Ion pair receptors based on anion- π interaction

Yin Chen,[†] De-Xian Wang,^{*,†} Zhi-Tang Huang,[†] Mei-Xiang Wang^{*,†,‡}

[†]Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of

Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of

Sciences, Beijing 100190, China. [‡]The Key Laboratory of Bioorganic Phosphorous

Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,

Tsinghua University, Beijing 100084, China

wangmx@mail.tsinghua.edu.cn

Table of Contents

1. General information	S2
2. Experimental details and characterizations of products	S2
3. Chrystal structure of 6	S5
4. Fluorescence titration data	S7
5. ¹ H NMR titration data	S48
6. Copies of ¹ H and ¹³ C NMR spectra of products	S51

1. General Information

¹H and ¹³C NMR spectra were recorded on a 300MHz NMR spectrometer. Chemical shifts are reported in ppm versus tetramethylsilane with either tetramethylsilane or the residual solvent resonance used as an internal standard. Melting points are uncorrected. All solvents were dried according to standard procedures prior to use. All other major chemicals were obtained from commercial sources and used without further purification.

2. Experimental details and characterization of products.

Synthesis of 3: To a solution of 2,4-chloride-6-methoxytriazine **1** (1.8 g, 10 mmol), 3,5-dihydroxybenzaldehyde **2** (0.69 g, 5 mmol) in acetone (50 mL) and grinded potassium carbonate (1.4 g, 10 mmol) were added. After the resulting mixture was stirred at room temperature for 0.5 h, another portion of **2** (0.69 g, 5 mmol) and grinded potassium carbonate (1.4 g, 10 mmol) and acetone (350 mL) were added. The mixture was refluxed for 1.5 h. The solid was removed by filtration, and the filtrate was concentrated to about 30 mL. Product **3** (1.9 g, 74%) as white solid was then precipitated from the solution. **3:** mp 282-283 °C; ¹H NMR (300MHz, CDCl₃, TMS, 298K) 9.77 (s, 2H), 7.31 (d, J = 2.2 Hz, 4H), 6.90 (t, J = 2.2 Hz, 2H), 4.08 (s, 6H); ¹³C NMR (75MHz, CDCl₃, TMS) 189.3, 174.9, 173.1, 152.5, 138.7, 122.5, 120.3, 56.2; IR (KBr) 3080, 2879, 1710, 1693, 1566 cm⁻¹; MS (MALDI-TOF) m/z (%) 491.0 [M+H⁺] (100), 492.0 (24). Anal. Calcd. for C₂₂H₁₄N₆O₈: C, 53.88; H, 2.88; N, 17.14. Found: C, 53.51; H, 2.96; N, 16.77.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Synthesis of 5: To a solution of 3 (248 mg, 5 mmol) in acetonitrile (50 ml), 2,2'-(ethane-1,2-diylbis(oxy))diethanamine (69 mg, 5 mmol) was added. The mixture was stirred at room temperature for 2 h. After removing impurities by a short silicon gel column, the resulting solution was concentrated. Dichloromethane was used to dissolve the residue, then hexane was added. After slowly evaporating of the solvent and filtration, colorless needle-like product of **5** was obtained (280mg, 94%). **5**: mp >270 °C (decomp.); ¹H NMR (300MHz, CDCl₃, TMS, 298K) 8.12 (s, 2H), 7.26 (d, J = 2.2 Hz, 4H), 6.73(t, J = 2.2 Hz, 2H), 4.16 (s, 6H), 3.78 (m, 4H), 3.76 (m, 4H), 3.53(s, 4H); ¹³C NMR (75MHz, CDCl₃, TMS) 174.8, 173.4, 160.0, 152.0, 138.8, 118.9, 70.9, 70.4, 62.0, 56.0; IR (KBr) 2884, 1651, 1577, 1503 cm⁻¹; MS (MALDI-TOF) m/z (%) 603.4 [M+H⁺] (100), 625.3 [M+Na⁺] (81). Anal. Calcd. for C₂₈H₂₆N₈O₈·1/2 H₂O: C, 54.99; H, 4.45; N, 18.32. Found: C, 54.65; H, 4.49, N, 18.04.

Synthesis of 6: To a solution of 5 (301 mg, 5 mmol) in dichloromethane (15ml) (*caution: the solution is under vigorously stirring*), NaHB(CH₃CO₂)₃ (316 mg, 15 mmol) was added gradually. The mixture was stirred at room temperature for 2 h. Then water (20ml) and sodium carbonate was added. The solution was extracted with dichloromethane (3 \times 30 ml), the combined solutions was dried with anhydrous MgSO₄ for 24 h. After filtration, the filtrate was concentrated to about 20ml followed

by the addition of hexane (10 ml). By slowly evaporation of the solvent, product **6** (273 mg, 91%) as white powder product was obtained. **6**: mp>270 °C (decomp.); ¹H NMR (300MHz, CDCl₃, TMS, 298K) 6.91(d, J = 2.2 Hz, 4H), 6.59(t, J = 2.2 Hz, 2H), 4.12 (s, 6H), 3.70(s, 4H), 3.59(m, 8H), 2.78 (t, $J_I = 4.5$ Hz, 4H), 1.85 (br. s, 2H); ¹³C NMR (75MHz, CDCl₃, TMS) 174.6, 173.2, 151.6, 143.6, 118.7, 115.0, 55.9, 53.4, 49.3; IR (KBr) 2951, 2875, 1575, 1503 cm⁻¹; MS (MALDI-TOF) m/z (%) 607.4 [M+H⁺] (100), 629.3 [M+Na⁺] (72). Anal. Calcd. for C₂₈H₃₀N₈O₈·H₂O: C, 53.84; H, 5.16; N, 17.94. Found: C, 53.98; H, 5.08; N, 18.06.

Newly distilled benzaldehyde **Synthesis** of 7: (531 mg, 50 mmol) 2,2'-(ethane-1,2-divlbis(oxy))diethanamine (345 mg, 25 mmol) and benzene (10ml) were mixed and the resulting mixture was refluxed for 1 h. After removal of the solvent, product 7 (810 mg, 99%) as pale vellow oil was obtained. 7: ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3, \text{ TMS}, 298 \text{ K}) 8.312(\text{s}, 2\text{H}), 7.76(\text{t}, J_1 = 2.4 \text{ Hz}, 4\text{H}), 7.44(\text{m}, 6\text{H}),$ 3.80(m, 8H), 3.66 (m,4H). Anal. Calcd. for C₂₀H₂₄N₂O₂: C, 74.04; H, 7.46; N, 8.64. Found: C, 73.91; H, 7.38, N, 8.53.

Optimization the synthesis of compound 6:

Scheme S1

Entry	Conditions	Yield
1	NaBH ₄ , MeOH, r.t., 2h	Decomp.
2	NaBH ₄ , MeOH, -20°C, 2h	Decomp.
3	Pd/C, MeOH, 1.5atm H ₂ , r.t., 10h	N.R.
4	Pd/C, MeOH, 1.5atm H ₂ , 40 °C, 10h	N.R.
5	Pd/C, MeOH, CH ₃ CO ₂ H,1.5atm H ₂ , r.t., 10h	N.R.
6	Pd/C, MeOH, HCO ₂ H,1.5atm H ₂ , r.t., 10h	N.R.
7	Pd/C, MeOH, NH ₄ CO ₂ H,1.5atm H ₂ , r.t., 12h	Mixture
8	Zn, CH ₃ CO ₂ H,MeOH, r.t., 5h	N.R.
9	PtO ₂ , MeOH, 1.5atm H ₂ , r.t, 10h	Mixture
10	NaHB(CH ₃ CO ₂) ₃ , MeOH, r.t, 5h	N.R.
11	NaHB(CH ₃ CO ₂) ₃ , CH ₃ CO ₂ H, MeOH, r.t., 5h	N.R.
12	NaHB(CH ₃ CO ₂) ₃ , HCl, MeOH, r.t., 5h	N.R.
13	NaHB(CH ₃ CO ₂) ₃ , CH ₂ Cl ₂ , r.t., 2h	91%

Table S1: Optimization of the conditions for the synthesis of 6

3. Crystal Structure

Figure S1: X-Ray crystal structure of **6**. (a) top view, (b) (c) side views. Selected bond lengths [Å]: O(1)-C(7) 1.337, O(1)-C(5) 1.425, O(2)-C(9) 1.348, O(2)-C(11) 1.402, O(3)-C(17) 1.344, O(3)-C(15) 1.417, O(4)-C(19) 1.353, O(4)-C(1) 1.420. Selected distances [Å]: C(8)^{...}C(18) 9.004, N(3)^{...}N(6) 4.554, C(6)^{...}C(16) 4.283, C(3)^{...}C(13) 6.201.

Figure S2: One dimensional self assembly of 6.

4. Fluorescence titrations

Figure S3: Fluorescence titration curves of 5 $(3.984 \times 10^{-4} \text{ M})$ in acetonitrile (2mL) with increasing of (a) $Bu_4N^+F^-$ (0~3.41×10⁻⁴ M), (b) $Bu_4N^+CH_3CO_2^-$ (0~9.02 ×10⁻⁴ M), (c) $Bu_4N^+CN^-$ (0~8.12×10⁻⁴ M), (d) $Bu_4N^+X^-$ (X⁻ = Cl⁻, Br⁻, NO₃⁻, ClO₄⁻, N₃⁻) (0~ 2.75×10⁻⁴ M).

Figure S4: Fluorescence titration curves of **5** $(3.99 \times 10^{-4} \text{ M})$ in acetonitrile (2mL) with increasing of (a) (Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺) (0~4.00 ×10⁻⁴ M), Ag⁺ (0~3.61 ×10⁻⁴ M), (b) Mg²⁺, Ca²⁺, Sr²⁺ (0~3.60 ×10⁻⁴ M), (c) Ba²⁺ (0~8.11 ×10⁻⁴ M), (d) Fe²⁺ (0~6.31 ×10⁻⁴ M), (e) Co²⁺ (0~7.20 ×10⁻⁴ M), (f) Ni²⁺ (0~9.92 ×10⁻⁴ M), (g) Cu²⁺ (0~7.22 ×10⁻⁴ M), (h) Zn²⁺ (0~9.65 ×10⁻⁴ M), (i) Pb²⁺ (0~9.91 ×10⁻⁴ M), (j) Hg²⁺ (0~7.21 ×10⁻⁴ M). The counter ion for these cations is ClO₄⁻.

Table S2: Association	constants K_{a}	(M^{-1})	of 5	with	ions
-----------------------	-------------------	------------	-------------	------	------

F ⁻	6.591×10^3	$Li^{+}, Na^{+}, K^{+}, Rb^{+}, Cs^{+}$	/
CN⁻	4.161×10^{3}	Mg^{2+} , Ca^{2+} , Sr^{2+}	/

CH ₃ CO ₂ ⁻	4.517×10^{4}	Ba ²⁺	1.846×10^4
Cl	/	Fe ²⁺	1.517×10^4
Br ⁻	/	Co ²⁺	7.651×10^3
NO ₃ -	/	Ni ²⁺	7.233×10^{2}
N ₃	/	Cu^{2+}	3.715×10 ⁴
		Zn^{2+}	8.125×10 ³
		Pb ²⁺	3.281×10 ⁴
		Ag^+	/
		Hg^{2+}	9.213×10 ⁴

400 Wavelength(nm)

450

500

350

Wavelength(nm)

Figure S5: Fluorescence titration curves of 6 (3.18×10^{-4} M) in acetonitrile (2mL) with increasing of (a) Bu₄N⁺F⁻ ($0 \sim 3.26 \times 10^{-4}$ M), (b) Bu₄N⁺Br⁻, Bu₄N⁺Cl⁻, Bu₄N⁺NO₃⁻, Bu₄N⁺CH₃CO₂⁻, Bu₄N⁺N₃⁻ ($0 \sim 2.70 \times 10^{-4}$ M), (c) Bu₄N⁺CN⁻ ($0 \sim 3.26 \times 10^{-4}$ M), (d) K⁺ ($0 \sim 9.00 \times 10^{-4}$ M), (e) Li⁺, Rb($0 \sim 9.00 \times 10^{-4}$ M), (f) K⁺ ($0 \sim 9.00 \times 10^{-4}$ M), (g) Cs⁺ ($0 \sim 12.00 \times 10^{-4}$ M), (h) Mg²⁺ ($0 \sim 5.41 \times 10^{-4}$ M), (i) Ca²⁺ ($0 \sim 7.20 \times 10^{-4}$ M), (j) Sr²⁺ ($0 \sim 6.31 \times 10^{-4}$ M), (k)Ba²⁺ ($0 \sim 7.20 \times 10^{-4}$ M), (l) Fe²⁺ ($0 \sim 6.31 \times 10^{-4}$ M), (m) Co²⁺ ($0 \sim 9.01 \times 10^{-4}$ M), (n) Ni²⁺ ($0 \sim 9.01 \times 10^{-4}$ M), (o) Cu²⁺ ($0 \sim 9.90 \times 10^{-4}$ M), (p) Zn²⁺ ($0 \sim 6.30 \times 10^{-4}$ M), (q) Pb²⁺ ($0 \sim 6.31 \times 10^{-4}$ M), (r) Ag⁺ ($0 \sim 2.70 \times 10^{-4}$ M), (s) Hg²⁺ ($0 \sim 6.31 \times 10^{-4}$ M). The counter ion for these cations is ClO₄⁻.

F⁻	1.108×10^{4}	Li^+, Rb^+	/
CN	5.871×10^{3}	Na ⁺	/
Cl	/	K^+	5.903×10 ³
Br	/	Cs^+	9.855×10^2
N ₃	/	Mg^{2+}	/
CH ₃ CO ₂	/	Ca ²⁺	1.864×10^4
NO ₃ ⁻	/	Sr^{2+}	3.879×10 ⁴
		Ba ²⁺	9.628×10 ³
		Fe ²⁺	1.539×10 ⁵
		Co ²⁺	1.016×10 ⁴
		Ni ²⁺	3.904×10^{3}
		Cu ²⁺	/ ^a
		Zn^{2+}	/ a
		Pb ²⁺	6.560×10^3

Table S3: Association constants $K_a(M^{-1})$ of **6** with ions

	Ag^+	/
	Hg^{2+}	/ ^a

a. Spectral change is observed, but association constant is not available.

Figure S6: Fluorescence titration curves of **5** $(3.984 \times 10^{-4} \text{ M})$ in acetonitrile (2mL) with increasing of Bu₄N⁺F⁻ $(0 \sim 7.388 \times 10^{-4} \text{ M})$ in the presence of (a) Co(ClO₄)₂ $(4.003 \times 10^{-4} \text{ M})$, (b) Cu(ClO₄)₂ $(3.992 \times 10^{-4} \text{ M})$, (c) Fe(ClO₄)₂ $(3.994 \times 10^{-4} \text{ M})$, (d) i Ni(ClO₄)₂ $(3.996 \times 10^{-4} \text{ M})$, (e) Ba(ClO₄)₂ $(3.994 \times 10^{-4} \text{ M})$, (f) Pb(ClO₄)₂ $(4.001 \times 10^{-4} \text{ M})$, (g) Hg(ClO₄)₂ $(3.996 \times 10^{-4} \text{ M})$ and (h) Bu₄N⁺F⁻ $(0.465, 0.920, 1.395, 1.840, 2.325, 2.790, 3.255, 3.720, 4.185 \times 10^{-4} \text{ M})$ in the presence of Zn(ClO₄)₂ $(3.991 \times 10^{-4} \text{ M})$.

Figure S7: Fluorescence titration curves of the complex of 5 $(3.984 \times 10^{-4} \text{ M})$ and zinc ion $(4.011 \times 10^{-4} \text{ M})$ in acetonitrile (2ml) with increasing of (a) $\text{Bu}_4\text{N}^+\text{CH}_3\text{CO}_2^ (0 \sim 5.41 \times 10^{-4}\text{M})$, (b) $\text{Bu}_4\text{N}^+\text{CN}^ (0 \sim 5.42 \times 10^{-4}\text{M})$, (c) $\text{Bu}_4\text{N}^+\text{CI}^ (0 \sim 9.00 \times 10^{-4}\text{M})$, (d) $\text{Bu}_4\text{N}^+\text{Br}^ (0 \sim 10.81 \times 10^{-4} \text{ M})$, (e) $\text{Bu}_4\text{N}^+\text{NO}_3^ (0 \sim 14.42 \times 10^{-4} \text{ M})$.

Table S4: Association constants $K_a(M^{-1})$ of compound **5a** and different anions with or

without the presence of zinc ion		
	Ka/	$M^{-1 a}$
	free 5	$[5 \cdot Zn^{2+}]$
F ⁻	6.59×10 ³	1.53×10 ⁵
Cl	_c	7.39×10 ³
Br	_c	1.58×10 ³
NO ₃ -	_c	4.25×10 ³
CH ₃ COO ⁻	4.52×10 ⁴	3.53×10 ⁴
CN	4.16×10^3	_b

^{*a*} association constants were calculated by using a Hyperquad program. ^b spectral change was observed but failed to calculate the association constant. ^c No spectral change.

Wavelength(nm)

Figure S8: Fluorescence titration curves of 6 (3.18×10^{-4} M) in acetonitrile (2mL) with increasing of Bu₄N⁺F⁻ (0.62, 1.24, 1.86, 2.48, 3.10, 3.72, 4.34, 4.96×10⁻⁴ M)respectively, in the presence of (a) NaClO₄ (3.20×10^{-4} M), (b) KClO₄ (3.20×10^{-4} M), (c) CsClO₄ (3.20×10^{-4} M), (d) Ca(ClO₄)₂ (3.12×10^{-4} M), (e) Sr(ClO₄)₂ (3.11×10^{-4} M), (f) Ba(ClO₄)₂ (3.10×10^{-4} M), (g) Fe(ClO₄)₂ (3.10×10^{-4} M), (h) Co(ClO₄)₂ (3.10×10^{-4} M), (i) Ni(ClO₄)₂ (3.10×10^{-4} M), (j) Cu(ClO₄)₂ (3.10×10^{-4} M), (k) Zn(ClO₄)₂ (3.14×10^{-4} M), (l) Pb(ClO₄)₂ (3.10×10^{-4} M) and (m) Hg(ClO₄)₂ (3.12×10^{-4} M).

0 ·

Wavelength(nm)

Figure S9: Fluorescence titration curves of **6** $(3.18 \times 10^{-4} \text{ M} \text{ in acetonitrile})$ with increasing of Bu₄N⁺CN⁻(0~ 7.23×10⁻⁴ M) in the presence of (a) NaClO₄ $(3.20 \times 10^{-4} \text{ M})$, (b) KClO₄ $(3.20 \times 10^{-4} \text{ M})$, (c) CsClO₄ $(3.20 \times 10^{-4} \text{ M})$, (d) Ca(ClO₄)₂ $(3.12 \times 10^{-4} \text{ M})$, (e) Sr(ClO₄)₂ $(3.11 \times 10^{-4} \text{ M})$, (f) Ba(ClO₄)₂ $(3.10 \times 10^{-4} \text{ M})$, (g) Zn(ClO₄)₂ $(3.20 \times 10^{-4} \text{ M})$. (h) Fluorescence titration curves of **6** $(3.18 \times 10^{-4} \text{ M}$ in acetonitrile) with increasing of Bu₄N⁺Cl⁻, Bu₄N⁺Br⁻, Bu₄N⁺NO₃⁻, Bu₄N⁺CH₃CO₂⁻ $(0 \sim 6.01 \times 10^{-4} \text{ M})$ in the presence of Zn(ClO₄)₂ $(3.20 \times 10^{-4} \text{ M})$.

presence of cations	
	Ka/M ^{-1 a}
	[6 ·M]
free 6	5.871×10 ³
Na^+	/b
K^+	4.164×10^{3}
Cs ⁺	8.356×10 ³
Ca ²⁺	7.682×10^3
Sr^{2+}	3.461×10^3

Table S5: Association constants $K_a(M^{-1})$ of compound **6** and CN^{-1} with or without the

^{*a*} association constants were calculated by using a Hyperquad program. ^b spectral change was observed but failed to calculate the association constant.

Figure S10: Fluorescence titration curves of 7 $(2.812 \times 10^{-4} \text{ M})$ in acetonitrile (2 ml) in the presence of Zn(ClO₄)₂ (2.824 ×10⁻⁴ M) with increasing of Bu₄N⁺F⁻ (a) (0, 0.465, 0.93 ×10⁻⁴ M) and (b) (1.395, 1.86, 2.325, 2.79, 3.348 ×10⁻⁴ M), respectively, (c) Bu₄N⁺Cl⁻ (0~2.44 ×10⁻⁴ M), (d) Bu₄N⁺Br⁻ (0~2.718 ×10⁻⁴ M), (e) Bu₄N⁺NO₃⁻ (0~2.754 ×10⁻⁴ M).

Figure S11: Fluorescence titration curves of the complex of **5** (3.984×10^{-4} M) and zinc ion (4.011×10^{-4} M) in acetonitrile (2ml) with increasing of Bu₄NF (a) $0 \sim 4.185 \times 10^{-4}$ M, (b) $4.185 \sim 6.975 \times 10^{-4}$ M.

Figure S12: Fluorescence titration curves of the complex of **5** $(3.984 \times 10^{-4} \text{ M})$ and zinc ion $(4.011 \times 10^{-4} \text{ M})$ in acetonitrile (2ml) with increasing of Bu₄N⁺Cl⁻ (a) $(0 \sim 3.60 \times 10^{-4} \text{ M})$, Bu₄N⁺Cl⁻ $(3.60 \sim 9.00 \times 10^{-4} \text{ M})$,

Figure S13: Fluorescence titration curves of the complex of 5 (3.984×10^{-4} M) and zinc ion (4.011×10^{-4} M) in acetonitrile (2ml) with increasing of Bu₄NBr (a) $0 \sim 4.050 \times 10^{-4}$ M, (b) $4.050 \sim 10.81 \times 10^{-4}$ M.

Figure S14: Fluorescence titration curves of the complex of 5 (3.984×10^{-4} M) and zinc ion (4.011×10^{-4} M) in acetonitrile (2ml) with increasing of Bu₄NO₃ (a) $0 \sim 3.605 \times 10^{-4}$ M, (b) $3.605 \sim 14.42 \times 10^{-4}$ M.

5. ¹H NMR titration data

Figure S15 ¹H NMR spectra of 5 with the addition of anions.

Figure S16 ¹H NMR spectra of **6** with the addition of F^- .

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Figure S23 ¹H spectra of 7.