.52 Hz, 1-H), 7.66 (d, J = 1.9 Hz, 1-H), 7.45 (dd, J = 8.5/1.9 Hz, 1-H), 7.40 (br d, 2-H), 7.31-7.16 (m, 7-H), 6.10 (d, J = 15.6 Hz, 1-H), 5.69 (d, J = 10.4 Hz, 1-H), 5.24 (d, J = 15.6 Hz, 1-H), 3.43 (m, 2-H), 2.74 (m, 1-H), 2.34 (s, 3-H), 2.15 (t, J = 6.6 Hz, 2-H), 1.23 (m, 1-H), 0.94 (d, J = 6.9 Hz, 3-H), 0.71 (m, 1-H), 0.63 (br s, -NH₂), 0.37 (d, J = 6.9 Hz, 3-H); ¹³C-NMR (75.4 MHz, CDCl₃, 323 K,) δ 173.0, 162.2, 155.9, 147.7, 140.7, 139.4, 136.9, 133.9, 129.1, 128.8, 128.7, 128.0, 127.6, 127.2, 126.8, 126.0, 119.3, 59.6, 45.5, 42.3, 39.6, 34.1, 28.8, 21.4, 19.2, 18.3; MS (ESI) *m/z* 517 (100%) (M+H)⁺. C₃₀H₃₃ClN₄O₂ : calcd. C 69.69, H 6.43, N 10.84 ; found C 69.79, H 6.56, N 8.96.

2-(2-azidophenyl)-2-(benzyl(methyl)amino)-N-pentyl-N-(2-phenylacetyl)acetamide (49).

To a solution of 2-azido-benzaldehyde (1.5 eq, 1.02 mmol, 150 mg) in dry CH_2Cl_2 (4mL), N-benzyl-methylamine (1 eq, 0.68 mmol, 82 mg), phenylacetic acid (1 eq, 0.68 mmol, 93 mg) and finally pentyl isocyanide (1 eq, 0.68 mmol, 66 mg) were added. The mixture was heated at 40 °C for 72 h. After evaporation of the solvent, EtOAc and a satured solution of sodium bisulphite in water were added. This mixture was stirred at room temperature for 30 min. The two layers were separated, and the organic layer was washed with 1N HCl solution (x1) and with a satured solution of Na₂CO₃(x1). The organic layer was then washed

with brine and dried over Na_2SO_4 . The crude was purified by column chromatography (PE/EtOAc 95:5) to give 246 mg of 54 as a dark yellow oil (75% yield).

¹H NMR (300 MHz, CDCl3): δ 7.42-7.00 (m, 14H), 5.27 (s, 1H), 4.11 (br s, 2H), 3.76 (d, *J*=13.5 Hz, 1H), 3.67 (d, *J*=13.5 Hz, 1H), 3.59 (q, *J*=6.7 Hz, 1H), 3.27 (q, *J*=6.7 Hz, 1H), 2.30 (s, 3H), 1.48-1.05 (m, 6H), 0.87 (t, *J*=6.9 Hz, 3H); ¹³C NMR (300 MHz, CDCl3) δ 175.1, 174.4, 139.5, 139.0, 134.3, 130.4, 129.6, 129.4, 128.7, 128.5, 128.1 2C, 126.9 2C, 124.7, 118.6, 65.0, 58.3, 45.1, 44.4, 38.6, 29.1, 28.8, 22.2, 13.9. MS (ESI) *m/z* 484(100%) (M+H)⁺.

N-(3-(benzyl(methyl)amino)-1*H*-indol-2-yl)-*N*-pentyl-2-phenylacetamide (50).

To a cooled solution (0°C) of **49** (1 eq, 0.48 mmol, 230 mg) in dry toluene (3.5mL), tributhyl phosphine(1.2 eq, 0.58 mmol, 115 mg) was added. This mixture was heated at reflux for 1h. After evaporation of the solvent, EtOAc was added. The organic layer was washed with water, brine and finally dried over Na_2SO_4 . The crude was purified by column chromatography (PE/EtOAc 9:1) to give 146 mg of **50** as a white solid (70% yield).

¹H NMR (300 MHz, CDCl3): δ 7.85 (d, *J*= 7.7 Hz, 1H), 7.53 (s, 1H), 7.46-7.00 (m, 13H), 4.36 (s, 2H), 4.15 (broad s, 1H), 3.41 (d, *J*= 19.2 Hz, 2H), 3.11 (broad s, 1H)2.89 (s, 3H), 1.70-1.40 (m, 2H), 1.39-1.14 (m, 4H), 0.87 (t, *J*= 6.1 Hz, 3H); ¹³C NMR (300 MHz, CDCl3) δ 172.2, 139.0, 135.4, 132.0, 128.9, 128.5 2C, 128.4, 128.3, 127.2, 126.8, 124.0, 123.3, 122.8, 120.1, 119.7, 111.6, 61.0, 49.7, 41.5, 41.1, 29.1, 28.2, 22.4, 14.1. MS (ESI) *m/z* 484(100%) (M+H)⁺. M.p. 126-127 °C. C₂₉H₃₃N₃O : calcd. C 79.23, H 7.57, N 9.56 ; found C 79.67, H 7.84, N 9.80.

tert-butyl ((2S)-3-(benzyl(methyl)amino)-4-oxo-4-(N-pentyl-2-phenylacetamido)-1-phenylbutan-2-yl)carbamate (52).

To a cooled solution (0°C) of *(S)-tert*-butyl (1-oxo-3-phenylpropan-yl)carbamate (1eq, 1.6 mmol, 400mg) in dry CH_2Cl_2 (10mL), morpholine (1eq, 1.6 mmol, 194mg), phenylacetic acid (1eq, 1.6 mmol, 220mg) and finally penthyl isocyanide (1eq, 1.6 mmol, 156mg) were added. The mixture was allowed to reach room temperature and then stirred for 30 min. The solvent was evaporated and the crude product was purified by column chromatography (PE/EtOAc 8:2) to give 658 mg of **52** as a dark yellow oil (70% yield).

¹H NMR (300 MHz, CDCl3, referred to the main rotamer): δ 7.42-7.08 (m, 16H), 5.65 (d, *J*= 9.9 Hz, 1H), 4.57-4.43 (m, 1H), 4.01 (s, 2H), 3.83-3.62 (m, 3H), 3.57 (d, *J*= 14.0 Hz, 1H), 2.95 (d, *J*= 6.6 Hz, 2H), 2.23 (s, 3H), 1.57-1.48 (m, 1H), 1.48-1.34 (s, 9H), 1.34-1.03 (m, 5H), 0.88 (t, *J*= 6.3 Hz, 3H); ¹³C NMR (300 MHz, CDCl3) δ 177.4 2C, 157.1, 141.1, 140.0, 136.0, 131.6, 131.4, 131.3, 130.7, 130.4 2C, 129.2, 129.1, 128.4, 81.0, 68.4, 60.0, 52.0, 46.7 2C, 41.2, 40.4, 31.3, 31.1, 30.5, 24.3, 16.0.

(6S)-2,6-dibenzyl-5-(benzyl(methyl)amino)-3-pentyl-5,6-dihydropyrimidin-4(3H)-one (53).

To a solution of **52** (1eq, 0.17 mmol, 100mg) in $CH_2Cl_2(1mL)$ trifluoroacetic acid (23.7eq, 4.04 mmol, 0.3mL) was added. The mixture was allowed to stir for 1h. Then, solvent was evaporated. The crude was dissolved in toluene (10 mL) and TEA was added (438 mg; 4.34 mmol, 26 eq). The reaction was refluxed for 1 h. Toluene was evaporated and the organic layer was diluted with CH_2Cl_2 and washed with $Na_2CO_3(x2)$, brine (x1) and finally dried over Na_2SO_4 . The solvent was evaporated to give 48 mg of **53** as a brown oil (60% yield).

¹H NMR (300 MHz, CDCl3): δ 7.42-7.13 (m, 15H), 4.06-3.91 (m, 2H), 3.87)d, *J*= 13.7 Hz, 1H), 3.75 (s, 2H), 3.61 (q, *J*= 7.4 Hz, 1H), 3.33 (q, *J*= 7.4 Hz, 1H), 3.15 (dd, *J*= 14.2 Hz, 5.2 Hz, 1H), 3.07 (d, *J*= 10.7 Hz, 1H), 3.03 (dd, *J*= 14.2 Hz, 5.2 Hz, 1H), 2.37 (s, 3H), 1.40 (q, *J*= 7.4 Hz; 2H), 1.34-1.14 (m, 4H), 0.88 (t, *J*= 6.9 Hz, 3H); ¹³C NMR (300 MHz, CDCl3) δ 172.5, 155.1, 141.7, 140.5, 137.9, 132.4, 130.8 2C, 130.6, 130.4, 130.1, 129.1, 129.0, 128.3, 65.2, 61.0, 59.8, 44.3, 43.5, 40.7, 39.7, 31.3, 31.1, 24.4, 16.1. MS (ESI) *m/z* 468 (100%) (M+H)⁺. C₃₁H₃₇N₃O : calcd. C 79.62, H 7.97, N 8.99 ; found C 79.80, H 8.14, N 9.30.

