-Supporting Information-

A novel catalytic process for trifluoromethylation of bromoaromatic compounds

Bhupesh S. Samant* and George W. Kabalka

Division of Pharmaceutical chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa, 6140.

* Corresponding author. Fax: +27-46-636-1205; tel: +27-46-603-8395; e-mail: B.Samant@ru.ac.za; bhupesh.samant@gmail.com

Materials. 1-Bromo-naphthalene, *para*-bromo-phenol, *ortho*-bromo-phenol, *ortho*-bromo-aniline, *para*-bromoaniline, 1-bromo-3-methyl-4-nitrobenzene, 9-bromo-anthracene, $(CH_3)_3SiCF_3$ and CsF were purchased from Aldrich Co. 4-Bromo-2-phenyl-aniline was obtained from Interchim Co. Anhydrous toluene (with molecular sieves and septum), Sodium dodecyl sulphate (SDS) (electrophoretic grade) and cetyltrimethylammonium bromide (CTAB) (electrophoretic grade) were obtained from Sigma-Aldrich Co. The purity of these surfactants was ascertained tensiometrically. [CinnamylPdCl]₂ was prepared as described previously,^{S1} and stored at -20 °C. Cyclohexyl BrettPhos was prepared according to literature procedure.^{S2} All other reagents from commercial sources were used as received. All reactions were performed under an atmosphere of argon. Flash chromatography was performed with Merck silica gel 60 (230-400 mesh ASTM).

General procedure for trifluoromethylation. 1-Bromonaphthalene (207 mg, 1.00 mmol, 1 eq), cyclohexyl BrettPhos (6.40 mg, 0.012 mmol, 10 mol%), (cinnamylPdCl)₂ (10.4 mg, 0.02 mmol, 2 mol%), (CH₃)₃SiCF₃ (0.228 mL, 2.00 mmol, 2 eq) and CsF (304 mg, 2.00 mmol, 2 eq) were added to a SDS (60 mmol) toluene (10 mL) solution the mixture was agitated for 6 hr under an argon atmosphere in a 50 cm³ baffled glass reactor equipped with a six-blade turbine agitator of 0.3 cm diameter. The speed of agitation was maintained at 1.67 Hz. Isothermal conditions were maintained at 110 °C. After cooling to room temperature, a solution of CTAB (60 mM) in toluene (5 mL) solution was added to the reaction mixture which was agitated for an additional 10 min. The mixture was filtered through a plug of Celite, the fiiltrate concentrated under reduced pressure, and then purified by flash chromatography on silica gel using hexane to give the 1-(trifluoromethyl)naphthalene as a colorless oil; yield: 173 mg (88% yield). The experiments were performed in replicates of three. The variation in the results from the reported average values was within \pm 0.75 %.

General analytical information. All the products formed were identified using ¹H NMR (300 MHz), ¹³C NMR (75.46 MHz), ¹⁹F NMR (282 MHz). Peak positions are given in parts per million (δ) from tetramethylsilane (¹H and ¹³C) and FCCl₃ (¹⁹F) as internal standards; coupling constant values (*J*) are given in Hertz. The yields are determined by comparing the integration of the ¹⁹F NMR resonance in the products to that of of 4-fluorotoluene (-118.0 ppm. Percent conversion was determined using a gas chromatograph (Chemito 8610) with a flame ionization detector. A 4 m. long and 0.37 cm internal diameter S.S. column packed with 10% SE-30 on chromosorb WHP was employed for the analysis. Nitrogen at the flow rate of 0.5 x 10⁻⁷ m³ sec⁻¹ was used as carrier gas.

Analytical data for trifluoromethyl aromatic compounds.

1-(Trifluoromethyl)naphthalene.

Colorless liquid, boiling point: 187 °C. (Found: C, 67.80; H, 3.50. $C_{10}H_7F$ requires C, 67.35; H, 3.60%); $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 7.70 (1 H, d, *J* 3 Hz, C3), 7.75 (1 H, t, *J* 6 Hz, C6), 7.82 (1 H, t, *J* 6, C7), 7.88 (1 H, d, *J* 6 Hz, C2), 8.20 (1 H, d, *J* 3 Hz, C4), 8.23 (1 H, d, *J* 6 Hz, C5), 8.52 (1 H, d, *J* 3 Hz, C8). $\delta_C(75.46 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 123.5 (d, C3), 123.7 (d, C2), 124.2 (s, C*F₃), 125.4 (d, C1), 126.02 (d, C8), 126.8 (d, C6), 128.1 (d, C7), 129.4 (C4a), 131.9 (C8a), 133.8 (d, C4). $\delta_F(282 \text{ MHz}; \text{CDCl}_3; \text{FCCl}_3)$: -60.3.^{S3}

2-Methyl-1-nitro-4-(trifluoromethyl)benzene.

White powder, melting point: 40 °C. (Found C, 46.89; H, 3.10; N, 6.91; O, 15.52. C_8H_9FO requires C, 46.84; H, 2.95; N, 6.83; O, 15.60%); $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 2.35 (3 H, s, C2-*CH**₃), 7.71 (1 H, d, *J* 6, C5), 7.8 (1 H, s, C3) and 8.15 (1 H, d, *J* 6, C6). $\delta_C(75.46 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 18.5 (d, CH₃),123.1 (d, C5), 124.2 (C*F₃), 124.8 (d, C6), 128.01 (d, C3), 132.8 (s, C2), 137.5 (C4) and 151.8 (d, C1). $\delta_F(282 \text{ MHz}; \text{CDCl}_3; \text{FCCl}_3)$: -63.3.^{S3}

4-(Trifluoromethyl)phenol.

Off-white crystals, melting point: 47 °C. (Found: C, 51.75; H, 3.23; O, 9.90. $C_7H_3F_3O$ requires C, 51.86; H, 3.11; O, 9.87%);^{S4} $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 5.96 (1 H, br s, Ar-OH*), 6.82 (2 H, dd, *J* 8.2, C2,C6) and 7.64 (2 H, dd, C3,C5). $\delta_C(75.46 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 118.1 (q, C2,C6), 122.8 (C4), 124.4 (C*F_3), 129.1 (q, C3,C5), and 157.8 (C1). $\delta_F(282 \text{ MHz}; \text{CDCl}_3; \text{FCCl}_3)$: -61.5.^{S5}

2-(Trifluoromethyl)phenol.

Light yellow solid, melting point: 44 °C. (Found: C, 52.2; H, 3.20; O, 9.70. C_7H_7FO requires C, 51.86; H, 3.11; O, 9.87%);^{S4} $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 5.05 (1 H, br s, Ar-O*H**), 6.90 (1 H, d, *J* 8 C6), 7.02 (1 H, s, C4), 7.40 (1 H, t, *J* 8.2, C5) and 7.60 (1 H, d, *J* 7.8, C3); $\delta_C(75.46 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 118.4 (d, C6), 120.4 (C2), 121.8 (d, C4), 124.4 (C*F₃), 126.8 (d, C3), 134.1 (C5), 156.8 (C1); $\delta_F(282 \text{ MHz}; \text{CDCl}_3; \text{FCCl}_3)$: -60.4.^{S5}

2- Hydroxy-5-(trifluoromethyl)benzaldehyde.

White solid, melting point: 61 °C. (Found: C, 50.50; H, 2.70; O, 16.78. $C_8H_5F_3O_2$ requires C, 50.54; H, 2.65; O, 16.83%); $\delta_{H}(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 7.20 (1 H, d, *J* 9.6, C6), 7.80 (1 H, d, *J* 9.6, C5), 8.05 (1 H, s, C3) and 10.50 (1 H, s, CH*O); $\delta_C(75.46 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 118.9 (d, C6), 123.6 (C4), 124.4 (C*F_3), 128.0 (d, C3), 135.4 (d, C5), 137.6 (C2), 167.1 (C1) and 200.2 (HC*O). $\delta_F(282 \text{ MHz}; \text{CDCl}_3; \text{FCCl}_3)$: -62.2.⁸⁶

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

2-(Trifluoromethyl)-aniline.

White powder, melting point: 35 °C. (Found: C, 52.30; H, 3.80; N, 8.90. $C_7H_6F_3N$ requires C, 52.18; H, 3.75; N, 8.69%);^{S7} $\delta_H(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 4.05 (1 H, br s, Ar-N H_2 *), 6.78 (1 H, d, *J* 9.6, C6), 6.95 (1 H, t, *J* 6, C4), 7.15 (1 H, t, *J* 6, C5) and 7.41 (1 H, d, *J* 7.8, C3); $\delta_C(75.46 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 110.9 (C2), 118.7 (d, C6), 120.01 (d, C4), 124.5 (C*F_3), 127.4 (d, C3), 133.6 (d, C5), 145.5 (C1); $\delta_F(282 \text{ MHz}; \text{CDCl}_3; \text{FCCl}_3)$: -59.5.⁸⁸

4-(Trifluoromethyl)-aniline.

White powder, melting point: 37 °C. (Found: C, 52.32; H, 3.80; N, 8.72. $C_7H_6F_3N$ requires C, 52.18; H, 3.75; N, 8.69%) [S7];^{S7} δ_H (300 MHz; CDCl₃; Me₄Si): 4.10 (1 H, br s, Ar-NH₂*), 6.80 (2 H, dd, *J* 9.6, C2,C6) and 7.48 (2 H, dd, *J* 9.6, C3,C5); δ_C (75.46 MHz; CDCl₃; Me₄Si): 117.5 (q, C2,C6), 124.4 (C*F₃), 126.6 (q, C3,C5), 127.4 (C4), and 152.2 (C1); δ_F (282 MHz; CDCl₃; FCCl₃): -61.3.^{S8}

2-Phenyl-4-(trifluoromethyl)-aniline.

White powder, melting point: 68 °C. (Found: C, 65.60; H, 4.33; N, 5.86. $C_{13}H_{10}F_{3}N$ requires C, 65.82; H, 4.25; N, 5.90%);^{S9} $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3}; \text{Me}_{4}\text{Si})$: 4.09 (1 H, br s, Ar-NH₂*), 6.70 (1 H, d, J 9.6, C6), 7.20 (1 H, m, J 6, C'2,C'6), 7.37-7.41 (2 H, m, J 7.8, C5,C'4), 7.78 (2 H, m, J 6, C'3,C'5), 8.03 (1 H, s, C3) and 8.79 (1 H, s, C2); $\delta_{C}(75.46 \text{ MHz}; \text{CDCl}_{3}; \text{Me}_{4}\text{Si})$: 117.4 (d, C6), 120.4 (C2), 122.6 (C4), 124.5 (C*F₃), 125.28 (d, C5), 127 (d, C'4), 127.90 (d, C3), 128.1 (q, C'2,C'6), 129.67 (q, C'3,C'5), 140 (C'1), 149.6 (C1); $\delta_{F}(282 \text{ MHz}; \text{CDCl}_{3}; \text{FCCl}_{3})$: -61.4.^{S10}

9-(Trifluoromethyl)anthracene.

Yellow powder, melting point: 50 °C. (Found: C, 72.20; H, 3.72. $C_{10}H_7F$ requires C, 73.17; H, 3.68%); $\delta_{H}(300 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 7.62 (2 H, t, *J* 3 Hz, C2,C7), 7.78 (2 H, t, *J* 6 Hz, C3,C6), 8.03 (1 H, s, C4,C5), 8.23 (2 H, d, *J* 8 Hz, C1,C8) and 8.69 (1 H, s, C10); $\delta_C(75.46 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si})$: 120.9 (C*F₃), 126.02 (d, C3,C6), 126.3 (C9), 126.8 (d, C1,C8), 127.2 (d, C2,C7), 128.2 (d, C4,C5), 128.8 (C10a,C4a), 130.86 (C8a,C9a), and 132.02 (d, C10); $\delta_F(282 \text{ MHz}; \text{CDCl}_3; \text{FCCl}_3)$: -49.5.⁸³

Fig. S1. The ¹H NMR spectra of Naphthalene-BrettPhos-Pd-Br complex in toluene-d₈ and toluene-d₈ + SDS (60 mM).

Fig. S2. The ¹H NMR spectra of Naphthalene-BrettPhos-Pd-CF₃ complex in toluene-d₈ and toluene-d₈ + SDS (60 mM).

← **Fig. S3.** The effect of surfactant concentration (◆ SDS, ■ LABS, ▲ CTAB) on trimethylfluorination of bromonaphthalene in the presence of 10 mol% (cinnamylPdCl)₂, 10 mol % cyclohexyl BrettPhos, 2 eq (CH₃)₃SiCF₃ and 10 mL toluene at 110 °C for 12 h. Each experiment was done three times independently. The variation in the results from the reported average values was within ± 0.75%.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

References.

S