Electronic Supplementary Information

α-Fe₂O₃ Nanotubes with Superior Lithium Storage Capability

Zhiyu Wang,^a Deyan Luan,^b Srinivasan Madhavi,^b Chang Ming Li,^a and Xiong Wen (David) Lou^{a,*}

^{*a*} School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457. Email: xwlou@ntu.edu.sg; Tel: +65 63168879

^b School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798

Experimental details

Cu nanowires used as sacrificial templates in this study were synthesized by the reaction between $Cu(NO_3)_2$ and hydrazine in the presence of ethylenediamine (EDA).¹ Fe(OH)_x nanotubes were synthesized by dropwisely adding 10 mL of ethanol solution of FeCl₃ (5 - 7.5 mM) into a suspension of 0.008 mmol of Cu nanowires in a mixture solution of ethanol (10 mL) and aqueous NaCl solution (1.7 M, 0.2 - 0.4 mL) under stirring at room temperature for 10 - 30 min. The final products were collected by several rinse-centrifugation cycles. For the preparation of α -Fe₂O₃ nanotubes, the Fe(OH)_x sample was annealed in air at 300 °C for 3 hours with a slow heating rate of 0.5 °C min⁻¹.

All samples were characterized by field-emission scanning electron microscope (FESEM, JEOL, JSM-7600F), transmission electron microscope (TEM, JEOL, JEM-2010) and powder X-ray diffraction (XRD, Bruker, D8-Advance X-ray Diffractometer, Cu Ka).

The galvanostatic charging/discharging tests were conducted using Swagelok-type cells (X2 Labwares, Singapore) on a Neware battery tester with lithium foil as the counter and reference electrodes and 1.0 M LiPF₆ in mixed ethylene carbonate and diethyl carbonate (EC:DEC, 1:1 by weight) as the electrolyte. A cut-off voltage window of 0.01 - 3.0 V is used. The working electrode is composed of α -Fe₂O₃ nanotubes, carbon black (super-P-Li) and polyvinylidene difluoride (PVDF) in a weight ratio of 7:2:1. 1 C corresponds to 6Li per Fe₂O₃, and is equivalent to 1007 mA g⁻¹. Cyclic voltammetry (CV) study was carried out on an electrochemical workstation (CHI 660C) between 0.01 - 3.0 V at a scan rate of 0.5 mV s⁻¹.

Reference:

1. Chang, Y.; Lye, M. L.; Zeng, H. C. Langmuir 2005, 21, 3746.

Fig. S1. XRD patterns of the samples before and after annealing in air.

Fig. S2. Overview FESEM image of Fe(OH)_x nanotubes.

Fig. S3. TEM image showing (a) capped end of $Fe(OH)_x$ nanotubes; (b) one end of a nanotube with residual Cu, suggesting the formation of inner cavities before complete dissolution of the Cu template.

Fig. S4. (a) Coulombic efficiency of α -Fe₂O₃ nanotubes cycled between 0.01 – 3V at a 0.5C rate. (b) Rate capability of α -Fe₂O₃ nanotubes between 0.01 – 3.0 V; (c) cyclic voltammograms at a scan rate of 0.5 mV s⁻¹ between 0.01 – 3.0 V. All potentials are with reference to Li/Li⁺.

Fig. S5. N₂ adsorption/desorption isotherm of α -Fe₂O₃ nanotubes.

5