Supporting Information

Experimental Data for Compounds

General Procedures.

¹H NMR were measured in CDCl₃ solution and referenced to TMS (0.00 ppm) or in C₆D₆ solution and referenced to C₆D₅H (7.16 ppm) using JEOL GSX400 (400 MHz), Bruker AV400N (400 MHz) and Bruker AV500 (500 MHz) spectrometers. ¹³C NMR were measured in CDCl₃ solution and referenced to CDCl₃ (77.0 ppm) or in C₆D₆ solution and referenced to C₆D₆ (128.0 ppm) using JEOL GSX400 (100 MHz), Bruker AV400N (100MHz), Bruker AV500 (125 MHz) spectrometers. Chemical shifts are reported in ppm (from TMS). When peak multiplicities are reported, the following abbreviations are used: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broadened. Optical rotations were determined on JAS.CO P-1010-GT. IR spectra were measured on JAS.CO FT/IR-410 spectrometer. Mass spectra were recorded on Waters MICRO MASS LCT-Premier spectrometers. Column chromatography was performed on silica gel 60N (KANTO CHEMICAL, spherical neutral, 63-210 mesh), and flash column chromatography was performed on silica gel (FUJI SILISIA CHEMICAL, spherical neutral, 40-50 µm) using indicated solvent. Thin layer chromatography was performed on precoated plates (0.25 mm, silica gel Merck Kieselgel 60F₂₄₅), and compounds were visualized with UV light and p-anisaldehyde stain. All melting points were measured with BÜCHI 535 and Yanaco MP-500D melting point apparatus and are uncorrected. All non-aqueous reactions were performed in oven-dried glassware under positive pressure of argon or nitrogen, unless otherwise noted. Reaction mixture was stirred magnetically. Solvents were freshly distilled prior to use or purchased from Kanto Kagaku or Aldrich: tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl or purchased from Kanto Kagaku (Tetrahydrofuran, Dehydrated Stabilizer free): methylene chloride (CH₂Cl₂) was distilled from calcium hydride or purchased from Kanto Kagaku (Methylene chloride, Dehydrated): ether (Et₂O) was purchased from Kanto Kagaku (Diethyl ether, Dehydrated): acetonitrile (CH₃CN) was distilled from calcium hydride and kept over 4Å molecular sieves: pyridine and triethylamine (Et₃N) were distilled from KOH and kept over KOH tablets.

[4-(*tert*-Butyldimethylsilyloxy)-6,8-dioxabicyclo[3.2.1]oct-2-en-7-yl]methanol (7)

To a stirred solution of 5^1 (302 mg, 0.834 mmol) in 1,2-dichloroethane (15.0 mL) was added DDQ (410 mg, 1.81 mmol) at room temperature, and then the mixture was heated to reflux. After being stirred for 2 h, the reaction mixture was cooled to room temperature and added saturated aq. NaHCO₃. After being stirred for 2 h at room temperature, resultant mixture was extracted with CH₂Cl₂. The combined extracts were washed with saturated aq. NaHCO₃, brine, dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (hexane / AcOEt = 70 / 30) to afford 7 (214 mg, 94%) as a colorless oil.

 $[\alpha]_{D}^{28}$ +135.5 (*c* 1.81, CHCl₃); IR (neat) 3420, 2955, 2930, 2885, 2857, 1089, 1064 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 6.25 (ddd, *J* = 10.0, 4.8, 1.2 Hz, 1H), 5.72 (dq, *J* = 10.0, 2.0 Hz, 1H), 5.45 (t, *J* = 1.5 Hz, 1H), 4.51 (d, *J* = 4.8 Hz, 1H), 3.91 (t, *J* = 6.0 Hz, 1H), 3.74 (dt, *J* = 3.6, 1.2 Hz, 1H), 3.63–3.53 (m, 2H), 1.75 (dd, *J* = 6.4, 5.0 Hz, OH, D₂O exchangeable, 1H), 0.91 (s, 9H), 0.12 (s, 3H), 0.12 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 129.6, 127.2, 103.5, 80.4, 71.5, 66.5, 63.9, 25.8, 18.3, -4.6, -4.7; HRMS (ESI) Calcd for C₁₃H₂₅O₄Si ([M+H]⁺) 273.1522, Found 273.1521.

¹ M. Kanematsu, M. Yoshida and K. Shishido, Angew. Chem., Int. Ed., 2011, 50, 2618.

tert-Butyl-(7-iodomethyl-6,8-dioxabicyclo[3.2.1]oct-2-en-4-yloxy)dimethylsilane (8)

To a stirred solution of **7** (493 mg, 1.81 mmol) in CH_2Cl_2 (15.0 mL) were added Et_3N (0.76 mL, 5.46 mmol) and MsCl (0.28 mL, 3.62 mmol) at 0 °C. After being stirred at room temperature for 0.5 h, the reaction mixture was quenched with saturated aq. NaHCO₃ and extracted with Et_2O . The combined extracts were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo to give crude as a colorless oil, which was used to the next reaction without further purification.

To a stirred solution of crude in THF (10.0 mL) was added LiI (2.45 g, 18.3 mmol) at room temperature, and then the mixture was heated to reflux. After being stirred for 4 h, the reaction mixture was diluted with Et₂O and added with saturated aq. NaHCO₃ / saturated aq. Na₂S₂O₃ (5/1, v/v). The resultant mixture was stirred at room temperature for 0.5 h, and then extracted with Et₂O. The combined extracts were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane / AcOEt = 95 / 5) to afford **8** (633 mg, 92% for 2 steps) as a colorless solid.

Mp: 104.5–105.5 °C; $[\alpha]_D^{28}$ +112.5 (*c* 1.22, CHCl₃); IR (neat) 2926, 2879, 2855, 1255, 1088 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 6.18 (ddd, *J* =10.0, 4.8, 1.0 Hz, 1H), 5.74 (ddd, *J* =9.8, 4.0, 2.0 Hz, 1H), 5.48 (t, *J* = 5.6 Hz, 1H), 4.63 (d, *J* = 4.8 Hz, 1H), 4.06 (dd, *J* = 9.2, 5.6 Hz, 1H), 3.71 (dt, *J* = 3.6, 1.2 Hz, 1H), 3.17 (dd, *J* = 9.6, 5.6, Hz, 1H), 3.10 (dd, *J* = 10.2, 9.8 Hz, 1H), 0.91 (s, 9H), 0.12 (s, 3H) 0.11 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 129.3, 127.4, 104.1, 80.6, 73.3, 65.9, 25.8, 18.3, 6.6, -4.6, -4.7; HRMS (ESI) Calcd for C₁₃H₂₃O₃NaSiI ([M+Na]⁺) 405.0359, Found 405.0354.

3-(tert-Butyldimethylsilyloxy)-6-vinyl-3,6-dihydro-2H-pyran-2-ol (3)

To a stirred solution of **8** (633 mg, 1.66 mmol) in EtOH (19.0 mL) was added Zn powder (1.07 g, 16.6 mmol) at room temperature, and then the mixture was heated to reflux. After being stirred for 2.5 h, the resultant solution was filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane / AcOEt = 80 / 20) to afford **3** (427 mg, quant., ca. 2.7 : 1 mixture of diastereomers; ¹H NMR) as a colorless oil.

IR (neat) 3421, 2954, 2929, 2886, 2857, 1472, 1361, 1113, 877, 838, 780 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 5.90–5.77 (m, 1.27H), 5.71–5.59 (m, 1.73H), 5.33 (dt, *J* = 17.2, 1.6 Hz, 0.73H), 5.31 (dt, *J* = 17.2, 1.6 Hz, 0.27H), 5.22 (dt, *J* = 12.8, 1.2 Hz, 0.27H), 5.19 (dt, *J* = 10.4, 1.2 Hz, 0.73H), 5.15 (dd, *J* = 5.6, 3.6 Hz, 0.27H), 4.82–4.80 (m, 0.27H), 4.76 (dd, *J* = 5.6, 4.0 Hz, 0.73H) 4.77–4.74 (m, 0.73H), 4.22–4.20 (m, 0.27H), 4.09–4.08 (m, 0.73H), 3.41 (d, *J* = 6.0 Hz, OH, D₂O exchangeable, 0.27H), 2.79 (dd, *J* = 5.6, 2.0 Hz, OH, D₂O exchangeable, 0.73H), 0.93 (s, 2.4H), 0.92 (s, 6.6H), 0.13 (s, 1.6H), 0.11 (s, 4.4H); ¹³C-NMR (100 MHz, CDCl₃) δ 136.5, 136.0, 130.3, 128.8, 128.6, 125.3, 116.7, 97.0, 90.6, 75.8, 70.3, 69.4, 64.8, 25.8, 18.2, -4.5, -4.7, -4.8; HRMS (ESI) Calcd for C₁₃H₂₄O₃NaSi ([M+Na]⁺) 279.1392, Found 279.1394.

6-[5-(*tert*-Butyldimethylsilyloxy)-6-hydroxy-5,6-dihydro-2*H*-pyran-2-yl]-1-methylhex-5-enyl acetate (10)

To a stirred solution of **3** (10.8 mg, 42.1 μ mol) and **4** (32.9 mg, 0.211 mmol) in CH₂Cl₂ (0.5 mL) was added Grubbs' 2nd generation catalyst **9** (1.7 mg, 2.00 μ mol) at room temperature, and then the reaction mixture was heated to reflux. After being stirred for 1 h, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography (hexane / AcOEt = 90 / 10) to afford **10** (13.6 mg, 84%, ca. 4 : 1 mixture of diastereomers; ¹H NMR) as a yellow oil.

IR (neat) 3520, 2931, 2860, 1733, 1383, 1249, 839, 781 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 5.80 (dt, J = 10.4, 1.6 Hz, 0.2H), 5.74 (dt, J = 15.2, 6.4 Hz, 0.8H), 5.66–5.54 (m, 2H), 5.49–5.39 (m, 1H), 5.13 (dd, J = 5.2, 4.0 Hz, 0.2H), 4.94–4.83 (m, 1H), 4.78–4.64 (m, 1.8H), 4.22–4.18 (m, 0.2H), 4.09–4.03 (m, 0.8H), 3.38 (d, J = 5.6 Hz, OH, D₂O exchangeable, 0.2H), 2.76 (d, J = 5.6 Hz, OH, D₂O exchangeable, 0.8H), 2.08–2.03 (m, 2H), 2.02 (s, 3H), 1.63–1.33 (m, 4H), 1.20 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 2.4 Hz, 9H), 0.13 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 170.7, 133.8, 133.5, 130.9, 129.4, 128.8, 128.4, 128.2, 125.0, 97.0, 90.6, 75.6, 70.8, 70.0, 69.4, 64.8, 35.4, 32.0, 31.9, 25.8, 25.7, 24.7, 24.6, 21.3, 19.9, 18.2, 18.1, -4.5, -4.7, -4.8; HRMS (ESI) Calcd for C₂₀H₃₆NaO₅Si ([M+Na]⁺) 407.2230, Found 407.2227.

13-Acetoxy-4-(*tert*-butyldimethylsilyloxy)-7-hydroxytetradeca-2,5,8-trienoic acid methyl ester (11)

To a stirred solution of **10** (9.7 mg, 25.2 μ mol) in toluene (0.3 mL) was added methyl (triphenylphosphoranylidene) acetate (42.2 mg, 0.126 mmol) at room temperature, and then the mixture was heated to reflux. After being stirred for 2 h, the resultant mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane / AcOEt = 90 / 10) to afford the **Z-isomer** (1.2 mg, 10%) as a colorless oil and **11** (9.2 mg, 84%) as a colorless oil;

Z-isomer

 $[\alpha]_{D}^{31}$ -91.4 (*c* 1.03, CHCl₃); IR (neat) 3476, 2931, 2857, 1722, 1257, 1059, 826 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 6.28 (dd, *J* = 9.2, 7.2 Hz, 1H), 6.14 (dd, *J* = 11.2, 8.8 Hz, 1H), 5.69 (dd, *J* = 11.2, 1.2 Hz, 1H), 5.60 (dt, *J* = 15.2, 7.6 Hz, 1H), 5.52–5.41 (m, 3H), 5.10 (t, *J* = 5.6 Hz, 1H), 4.94–4.83 (m, 1H), 3.72 (s, 3H), 2.23 (d, *J* = 3.2 Hz, OH, D₂O exchangeable, 1H), 2.03–1.98 (m, 5H), 1.56–1.30 (m, 4H), 1.19 (d, *J* = 6.8 Hz, 3H), 0.89 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 170.7, 166.2, 149.7, 132.8, 131.3, 131.2, 130.7, 116.9, 70.8, 68.7, 65.0, 51.4, 35.4, 32.0, 25.8, 25.0, 21.3, 19.9, 18.1, -4.7; HRMS (ESI) Calcd for C₂₃H₄₁O₆Si ([M+H]⁺) 441.2672, Found 441.2677.

E-enoate (11)

 $[\alpha]_{D}^{32}$ +64.7 (*c* 0.34, CHCl₃); IR (neat) 3496, 2931 2858, 1730, 1252 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 6.77 (dd, *J* = 15.6, 4.0 Hz, 1H), 6.02 (dd, *J* = 15.2, 1.2 Hz, 1H), 5.68 (dt, *J* = 15.2, 3.2 Hz, 1H), 5.54–5.49 (m, 1H), 5.49 (ddd, *J* = 10.8, 8.0, 0.8 Hz, 1H), 5.35 (ddd, *J* = 10.8, 8.0, 0.8 Hz, 1H), 5.19–5.16 (m, 1H), 4.92–4.87 (m, 2H), 3.73 (s, 3H), 2.06 (q, *J* = 6.8 Hz, 2H), 2.03 (s, 3H), 1.72 (s, OH, D₂O exchangeable, 1H), 1.53–1.39 (m, 4H), 1.21 (d, *J* = 6.4 Hz, 3H), 0.91 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 170.7, 167.0, 148.8, 132.2, 131.7, 131.4, 131.2, 119.3, 70.7, 69.3, 68.4, 51.5, 35.4, 31.9, 25.7, 24.7, 21.3, 19.9, 18.2, -4.6, -4.9; HRMS (ESI) Calcd for C₂₃H₄₁O₆Si ([M+H]⁺) 441.2672, Found 441.2677.

4,7-Bis-(*tert*-butyldimethylsilyloxy)-13-hydroxytetradeca-2,5,8-trienoic acid (13)

To a stirred solution of **11** (5.4 mg, 12.2 μ mol) in CH₂Cl₂ (0.3 mL) were added imidazole (2.5 mg, 36.8 μ mol), TBSCl (3.7 mg, 24.5 μ mol) and 4-DMAP (0.14 mg, 1.22 μ mol) at 0 °C. After being stirred at room temperature for 1 h, the reaction mixture was quenched with H₂O and extracted with CHCl₃. The combined extracts were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo to give **12** as a colorless oil, which was used to the next reaction without further purification.

To a stirred solution of crude **12** in MeOH/H₂O (0.04 mL, 3/1, v/v) was added NaOH (2.5 mg, 61.3 µmol) at room temperature. After being stirred at room temperature for 24 h, the reaction mixture was quenched with H₂O and extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified by silica gel column chromatography (CHCl₃ / MeOH = 99 / 1) to afford **13** (4.2 mg, 69%) as a colorless oil.

 $[\alpha]_{D}^{26}$ +73.4 (*c* 2.08, CHCl₃); IR (neat) 3379, 2953, 2927, 2856, 1699, 1654, 1255, 1075, 837, 776 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 6.86 (dd, *J* = 15.2, 4.0 Hz, 1H), 6.01 (d, *J* = 15.2 Hz, 1H), 5.57 (dt, *J* = 15.2, 6.8 Hz, 1H), 5.52–5.40 (m, 2H), 5.25 (ddd, *J* = 11.2, 7.6, 1.2 Hz, 1H), 5.20–5.12 (m, 1H), 4.85 (t, *J* = 7.2 Hz, 1H), 3.83–3.82 (m, 1H), 2.06–2.05 (m, 2H), 1.51–1.42 (m, 4H), 1.17 (d, *J* = 4.4 Hz, 3H), 0.91 (s, 9H), 0.88 (s, 9H), 0.09 (d, *J* = 1.6 Hz, 6H), 0.09 (s, 3H), 0.07 (s, 3H), OH protons were not detected; ¹³C-NMR (100 MHz, CDCl₃) δ 170.4, 150.6, 133.3, 132.2, 131.3, 129.3, 118.9, 70.9, 68.7, 68.2, 38.7, 32.1, 25.8, 25.4, 22.9, 18.2, –4.2, –4.5, –4.6, –4.8; HRMS (ESI) Calcd for C₂₆H₅₁O₅Si₂ ([M+H]⁺) 499.3275, Found 499.3278.

5,8-Bis-(tert-butyldimethylsilyloxy)-14-methyloxacyclotetradeca-3,6,9-trien-2-one (14)

To a stirred solution of **13** (37.0 mg, 74.2 μ mol) in CH₂Cl₂ (5.0 mL) were taken up and added dropwise to a solution of 2-methyl-6-nitro benzoic acid anhydride (30.6 mg, 89.0 μ mol) and 4-DMAP (21.7 mg, 0.178 mmol) in CH₂Cl₂ (45.0 mL) over a period of 18 h at room temperature. After being stirred at the same temperature for 1 h, the reaction mixture was quenched with saturated aq. NaHCO₃, and then extracted with CH₂Cl₂. The combined extracts were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane / AcOEt = 95 / 5) to afford **14** (32.8 mg, 92%) as a colorless oil.

 $[\alpha]_{D}^{31}$ +92.8 (*c* 1.50, CHCl₃); IR (neat) 2930, 2857, 1720, 1254, 1127, 1060, 837, 778 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.05 (dd, *J* = 15.2, 3.6 Hz, 1H), 5.87 (dd, *J* = 15.2, 1.6 Hz, 1H), 5.68 (dt, *J* = 15.6, 6.8 Hz, 1H), 5.45 (dd, *J* = 15.6, 6.4 Hz, 1H), 5.41–5.33 (m, 2H), 5.15 (s, 1H), 4.77 (t, *J* = 6.8 Hz, 1H), 4.72–4.64 (m, 1H), 2.15–1.88 (m, 2H), 1.87–1.66 (m, 2H), 1.53–1.42 (m, 2H), 1.26 (d, *J* = 6.4 Hz, 3H), 0.92 (s, 9H), 0.90 (s, 9H), 0.09 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 166.4, 149.5, 132.2, 131.9, 131.8, 131.5, 117.5, 72.0, 71.0, 69.0, 34.6, 32.9, 25.9, 25.8, 24.5, 20.3, 18.3, 18.2, -4.4, -5.0; HRMS (ESI) Calcd for C₂₆H₄₈NaO₄Si₂ ([M+Na]⁺) 503.2989, Found 503.2993.

5,8-Dihydroxy-14-methyloxacyclotetradeca-3,6,9-trien-2-one (2)

To a stirred solution of **14** (6.5 mg, 13.5 μ mol) in THF (0.5 mL) at 0 °C was added HF·pyridine (70.0 μ L). After being stirred for 15 min at room temperature, the reaction mixture was quenched with saturated aq. NaHCO₃ at 0 °C, and then extracted with AcOEt. The combined extracts were washed with saturated aq. CuSO₄, brine, and dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane / AcOEt = 50 / 50) to afford **2** (3.4 mg, quant.) as a colorless oil.

 $[\alpha]_{D}^{28}$ +188.2 (*c* 0.68, CHCl₃); IR (neat) 3362, 2974, 2931, 1698, 1261, 1008, 976 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.03 (dd, *J* = 15.6, 4.4 Hz, 1H), 5.90 (dd, *J* = 15.6, 2.0 Hz, 1H), 5.86 (ddd, *J* = 15.6, 9.2, 5.6 Hz, 1H), 5.54 (dd, *J* = 11.2, 4.4 Hz, 1H), 5.49 (dd, *J* = 15.2, 7.6 Hz, 1H), 5.46 (ddd, *J* = 10.8, 9.6, 2.4 Hz, 1H), 5.26–5.25 (m, 1H), 4.82 (t, *J* = 8.4 Hz, 1H), 4.75 (dtd, *J* = 16.0, 6.0, 2.0 Hz, 1H), 2.32 (brs, OH, D₂O exchangeable, 1H), 2.13–1.95 (m, 2H), 1.80 (brs, OH, D₂O exchangeable, 1H), 1.87–1.73 (m, 2H), 1.54–1.48 (m, 1H), 1.26 (d, *J* = 6.0, 3H), 1.15–1.08 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 166.1, 148.3, 134.4, 132.1, 131.2, 130.3, 118.3, 72.0, 70.6, 68.4, 34.5, 32.8, 24.4, 20.2; HRMS (ESI) Calcd for C₁₄H₂₀O₄Na ([M+Na]⁺) 275.1259, Found 275.1262.

Aspergillide C (1)

To a stirred suspension of KH (1.7 mg, 30% in oil, 12.5 μ mol) in THF (0.1 mL) were added 18-Crown-6 (7.9 mg, 29.7 μ mol) and **2** (1.5 mg, 5.95 μ mol) in THF (0.2 mL) at 0 °C. After being stirred at the same temperature for 10 min, the reaction mixture was quenched with saturated aq. NH₄Cl and extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane / AcOEt = 70 / 30) to afford **1** (1.3 mg, 86%) as a colorless solid.

Mp: 104.5–105.5 °C; (lit.² mp: 115.5–116 °C); $[\alpha]_D^{29}$ +83.8 (*c* 0.33, MeOH) {lit.³ $[\alpha]_D^{25}$ +66.2 (*c* 0.19, MeOH), lit.² $[\alpha]_D^{25}$ +83.0 (*c* 0.14, MeOH), lit.⁴ $[\alpha]_D^{28}$ +77.5 (*c* 0.11, MeOH)}; IR (neat) 3411, 2924, 2852, 1732, 1456, 1375, 1193 cm⁻¹; ¹H-NMR (500 MHz, C₆D₆) δ 5.94 (dddd, *J* = 15.5, 9.5, 6.0, 2.0 Hz, 1H), 5.74 (ddd, *J* = 10.5, 6.0, 2.0 Hz, 1H), 5.41 (dd, *J* = 10.0, 3.5 Hz, 1H), 5.18 (dd, *J* = 15.5, 4.0 Hz, 1H), 5.15–5.13 (m, 1H), 4.46–4.45 (m, 1H), 4.03 (dt, *J* = 11.5, 1.5 Hz, 1H), 3.22 (dd, *J* = 10.5, 5.0 Hz, 1H), 2.87 (dd, *J* = 13.5, 11.5 Hz, 1H), 2.25 (dd, *J* = 13.5, 2.0 Hz, 1H), 1.96 (dddd, *J* = 13.0, 9.5, 6.0, 2.0 Hz, 1H), 1.63–1.54 (m, 2H), 1.45–1.36 (m, 1H), 1.32–1.25 (m, 1H), 1.24 (brs, OH, D₂O exchangeable, 1H), 1.20–1.12 (m, 1H), 0.99 (d, *J* = 6.5 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 170.0, 135.0, 131.8, 128.5, 126.2, 72.0, 69.8, 69.5, 64.5, 38.8, 32.0, 31.0, 23.7, 18.7; HRMS (ESI) Calcd for C₁₄H₂₁O₄ ([M+H]⁺) 253.1440, Found 253.1444.

² T. Nagasawa and S. Kuwahara, *Org. Lett.*, 2009, **11**, 761.

³ K. Kito, R. Ookura, S. Yoshida, M. Namikoshi, T. Ooi and T. Kusumi, Org. Lett., 2008, 10, 225.

⁴ M. Kanematsu, M. Yoshida and K. Shishido, *Tetrahedron Lett.*, 2011, **52**, 1372.

3-epi-Aspergillide C (15)

To a stirred solution of 4 (3.0 mg, 1.20 μ mol) in MeCN (0.2 mL) were added LiCl (5.0 mg, 11.9 μ mol) and DBU (16.7 μ L, 11.9 μ mol) at room temperature. After being stirred at the same temperature for 15 min, the reaction mixture was quenched with saturated aq. NH₄Cl and extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane / AcOEt = 60 / 40) to afford **15** (2.9 mg, 97%) as a colorless oil.

 $[\alpha]_{D}^{31}$ +80.2 (*c* 0.49, CHCl₃); IR (neat) 3366, 2926, 2853, 1732, 1263, 1066, 1028 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 6.07 (dddd, *J* = 10.0, 6.0, 2.5, 1.0 Hz, 1H), 5.99 (dd, *J* = 10.0, 3.0 Hz, 1H), 5.82 (dddd, *J* = 15.5, 7.0, 6.0, 1.5 Hz, 1H), 5.58 (ddt, *J* = 16.0, 6.5, 1.5 Hz, 1H), 5.08–5.04 (m, 1H), 4.67 (d, *J* = 4.5 Hz, 1H), 4.59 (dd, *J* = 12.5, 3.0 Hz, 1H), 3.67 (dd, *J* = 10.0, 9.5 Hz, 1H), 2.53 (dd, *J* = 16.0, 11.5 Hz, 1H), 2.37 (dd, *J* = 16.5, 3.5 Hz, 1H), 2.23-2.03 (m, 2H), 2.00 (d, *J* = 9.6 Hz, OH, D₂O exchangeable, 1H), 1.86–1.78 (m, 1H), 1.75–1.56 (m, 3H), 1.20 (d, *J* = 6.6 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 170.0, 134.8, 131.8, 130.1, 124.2, 73.6, 70.9, 69.7, 64.2, 38.7, 32.7, 30.8, 21.6, 18.8; HRMS (ESI) Calcd for C₁₄H₂₁O₄ ([M+H]⁺) 253.1440, Found 253.1435.

Interconversion of 3-epi-aspergillide C (15) to aspergillide C (1)

To a stirred suspension of KH (0.9 mg, 30% in oil, 6.66 μ mol) in THF (0.1 mL) were added 18-Crown-6 (4.2 mg, 15.9 μ mol) and 3-*epi*-aspergillide C (**15**) (0.8 mg, 3.17 μ mol) in THF (0.2 mL) at 0 °C. After being stirred for 15 min, the reaction mixture was quenched with saturated aq. NH₄Cl and extracted with AcOEt. The combined extracts were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane / AcOEt = 60 / 40) to afford aspergillide C (**1**) (0.6 mg, 75%) as a colorless solid.

مان شد اس مناز معرفة هد الأله به أو تساعين أو سنان الم من الألم المعانية معن بل أرابية استماما الماما من وي المان من المان بو الإسلام	discussion dischalance had gete biological spatie second operation and to provide the second spectrum operation	الأمريم المريمية عن المريم من المالية المريمية المريمية المريمية المريمية المراجع المراجع المريمية المريمية ال المريمية	en nelle selve dan gil at mil a herbachter die
يدهني هندا هندالا المنادية لنما سروون بعانيات وشرقيه فغرابات وسلح وأصفط فعسطير ورأ الحول فنا واستعطيتها يلاد والسعيسيان وتراولك ينتم	فيتعاومها يقرارها المراجع المالية المتحديد والمساحر ينع والبراني والمحاط المتعلي ورويتها والمرابعة المرابعة وال	גערן דייני און לא ערואל, איז אלי און איז אין איז איז אין איז איז איז איז איז און אלוואר איז איז איז אין אין אי גערו דייני און און איז איז און איז	ل من يو يحد من يولي المولية المالية المرابع في الفريق بل يالية عنه المنهمية المناطقية المناطقية المرابية. المناطقية المناطقية الموالية المرابع المحر الفريقة المالية المالية عنه المناطقية المناطقية المناطقية المرابية ا

¹³C NMR (100MHz) in CDCl₃

S16

TBSO HO' O Ĥ

3 (*dr* = 2.7 : 1) ¹H NMR (400MHz) in CDCl₃

S17

OAc

HO Н 10 (*dr* = 4 : 1) ¹H NMR (400MHz) in

CDCl₃

TBSO,

¹³C NMR (100MHz) in CDCl₃

7.5 6.5 10.0 9.5 9.0 8.5 8.0 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 0.95 0.99 0.98 3.19 0.94 3.08 5.49 **9.41** ≍ 0.83 6.21 4.29

S29

