Supporting Information for

Photoluminescent Selenospirocyclic and Selenotetracyclic Derivatives by Domino Reactions of Amines and Imine

Vijay P. Singh,^a Harkesh B. Singh,^{*a} and Ray J. Butcher^b

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India. Email: chhbsia@chem.iitb.ac.in; Fax: +91 22 2572 3480; Tel: +91 22 2576 7190

^bDepartment of Chemistry, Howard University, Washington DC 20059, USA

Cont	ents	Page No.	
1.	General Experimental Procedures		3
2.	Scheme S1 Synthesis of compound 9		4
3.	Scheme S2 Mechanism for the formation of 15		4
4.	Scheme S3 Mechanism for the formation of 19		5
5.	Scheme S4 Mechanism for the formation of 20		5
6.	Synthesis and characterization data of S2-S3, 9, 15-16 and 18-20		6-9
7.	¹ H, ¹³ C, ⁷⁷ Se NMR, HRMS and IR spectra of S2-S3 , 9 , 15-16 and	18-20	10-40
8.	X-ray crystallographic analysis		41
9.	Molecular Structure of 19		41
10	. Figure S52		42
11	. Table S1 for Crystal Data and Structure Refinement for 19		43
12	. Figures S53-S54 UV-Vis and Emission spectra for 15 and 20		44
13	. Table S2 UV-Vis and Emission data for compounds 15 and 20		45
14	References		45
15	. Checkcif reports		46-54
16	. Manuscript of reference 23		55-66

General experimental procedure

2-Bromo-3-nitrobenzaldehyde $(S1)^1$ was prepared by the reported procedures. Selenium powder and 3nitrophthalic acid used were purchased from Sigma Aldrich. All the reactions were performed under nitrogen or argon atmosphere by modified Schlenk techniques and monitored by using thin layer chromatography (TLC) from time to time. Solvents were purified by standard techniques.² Melting points were recorded on a VEEGO melting point (VMP-1) apparatus and are uncorrected. ¹H (399.88 MHz) & ¹H (299.95 MHz), ¹³C (100.6 MHz) and ⁷⁷Se (57.26 MHz) and ⁷⁷Se (76.31 MHz) NMR spectra were recorded on a Varian NMR-Mercury plus 400 MHz & Bruker Avance^{III} 400 MHz spectrometer and Varian NMR-Mercury plus 300 MHz for ⁷⁷Se NMR at the indicated frequencies. Chemicals shifts (δ) are shown with respect to SiMe₄ (TMS) as internal standard for nuclei ¹H & ¹³C and Me₂Se for nuclei ⁷⁷Se as the external standard; s = singlet, d = doublet, t = triplet, dd = doublet of doublets. The high resolution mass spectra (HRMS) were recorded at room temperature on a Micro mass Q–TOF (YA 107) mass spectrometer. FT-IR spectra were recorded in the range 4000-450 cm⁻¹ using KBr for solid samples and neat for liquid samples between CsI plates on a Perkin Elmer precisely spectrum one FT–IR spectrometer. The UV-Visible and emission spectra in solution were recorded using Varian Cary 100 Bio UV-Visible Spectrophotometer and Varian Cary Eclipse Fluorescence Spectrophotometer. Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Scheme S1. i) i. p-Anisidine in (glac.) AcOH; ii) NaBH₄, C₂H₅OH, r.t.; iii) n-BuSeNa, C₂H₅OH, 0 °C.

Scheme S2

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Scheme S3

Scheme S4

Synthesis and characterization data

Synthesis of Compound S2: To a solution of 2-bromo-3-nitrobenzaldehyde (S1) (13.04 mmol, 3.0 g) in glacial acetic acid (10 mL) was added *p*-anisidine (13.04 mmol, 1.60 g) with continuous stirring at room temperature. A yellow precipitate was formed. To complete the precipitation, the reaction mixture was cooled with ice, then filtered and washed with ice-cooled ethanol. Recrystallization from hot ethanol afforded a light yellow solid. Yield: 2.8 g (64 %); M.p 132-135 °C; ¹H NMR (CDCl₃): δ 3.86 (s, 3H, OCH₃), (d, *J* = 9.2 Hz, 2H), (d, *J* = 9.2 Hz, 2H), 7.51-7.55 (td, *J* = 0.6, 7.9 Hz, 1H), 7.76-7.79 (dd, *J* = 1.5, 7.9 Hz, 1H), 8.42-8.44 (dd, *J* = 1.5, 7.9 Hz, 1H), 8.34 (s, 1H); ¹³C NMR (CDCl₃): δ 55.7, 114.7, 116.6, 123.0, 126.6, 128.2, 131.9, 137.5, 143.6, 151.6, 154.9, 159.5; IR (KBr): 2965, 1615, 1595, 1528, 1504, 1355, 836 cm⁻¹; HRMS (TOF MS ES⁺) *m*/*z* calcd for C₁₄H₁₁N₂O₃Br [*M*+H]⁺: 335.0031; found: 335.0034.

Synthesis of Compound S3: To a solution of compound S2 (6.86 mmol, 2.30 g) in deoxygenated ethanol (10 ml) was added NaBH₄ (27.45 mmol, 1.04 g) at room temperature under inert atmosphere. The stirring was continued for 6 h at room temperature. The solvent was evaporated to give a semi-solid of reddish color. The precipitate was dissolved in water and extracted with chloroform. The extracted organic layer was again washed 2-3 times with water. The separated organic layer was dried over anhydrous sodium sulphate and concentrated to yield an orange liquid and which was solidified by keeping in deep freeze to give a crystalline solid. Yield: 1.90 g (82 %); M.p 74-76 °C. ¹H NMR (CDCl₃): δ 3.74 (s, 3H, OCH₃), 4.09 (s, NH), 4.44 (s, 2H, CH₂), 6.51-6.53(dd, *J* = 7.9 Hz, 2H), 6.76-6.78 (dd, *J* = 8.9 Hz, 2H), 7.51-7.557.36-7.39 (t, *J* = 7.9 Hz, 1H), 7.60-7.64 (m, 2H); ¹³C NMR (CDCl₃): δ 49.6, 55.8, 114.0, 114.1, 115.0, 123.5, 128.1, 131.7, 141.2, 142.0, 151.2, 152.6; IR (KBr): 3411, 2928, 1531, 1514, 1362, 1236, 1034, 821 cm⁻¹; HRMS (TOF MS ES⁺) *m/z* calcd for C₁₄H₁₃N₂O₃Br [*M*+H]⁺: 337.0199; found: 337.0188.

Synthesis of Compound 9: To a solution of di-*n*-butyl disclenide (2.85 mmol, 0.77 g) in deoxygenated ethanol (20 mL) was added NaBH₄ (5.69 mmol, 0.22 g) at 0 °C. The reaction mixture was stirred for 30 min at the room temperature. Compound **S3** (4.75 mmol, 1.60 g) was added at 0 °C to *in situ* prepared *n*-BuSeNa. The reaction was stirred for 4 h at room temperature. The excess of the solvent was removed under vacuum. The residue was dissolved in CHCl₃ and washed with water. The organic layer and the CHCl₃ extract from the aqueous layer were combined and dried over anhydrous Na₂SO₄. Removal of solvent and purification of the residue by silica gel column chromatography (elution with 5 % ethyl acetate/petroleum ether) afforded an orange liquid. Yield: 1.25 g (69 %). ¹H NMR (CDCl₃): δ 0.86-0.89 (t, *J* = 7.3 Hz, 3H), 1.32-1.41 (m, 2H), 1.55-1.61 (m, 2H), 2.84-2.87 (t, *J* = 7.6 Hz, 2H), 3.73 (s, 3H, OCH₃), 4.58 (s, 2H, CH₂), 4.77 (br s, 1H, NH), 6.53-6.55 (dd, *J* = 1.1, 6.7 Hz, 2H), 6.75-6.78 (dd, *J* = 1.1, 6.7 Hz, 2H), 7.37-7.41 (t, *J* = 7.6 Hz, 1H), 7.47-7.49 (dd, *J* = 1.5, 7.9 Hz, 1H), 7.64-7.66 (dd, *J* = 1.5, 7.9 Hz, 1H); ¹³C NMR (CDCl₃): δ 13.6, 22.9, 30.3, 32.5, 50.0, 55.8, 114.3, 115.1, 121.4, 121.8, 129.4, 130.8, 141.6, 146.4, 152.5, 156.8; ⁷⁷Se NMR (CDCl₃): δ 204; IR (neat): 3419 (NH), 2957, 2931, 1515, 1372, 1235, 1037, 820, 796, 736 cm⁻¹; HRMS (TOF MS ES⁺) *m/z* calcd for C₁₈H₂₂N₂O₃Se [*M*+H]⁺: 395.0874; found: 395.0859.

Synthesis of Compound 15: To a solution of selenide **8** (0.56 mmol, 0.21 g) was added Br₂ (0.56 mmol, 0.16 g, 0.03 mL) in CHCl₃ (1 mL) 0 °C with continuous stirring under an inert atmosphere to yield an yellow precipitate. The obtained precipitate was filtered and taken in dry CHCl₃ (1 mL) as suspension. To this Et₃N (0.56 mmol, 0.06 g, 0.08 mL) was added. The solution turned to dark-black colored solution. Additionally, the reaction mixture was stirred at room temperature for 3 h. The mixture was extracted with CHCl₃ by adding water (10 mL). The separated organic layers were combined and dried over anhydrous Na₂SO₄. Removal of solvent and purification of the residue by silica gel column chromatography (eluted with 20 % ethyl acetate/petroleum ether mixture) afforded compound **15**. Yield: 0.03 g (17 %); M.p 188-192 °C. ¹H NMR (CDCl₃): δ 2.16 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 5.81-5.83 (d, *J* = 8.3 Hz, 2H), 6.49-6.51 (d, *J* = 8.3 Hz, 2H), 6.65-6.67 (d, *J* = 8.2 Hz, 2H), 6.97-6.99 (d, *J* = 8.2 Hz, 2H),

7.35-7.43 (m, 2H), 7.54-7.58 (t, J = 7.9 Hz, 1H), 8.21-8.23 (d, J = 8.3 Hz, 1H), 8.37-8.39 (d J = 8.3 Hz, 1H), 8.59-8.61 (d J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃): δ 20.6, 20.9, 29.9, 117.3, 118.3, 124.1, 126.7, 127.8, 128.2, 128.3, 129.8, 129.9, 130.6, 132.9, 133.2, 134.9, 138.9, 139.8, 140.7, 141.7, 145.5, 145.9, 146.7, 165.2; ⁷⁷Se NMR (CDCl₃): δ 666, 970; IR (KBr): 2922, 2854, 1590, 1506, 1300, 1147, 1041, 984, 791, 732 cm⁻¹; HRMS (TOF MS ES⁺) *m/z* calcd for C₂₈H₂₀N₄O₄Se₂ [*M*+H]⁺: 636.9839; found: 636.9922.

Synthesis of Compound 16: Compound **16** was synthesized from selenide **9** (1.01 mmol, 0.40 g) in CHCl₃ (2 mL), Br₂ (1.01 mmol, 0.16 g, 0.05 mL) in CHCl₃ (1 mL) at 0 °C and Et₃N (1.01 mmol, 0.10 g, 0.14 mL) according to the procedure described for the preparation of compound **15**. Removal of solvent and purification of the residue by silica gel column chromatography (eluted with 20 % ethyl acetate/petroleum ether mixture) afforded compound **16**. Recrystallization from chloroform/petroleum ether (1:1) afforded dark-black crystals. Yield: 0.09 g (26 %); M.p 215 °C. ¹H NMR (CDCl₃): δ 3.67 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 6.22-6.24 (d, J = 8.8 Hz, H), 6.47-6.49 (d, J = 8.8 Hz, H), 6.68-6.75 (m, H), 7.28-7.37 (m, H), 7.47-7.51 (t, J = 7.6 Hz, H), 8.17-8.20 (dd, J = 1.2, 7.9 Hz, 1H), 8.28-8.30 (dd, J = 1.2, 7.3 Hz, 1H), 8.50-8.52 (dd, J = 8.3, 1.2 Hz, 1H); ¹³C NMR (CDCl₃): δ55.4, 55.5, 92.6, 113.2, 114.5, 120.3, 121.5, 123.9, 126.4, 127.7, 127.9, 129.2, 132.5, 135.5, 136.1, 139.0, 140.2, 141.5, 142.0, 145.2, 145.4, 155.4, 156.5, 163.7; ⁷⁷Se NMR (CDCl₃): δ 665, 971; IR (KBr): 2924, 1594, 1505, 1297, 1247, 1029, 849, 737 cm⁻¹; HRMS (TOF MS ES⁺) *m/z* calcd for C₂₈H₂₀N₄O₆Se₂ [*M*+H]⁺: 668.9792; found: 668.9808.

Synthesis of Selenenium Cation 18: To a solution of compound 6 (3.25 mmol, 1.0 g) in the presence of Et₃N (3.25 mmol, 0.45 mL) at 0 °C in CHCl₃ (5 mL) was added SO₂Cl₂ (3.25 mmol, 0.26 mL) in CHCl₃ (2 mL) with continuous stirring under an inert atmosphere. Additionally, the reaction mixture was stirred at room temperature for 1.5 h minutes. The resulting greenish-yellow precipitates was filtered off and dried under vacuum. Yield: 0.60 g (54 %); M.p 181-184 °C. ¹H NMR (CD₃OD): δ = 7.75-7.77 (m, 3H; ArH), 7.98-8.02 (m, 2H; ArH), 8.21-8.24 (t, *J* = 8.1 Hz, 1H; ArH), 8.98-9.00 (dd, *J* = 0.8, 8.1 Hz, 1H; ArH), 9.08-9.10 (dd, *J* = 0.7, 7.9 Hz, 1H; ArH), 10.63 (s, 1H); ¹³C NMR (CD₃OD): δ =124.2, 124.7,

130.4, 131.3, 131.4, 131.9, 132.1, 133.1, 140.1, 140.8, 163.5; ⁷⁷Se NMR (CD₃OD): δ 1180; IR (KBr): 1614, 1520, 1312, 766 cm⁻¹; HRMS (TOF MS ES⁺) *m/z* calcd for C₁₃H₉N₂O₂SeCl [*M*-Cl]⁺: 304.9834; found: 304.9829.

Synthesis of Selenenium Cation 19: To a solution of selenide 8 (0.90 mmol, 0.34 g) in CHCl₃ (2 mL) and triethylamine (0.90 mmol, 0.09 g, 0.124 mL) was added Br₂ (1.35 mmol, 0.22 g, 0.07 mL) in CHCl₃ (1 mL) at 0 °C with continuous stirring under an inert atmosphere. After the complete addition of Br₂, the reaction mixture was further stirred at the room temperature for 1 h. The yellow precipitate was filtered off and dried under vacuum afforded 19. Recrystallization from methanol/dichloromethane [1:1] afforded light yellow needle-like crystals. Yield: 0.095 g (27 %); M.p 245-247 °C. ¹H NMR (CD₃OD): δ 2.51 (s, 3H, CH₃), 7.55-7.57 (d, *J* = 7.3 Hz, 2H), 7.86-7.89 (d, *J* = 8.3 Hz, 2H), 8.19-8.23 (t, *J* = 7.9 Hz, 1H), 8.97-8.99 (d, *J* = 7.5 Hz, 1H), 9.05-9.07 (d, *J* = 7.9 Hz, 1H), 10.58 (s, 1H); ¹³C NMR (CD₃OD): δ 21.4, 124.4, 131.1, 131.8, 132.4, 135.5, 138.5, 139.8, 144.7, 146.6 162.5; ⁷⁷Se NMR (CD₃OD): δ 1182; IR (KBr): 2989, 1615 (C=N), 1529 (NO₂), 1360, 1311, 809 cm⁻¹; HRMS (TOF MS ES⁺) *m/z* calcd for C₁₄H₁₁N₂O₂SeBr [*M*-Br]⁺: 318.9986; found: 318.9993.

Synthesis of Compound 20: To a solution of 18 (0.30 mmol, 0.10 g) in methanol (1 mL) and water (1 mL) was added GSH (0.60 mmol, 0.18 g) at room temperature. The reaction mixture was stirred for 2 h with continuous stirring. The color of the reaction mixture turned into black. The mixture was submitted to column with silica gel and eluted by 10 % ethyl acetate/petroleum ether mixture afforded orange product alongwith black-colored intractable mixture (0.024 g). Recrystallization from CHCl₃/petroleum ether gave orange needle like crystals of 20. Yield: 0.03 g (34 %); M.p 218-220 °C. ¹H NMR (CDCl₃): δ 4.69 (s, NH, 2H), 6.05-6.07 (d, *J* = 7.8 Hz, 4H), 6.54-6.58 (t, *J* = 7.3 Hz, 2H), 6.78-6.82 (t, *J* = 7.3 Hz, 4H), 7.38-7.42 (t, *J* = 7.9 Hz, 2H), 7.62-7.64 (dd, *J* = 1.2, 7.6 Hz, 2H), 8.29-8.31 (dd, *J* = 0.9, 8.3 Hz, 2H); ¹³C NMR (CDCl₃): δ 85.9, 115.7, 119.2, 125.1, 127.8, 128.6, 132.2, 134.2, 144.3, 144.5; ⁷⁷Se NMR (CDCl₃): δ 707; IR (KBr): 3395, 2924, 2853, 1595, 1506, 1310, 1124, 802, 737, 690 cm⁻¹; HRMS (TOF MS ES⁺) *m/z* calcd for C₂₆H₁₈N₄O₄Se₂ [*M*+H]⁺: 610.9737; found: 610.9716.

Figure S1. ¹H NMR spectrum of compound S2

Figure S2. Expanded version of a part of the ¹H NMR spectrum of compound S2

Figure S4. HRMS spectrum of compound S2.

```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{} The Royal Society of Chemistry 2011
```


Figure S5. FT-IR spectrum of compound S2.

Figure S6. ¹H NMR spectrum of compound **S3**.

Figure S7. Expanded version of a part of the ¹H NMR spectrum of compound S3

Figure S8. ¹³C NMR spectrum of compound S3.

Figure S9. HRMS spectrum of compound S3

```
Electronic Supplementary Material (ESI) for Chemical Communications This journal is \textcircled{C} The Royal Society of Chemistry 2011
```


Figure S10. FT-IR spectrum of compound S3.

Figure S11. ¹H NMR spectrum of compound 9 in CDCl₃

Figure S12. Expanded version of a part of the ¹H NMR spectrum of compound 9

Figure S13. ¹³C NMR spectrum of compound 9 in CDCl₃

Figure S14. Expanded version of a part of the ¹³C NMR spectrum of compound 9.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2011

Figure S15. ⁷⁷Se NMR spectrum of compound 9 in CDCl₃

Figure S16. HRMS spectrum of compound 9

Figure S17. FT-IR spectrum of compound 9

Figure S18. ¹H NMR spectrum of compound 15 in CDCl₃

Figure S19. Expanded version of a part of the ¹H NMR spectrum of compound 15

Figure S20. ¹³C NMR spectrum of compound 15 in CDCl₃

Figure S21. Expanded version of a part of the ¹³C NMR spectrum of compound 15

Figure S22. ⁷⁷Se NMR spectrum of compound 15 in CDCl₃

Figure S23. HRMS spectrum of compound 15

Figure S24. FT-IR spectrum of compound 15

Figure S25. ¹H NMR spectrum of compound 16 in CDCl₃

Figure S26. Expanded version of a part of the¹H NMR spectrum of compound 16

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Figure S27. ¹³C NMR spectrum of compound 16 in CDCl₃

Figure S28. Expanded version of a part of the ¹³C NMR spectrum of compound 16

Figure S29. ⁷⁷Se NMR spectrum of compound 16 in CDCl₃

Figure S30. HRMS spectrum of compound 16

Figure S31. FT-IR spectrum of compound 16

Figure S32. ¹H NMR spectrum of compound 18 in CD₃OD.

Figure S33. Expanded version of a part of the ¹H NMR spectrum of compound 18

Figure S34. ¹³C NMR spectrum of compound 18 in CD₃OD.

Figure S35. Expanded version of a part of the ¹³C NMR spectrum of compound 18

Figure S36. ⁷⁷Se NMR spectrum of compound 18 in CD₃OD

Figure S37. HRMS spectrum of compound 18

Figure S38. FT-IR spectrum of compound 18

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Figure S39. ¹H NMR spectrum of compound 19 in CD₃OD.

Figure S40. Expanded version of a part of the ¹H NMR spectrum of compound 19

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Figure S41. ¹³C NMR spectrum of compound 19 in CD₃OD

Figure S42. ⁷⁷Se NMR spectrum of compound 19 in CD₃OD

Figure S43. HRMS spectrum of compound 19

Figure S44. FT-IR spectrum of compound 19

Figure S45. ¹H NMR spectrum of compound 20 in CDCl₃

Figure S46. Expanded version of a part of the ¹H NMR spectrum of compound 20

Figure S47. ¹³C NMR spectrum of compound 20 in CDCl₃

Figure S48. Expanded version of a part of the ¹³C NMR spectrum of compound 20

Figure S49. ⁷⁷Se NMR spectrum of compound 20

Figure S50. HRMS spectrum of compound 20

Figure S51. FT-IR spectrum of compound 20

X-ray Crystallographic Analysis: X-ray crystallographic studies were carried out for compounds **15**, **19** and **20** on a Oxford Diffraction Gemini diffractometer using graphite-monochromatized Mo K α radiation $\lambda = 1.54184$ Å. The diffraction measurements were performed at 295(2) K. The structures were solved by direct method and refined by a full-matrix least-squares procedure on F^2 for all reflections in SHELXL-97 software.³ Hydrogen atoms were localized by geometrical means. A riding model was chosen for refinement. The isotropic thermal parameters of hydrogen atoms were fixed at 1.5 times for (CH₃ groups) or 1.2 times U(eq) (Ar-H) of the corresponding carbon atoms. CCDC-808889 (19) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Molecular Structure of 19

The molecular structure of **19** is shown in Figure S51. Compound **19** was crystallized as a solvate with two water molecules during crystallization. The geometry around the selenium atom is T-shaped with a $O1\cdots$ Se-N2 angle of 157.00(11)°. The Se-N2 distance [1.919(3) Å] is slightly greater than the sum of the Pauling covalent radii (1.87 Å) of these two atoms.⁴ The Se-N distance is nearly same as reported for the selenenium cations with bromide (1.895(0) Å) and tribromide (1.899(2) Å) as counteranions.⁵ The Se- \cdots O1 distance [2.486(3) Å] is slightly smaller than that reported for the selenenium cations with bromide (2.521(3) Å) as counteranions significantly. The Se-Br distance [3.608 (0) Å] is also greater than the sum of single bond covalent radii of Se-Br [2.31 Å].

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Figure S52. Molecular structure of **19**. Water molecules are omitted for clarity. Thermal ellipsoids are set at 50 % probability. Significant bond lengths [Å] and angles [°]: Se···O1 2.486(3); Se–N2 1.919(3); Se–C1 1.845(4); Se–Br 3.608(0); O1···Se–N2 157.00(11); C1–Se–N2 84.25(15); C7–N2–Se 112.8(3); O1···Se–C1 72.76(14).

Compound	19
Empirical formula	$C_{14}H_{15}BrN_2O_4Se$
Formula weight	434.15
Crystal system	Monoclinic
Space group	C 1 2 / c 1
a(Å)	27.179(2)
b(Å)	7.5043(5)
c(Å)	17.8594(15)
α(deg)	90
β(deg)	119.584(11)
γ(deg)	90
V(Å ³)	3167.7(4)
Ζ	8
D(calcd)(Mg/m ³)	1.821
Abs coeff(mm^{-1})	4.912
Obsd reflens [I<2\sigma]	9545
Final R(F) $[I < 2\sigma(I)]^{[a]}$	0.0429
wR(F ²) indices[I $\leq 2\sigma(I)$]	0.0822
Data/restrain/parameters	3225 / 6 / 203
Goodness of fit on F ²	0.845

Table S1. Crystal Data and Structure Refinement for 19

^[a]Definitions: $R(F_o) = ||F_o| - |F_c||/|F_o|$ and $wR(F_o^2) = \{\Sigma[w(F_o^2 - F_c^2)^2]/[w(F_c^2)^2\}^{1/2}$.

Figure S53. Absorption spectra of 15 and 20 in dilute $CHCl_3$ solution (10⁻⁵ M).

Figure S54. Photoluminescence spectra of **15** and **20** in dilute CHCl₃ solution (10^{-5} M) excited at 270 nm.

	λ _{abs} Absorption (nm)	$ \begin{array}{c} \lambda_{exc} \\ \epsilon \ (M^{-1}cm^{-1}) \end{array} \end{array} $	Excitation (nm)	${\Phi}$
15	270	99930	270	0.006
	360	26040		
	427	23020		
16	270	99360	270	0.02
	360	38730		
	427	28590		
20	257	81610	270	0.002
	400	24780		

Table S2. UV-Vis and emission data for compounds 15, 16 and 20.

 λ_{abs} = Wavelength of absorption, λ_{exc} = Wavelength of excitation, ε = Molar extinction coefficient, Φ = Quantum yield calculated using 9-hydroxymethylanthracene as a standard.

References

- 1. L. K. A. Rahman and R. M. Scrowston, J. Chem. Soc. Perkin. Trans. I, 1984, 385-390.
- D. D. Perrin and W. L. F. Armarego, "Purification of Laboratory Chemicals", Pergamon Press, 4th Edition, 1996.
- 3. G. M. Sheldrick, *SHELXL-97*, Program for Crystal Structure Determination, University of Göttingen, Germany, 1997.
- 4. L. Pauling, in *The Nature of the Chemical Bond*, 3rd edn., Cornell University Press, Ithaca, New York, **1960**.

CheckCIF/PLATON report for compound 15

No syntax errors found. Please wait while processing <u>CIF dictionary</u> Interpreting this report

Datablock: 15

Bond precision:	C-C = 0.0066 A	Wavelength=1.54184	
Cell: a=	10.5321(8) b=10.6562(7)	c=14.6081(11)	
al	pha=99.386(6) beta=94.285(6)	gamma=111.122(7)	
Temperature: 29	5 K		
	Calculated	Reported	
Volume	1492.9(2)	1492.92(19)	
Space group	P -1	P -1	
Hall group	-P 1	?	
Moiety formula	C28 H20 N4 O4 Se2, 0.56 Cl3), 0.44(C Cl3), 0.44	ССН (СН)?	
Sum formula	C29 H21 Cl3 N4 O4 Se2	C29 H21 Cl3 N4 O4 Se2	2
Mr	753.89	753.77	
Dx,g cm-3	1.677	1.677	
Z	2	2	
Mu (mm-1)	5.930	5.928	
F000	748.0	748.0	
F000'	748.74		
h,k,lmax	13,13,18	13,13,18	
Nref	6315	6196	
Tmin, Tmax	0.124,0.202	0.502,1.000	
Tmin'	0.044		
Correction meth	nod= MULTI-SCAN		
Data completene	ess= 0.981 Theta(max):	= 77.080	
R(reflections)=	= 0.0592(5563) wR2(ref	lections)= 0.1673(6196)	
S = 1.045	Npar= 395		
The following A	ALERTS were generated. Each	ALERT has the format	
test-nam	ne_ALERT_alert-type_alert-le	evel.	
Click on the hy	perlinks for more details o	of the test.	
Q Alert leve	al B		
PLAT327 ALERT 2	B Check for Possibly Miss	ing H on sp3? Carbon	<c2s< td=""></c2s<>
Alert leve	el C		
PLAT341_ALERT_3	<u>C</u> Low Bond Precision on (C-C Bonds (x 1000) Ang	7
Alert leve	el G		
PLAT002 ALERT 2	G Number of Distance or Ar	ngle Restraints on AtSite	8
PLAT003 ALERT 2	<mark>G</mark> Number of Uiso or Uij Re	estrained Atom Sites	3
PLAT244_ALERT_4	G Low 'Solvent' Ueq as (Compared to Neighbors of	C1S
PLAT244 ALERT 4	<u>G</u> Low 'Solvent' Ueq as (Compared to Neighbors of	C2S
PLAT302_ALERT_4	G Note: Anion/Solvent Disc	order	100 Perc.
PLAT432 ALERT 2	G Short Inter XY Contac	CT CTS CSB CTS	3.04 Ang.
PLAT432_ALERT_2	G Snort Inter XY Contac	endered Lebels	3.00 Ang.
<u>ΓΙΑΙ/Ζυ_ΑΔΕΚΤ_4</u> ΡΙΑΤ790 ΔΙ.ΕΡΤ Δ	G Centre of Gravity not W	Januaru Labers ithin Unit Cell, Read #	2
(C H Cl3		-

```
PLAT790 ALERT 4 G Centre of Gravity not Within Unit Cell: Resd.
                                                                             3
              C C13
PLAT790 ALERT 4 G Centre of Gravity not Within Unit Cell: Resd.
                                                                 #
                                                                             4
              Η
PLAT793_ALERT_4_G The Model has Chirality at C7A
                                                                            R
                                                     (Verify) ....
PLAT860 ALERT 3 G Note: Number of Least-Squares Restraints .....
                                                                           30
   0 ALERT level A = Most likely a serious problem - resolve or explain
  1 ALERT level B = A potentially serious problem, consider carefully
  1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
  13 ALERT level G = General information/check it is not something unexpected
   0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   5 ALERT type 2 Indicator that the structure model may be wrong or deficient
   2 ALERT type 3 Indicator that the structure quality may be low
   8 ALERT type 4 Improvement, methodology, query or suggestion
```

0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

```
PLATON version of 24/03/2011; check.def file version of 16/03/2011
Datablock 15 - ellipsoid plot
```


Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC Test a new CIF entry

CheckCIF/PLATON report for compound 19

No syntax errors found. Please wait while processing

Dease wait while processing ... Datablock: 19 <u>CIF dictionary</u> <u>Interpreting this report</u>

Bond precision: C-C = 0.0069 AWavelength=0.71073 Cell: a=27.179(2)b=7.5043(5)c=17.8594(15) alpha=90 beta=119.584(11) gamma=90 Temperature: 295 K Calculated Reported Volume 3167.7(5) 3167.7(4) C 1 2/c 1 Space group C 2/c Hall group -C 2yc ? Moiety formula C14 H11 N2 O2 Se, 2(H2 O), Br C14 H11 N2 O2 Se, 2(H2 O), Br Sum formula C14 H15 Br N2 O4 Se C14 H15 Br N2 O4 Se 434.14 434.15 Mr Dx,g cm-3 1.821 1.821 7 8 8 Mu (mm-1) 4,912 4.912 F000 1712.0 1712.0 F000' 1709.82 h,k,lmax 33,9,22 33,9,22 3247 3225 Nref Tmin, Tmax 0.284,0.782 0.531,1.000 Tmin' 0.210 Correction method= MULTI-SCAN Data completeness= 0.993 Theta(max) = 26.370R(reflections) = 0.0429(1758)wR2(reflections) = 0.0902(3225) S = 0.845Npar= 203 The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level. Click on the hyperlinks for more details of the test. **Q**Alert level B PLAT417 ALERT 2 B Short Inter D-H..H-D H1W2 H2W2 1.84 Ang. Alert level C PLAT341 ALERT 3 C Low Bond Precision on C-C Bonds (x 1000) Ang .. 7 Alert level G PLAT002 ALERT 2 G Number of Distance or Angle Restraints on AtSite 6 PLAT720 ALERT 4 G Number of Unusual/Non-Standard Labels 4 PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2 H2 O PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints 6 0 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low

2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 24/03/2011; check.def file version of 16/03/2011 **Datablock 19 -** ellipsoid plot

Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC Test a new CIF entry

CheckCIF/PLATON report for compound 20

No syntax errors found. Please wait while processing

Datablock: 20

<u>CIF dictionary</u> Interpreting this report

Bond precisio	n:	C-C = C	0.0083 A	W	Javelength=1.54184
Cell: a	a=11.67	784(4)	b=14.9497(5)	c=18.271	15(6)
ā	alpha=0	56.074(3)	beta=78.162(3)	gamma=84	4.131(3)
Temperature: 2	295 K				
		Calculat	ed		Reported
Volume		2853.22(18)		2853.20(18)
Space group		P -1			P -1
Hall group		-P 1			?
Moiety formul	a	C26 H18	N4 O4 Se2, C H	C13	C26 H18 N4 O4 Se2, C H Cl3
Sum formula		C27 H19	Cl3 N4 O4 Se2		C27 H19 Cl3 N4 O4 Se2
Mr		727.73			727.73
Dx,g cm-3		1.694			1.694
Z		4			4
Mu (mm-1)		6.178			6.178
F000		1440.0			1440.0
F000'		1441.11			
h,k,lmax		14,18,23			14,18,23
Nref		12150			11936
Tmin,Tmax		0.306,0.	802		0.437,0.896
Tmin'		0.054			
Correction me	thod=	ANALYTIC	AL		
Data complete	ness=	0.982	Theta(max)	= 77.620	
R(reflections) = 0.0	560(936	6) wR2(ref	lections)= 0.1744(11936)
S = 1.046		Npar=	734		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C

PLAT094	ALERT	2	С	Ratio	of Maximur	m / Mini	imum Resi	dual Densit	су	2.92	
PLAT244	ALERT	4	С	Low	'Solvent'	Ueq as	Compared	to Neighbo	ors of	ClS	
PLAT244	ALERT	4	С	Low	'Solvent'	Ueq as	Compared	to Neighbo	ors of	C2S	
PLAT341	ALERT	3	С	Low Bo	ond Precis:	ion on	C-C Bond	s (x 1000)	Ang	8	
PLAT732	ALERT	1	С	Angle	Calc	109.5(2	2), Rep	109.50(9)		2.22	su-Ra
		CL	2	-C1S	-CL3	1.555	1.555	1.555	#	210	

●Alert level G

PLAT002	ALERT	2	G	Number of Distance or Angle Restraints on AtSite	16
PLAT072	ALERT	2	G	SHELXL First Parameter in WGHT Unusually Large.	0.12
PLAT154	ALERT	1	G	The su's on the Cell Angles are Equal (x 10000)	300 Deg.
PLAT720	ALERT	4	G	Number of Unusual/Non-Standard Labels	18
PLAT793	ALERT	4	G	The Model has Chirality at C7A (Verify)	S
PLAT793	ALERT	4	G	The Model has Chirality at C7B (Verify)	S
PLAT793	ALERT	4	G	The Model has Chirality at C7C (Verify)	S
PLAT793	ALERT	4	G	The Model has Chirality at C7D (Verify)	S
PLAT860	ALERT	3	G	Note: Number of Least-Squares Restraints	16

0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully

```
5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
9 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
3 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
7 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that <u>full publication checks</u> are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 24/03/2011; check.def file version of 16/03/2011 Datablock 20 - ellipsoid plot

Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC Test a new CIF entry

CHEM	IST	RY	_
A EUROPE	AN JO	OURN	AL

FULL PAPER

DOI: 10.1002/chem.200((will be filled in by the editorial staff))

Synthesis and Glutathione Peroxidase-Like Activities of Selenenamides

Vijay P. Singh,^[a] Harkesh B. Singh^{*[a]} and Ray J. Butcher^[b]

Dedication ((optional))

Abstract: The aromatic nucleophilic substitution (S_NAr) reactions of N-(2bromo-3- nitrobenzyl)aniline (18), N-(2-bromo-3-nitrobenzyl)-4methylaniline (19) and N-(2-bromo-3nitrobenzyl)-4-nitroaniline (20) with the in situ generated selenolate [nBuSeNa] afford N-(2-(butylselanyl)-3-nitrobenzyl)aniline N-(2-(21),(butylselanyl)-3-nitrobenzyl)-4methylaniline and N-(2-(22)(butylselanyl)-3-nitrobenzyl)-4nitroaniline (23), respectively. The bromination of 21 results in the

formation of cyclic selenenamides; 7nitro-2-phenyl-2,3dihydrobenzisoselenazole (27) and 2-

(4-bromophenyl)-7-nitro-2,3-

dihvdrobenzisoselenazole (28). The bromination of 22 affords selenenamides; 2-(4-methylphenyl)-7nitro-2,3-dihydrobenzisoselenazole (29) 2-(2-bromo-4-methylphenyl)-7and nitro-2,3-dihydrobenisoselenazole (30) alongwith some other products. The bromination reaction of 23, under identical conditions gave 2-(2-bromo-4nitrophenyl)-7-nitro-2,3dihydrobenisoselenazole (31). The oxidation reaction of 21-22 with H₂O₂ vielded cvclic seleninamides: 7-nitro-2phenyl-2,3-dihydrobenzisoselenazole selenium-oxide (33) and 2-(4methylphenyl)-7-nitro-2-phenyl-2,3dihydrobenzisoselenazole selenium-(34),oxide respectively. New

seleninamides. selenenamides/ stabilized by intramolecular secondary Se…O interaction, have been structurally characterized by single crystal X-ray diffraction studies and computational studies. In addition to the synthesis and characterization, the glutathione peroxidase-like (GPx) activities of selenenamides and seleninamides have been evaluated by the coupled reductase assay.

Keywords: GPx mimics \bullet heterocycles \bullet antioxidants \bullet $S_{N}Ar$ reactions \bullet selenium

has been reported by intramolecular homolytic substitution with a midyl radicals. $^{\left[4d,e\right] }$

Introduction

Ebselen (1, PZ 51, 2-phenyl-1,2-benzisoselenzol-3-(*2H*)-one), a heterocyclic compound containing a selenium—nitrogen bond, exhibits both anti-inflammatory activity *in vivo* and glutathione peroxidase (GPx)-like activity *in vitro* (Figure 1).^[1] It catalytically reduces the harmful peroxides by reduced glutathione (GSH) or other thiols mimicking the activity of GPx and protects the lipid membranes and other cellular components against oxidative damage.^[2] Due to wide applications of ebselen, several methods for its synthesis have been developed.^[3,4] In the most direct approach, 2-(chlorocarbonyl)phenyl selenenyl chloride obtained from 2,2'-diselenodibenzoic acid, is treated with aniline to afford ebselen.^[4b] The method developed by Engman and co-workers involves *ortho*-lithiation of benzanilide followed by selenium insertion and oxidative cyclization reactions.^[4c] A free radical synthesis of ebselen

- [a] V. P. Singh, Prof. H. B. Singh Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai-400 076 (India) Fax: (+91)-022-2572-3480 E-mail: chhbsia@chem.iitb.ac.in
- Prof. R. J. Butcher
 Department of Chemistry
 Howard University
 Washington DC 20059 (USA)

Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author.

Figure 1. Ebselen 1 and its analogues 2-7.

Very recently, an efficient copper-catalyzed method has been reported for the biologically active ebselen.^[5] The reactivity of ebselen could be interpolated by changing the basic structure based on substituent effects and isosteric replacements. To understand the effects of various substituents on the GPx activity of ebselen, several ebselen analogues have been reported.^[6b,d,f] Novel pyridine-fused tocopherol, selenium containing antioxidant and antiinflammatory agent **2** has been reported.^[7] Selenenamide **3**, without an aromatic substituent, has also been developed as a model compound for GPx.^[8] Another example of selenenamides such as selenenamide **4** containing a Se–N bond in the seven-membered ring has been reported.^[9] The internalization of a subsidiary tetrahedral carbon (CR₂) into the heterocycle led to compounds **5**,^[10] introduction of an ortho-nitro group in 2-phenyl-7-nitro-1,2benzisoselenazol-(2H)-3-one (8) enhances the GPx-like activity (Figure 2).^[13] The synthesis of such ebselen analogues 9,^[14a] $10^{[14b]}$ and $11^{[14c]}$ has been accomplished by *ortho*-lithiation, selenium insertion followed by oxidation. It has been revealed that the presence of intramolecular secondary Se. O/N interactions enhances the reaction of the Se-N bond towards cleavage by thiols.^[14c] The cyclic selenenamides, with CH₂ group as part of the five-membered heterocyclic ring, have not been studied in detail. In contrast to ebselen, the isolation of such cyclic Se-N selenenamides is difficult due to the flexible $-CH_2-NH-$ bond with a sp³ hybridized carbon atom. To date, only a camphor-derived cyclic selenenamide 12, that showed good GPx-like activity, has been reported by Back and co-workers (Figure 2).^[15] Here, the cyclization, probably, is possible due to rigid conformation of the substrate. Furthermore, an attempted cyclization of 2-(bromoseleno)bromomethylbenzene with methylamine did not lead to the formation of expected selenenamide **13**.^[6d]

Figure 2. Selenenamides 8-12.

Recently, we have reported the synthesis of related Se–N heterocycles with imine (–CH=N–) and nitro (–NO₂) groups *ortho* to the selenium atom.^[16] These heterocycles are closely related with ebselen and exhibit excellent GPx-like activity. Now we have isolated a new range of Se–N heterocycles with CH₂ group present in the five-membered ring. It occured to us that such ebselen analogues might display interesting GPx-like activity due to a weaker Se–N bond. In this paper, we present our findings on the structure-property correlation as well as GPx-like activity of selenenamides/seleninamides with CH₂ group and compare with the analogues having a C=O group.

Results and Discussion

Precursor *N*-(2-bromo-3-nitrobenzylimino)benzene (**15**) was prepared from 2-bromo-3- nitrobenzaldehyde (**14**).¹⁶ *N*-(2-Bromo-3nitrobenzylimino)-4-nitroaniline (**16**) and *N*-(2- bromo-3nitrobenzylimino)-4-methylaniline (**17**) were synthesized in a similar fashion by treating **14** with *p*-nitroaniline and *p*-toluidine, respectively (Scheme 1). Further treatment of **15-17** with NaBH₄ in ethanol afforded the expected reduced products **18-20** in good yields.

Scheme 1. i) aniline, glacial acetic acid, r. t.; ii) *p*-toluidine, glacial acetic acid, r. t.; iii) *p*- nitroaniline, glacial acetic acid, r. t.; iv) NaBH₄, ethanol, reflux, 5 h.

Unsymmetrical selenides 21-23, the required intermediates for the synthesis of selenenamides 27-31, were synthesized by the aromatic nucleophilic substitution (S_NAr) reactions of 18-20 with the in situ prepared *n*-BuSeNa (Scheme 2). Triethylamine (Et₃N) was added to a CHCl₃ solution of **21** after the complete bromination. The progress of the reaction was monitored by thin layer chromatography (TLC). After the usual work-up, selenenamides 27 and 28 were obtained by the silica gel column chromatographic purification with petroleum ether/ethyl acetate. Formation of 28 was accompanied with Nphenyl ring bromination at the para-position. To prevent the Nphenyl ring bromination at the para-position and also to see the substituents effect, when selenide 22 was treated with Br₂/Et₃N, the reaction mixture after the work-up and rotary evaporation afforded a black mixture of compounds. The crude mixture was chromatographed on the silca gel to afford selenenamides 29-30, selenide **32** alongwith a selenospirocyclic product,^[17] respectively. A similar bromination reaction of 23 afforded selenenamide 31 in very low yield alongwith a yellow precipitate which could not be characterized.

Scheme 2. i) [*n*-BuSeNa], C₂H₅OH, 0 $^{\rm o}$ C, 3 h; ii) Br₂/CHCl₃, Et₃N, 0 $^{\rm o}$ C, 2 h.

The oxidation of selenides **21-22** with an excess of H_2O_2 afforded cyclic seleninamides **33-34** (Scheme 3).

Scheme 3. i) H₂O₂ (6 equiv), CHCl₃, at 55-60 °C, 40 min.

The reaction of selenides **21-22** with H_2O_2 , presumably, leads to selenoxides **35-36** which undergo subsequent [2,3]-sigmatropic rearrangement to give selenenic acids **37-38** (Scheme 4). Further, oxidation of **37-38** to seleninic acids **39-40** followed by condensation yields cyclic seleninamides **33-34**.

Scheme 4. Plausible mechanism for the formation of seleninamides **33** and **34**.

In order to delineate the structure-GPx-like activity correlations of the newly synthesized cyclic selenenamides **27-31**, related ebselen analogue **8** has also been prepared by a modified procedure.^[13a] In our modification, 2-(butylselanyl)-3-nitro-*N*-phenylbenzamide (**42**), obtained by the reaction of 2-bromo-3-nitro-*N*-phenylbenzamide (**41**)^[18] with the *in situ* generated *n*BuSeNa, has been used instead of 2-(methylselanyl)-3-nitro-*N*-phenylbenzamide (Figure 3).^[13a] The reaction of **42** with Br₂/Et₃N in CHCl₃ solvent - gave **8** in much better yield.

Figure 3. Precursors **41-42** and *ortho*-nitro coordinating ebselen analogue **43**.

In summary, a facile synthesis of cyclic selenenamides and seleninamides incorporating a CH_2 group in the five-membered heterocyclic ring have been achieved. The intramolecular coordination of the 6-nitro group to the selenium atom plays a crucial role in the cyclization process.

Spectroscopic Studies

The ¹H NMR spectroscopic studies of seleninamides **33** and **34** were performed in DMSO-d₆ (see Figures S92 and S99 of the Supporting Information). Nonequivalent signals for the benzylic protons of **33** {5.19 (d, 1H) and 5.26 (d, 1H) ppm} and **34** {5.16 (d, 1H) and 5.24 (d, 1H) ppm} were observed as two doublets with vicinal coupling (J = 16.0 Hz). The doublets are due the presence of the chiral selenium centres in optically active **33** and **34**.

⁷⁷Se NMR spectroscopy is a very useful technique for probing the electronic environment around the selenium atom.^[6,8a,14-15,19a] The ⁷⁷Se NMR spectra of selenenamides **27-31** exhibit signals at 974, 977, 987, 1060 and 1070 ppm (Table 1). These chemical shifts are slightly downfield as compared to **1** (961 ppm),^[6b] **8** (953 ppm),^[13a] **3** (819 ppm),^[8a] **7a** (693 ppm)^[12b] and **12** (885 ppm).^[15] As expected for seleninamides **33** and **34** with selenium (IV) showed higher downfield shifted as compared to selenenamides **27-31**.

We performed density functional (DFT) calculations for organoselenium compounds to see the effect of CH₂ group in place of CO group in the five-membered heterocycle ring on the ⁷⁷Se NMR chemical shifts and compare the calculated values with the experimental data. The geometries were fully optimized at the B3LYP/6-31+G(d) basis sets. The NMR calculations were performed at the B3LYP/6-311+G(d,p) level on the B3LYP/6-31+G(d)-level-optimized geometries by using the gauge-including atomic orbital (GIAO) method.^[20] As observed from the experimental data, the calculated ⁷⁷Se NMR chemical shifts for 27-31 are downfield shifted as compared to that observed for 1 (Table 1). This difference in the chemical shifts is probably due to the presence of intramolecular secondary Se-O interaction with orthonitro group. It is well established that the presence of the $\mathrm{Se} \cdots \mathrm{N}^{[6a,19b]}$ and Se...O^[6b,e,21,22] intramolecular secondary interactions leads to a downfield shift of the ⁷⁷Se NMR chemical shifts. Recently, we have demonstrated that the presence of the Se. O interactions in selenenium cations^[16] and selenenate esters^[22] leads to downfield shift of the 77Se NMR chemical shifts (vide infra).

Table 1. GIAO ⁷⁷Se NMR chemical shifts calculated in gas phase at the B3LYP/6-311+G(d,p) level on the B3LYP/6-31+G(d)-level-optimized geometries for compounds 1, 8, 27-31 and 33-34 alongwith the experimental values.

Entry	⁷⁷ Se NMR ^[a]	⁷⁷ Se NMR ^[a]	Solvents
	Calcd	Exptl	
1	960	961 ^[6b]	CDCl ₃
8	886	953 ^[13a]	CDCI ₃
27	1045	974	CDCl ₃
28	1051	977	CDCl ₃
29	1037	987	CDCl ₃
30	1025	1060	CDCl ₃
31	1031	1070	CDCl ₃
33	1142	1182	DMSO-d ₆
34	1139	1174	DMSO-d ₆

[a] The values are referenced with respect to Me₂Se (δ = 0 ppm).

X-ray Crystallographic Studies

The molecular structures of **21**, **29-30** and **32-33** were unambiguously confirmed by single crystal X-ray diffraction studies.

Molecular Structures of 21 and 32

The molecular structure of **21** (Figure 4) indicates a V-shaped geometry around the selenium atom with a bond angle C1-Se1-C14 of $100.00(11)^{\circ}$. The Se \cdots O1 distance [3.295(9) Å] is slightly less than the sum of the van der Waals radii (3.45 Å), indicating a weak secondary Se \cdots O interaction.^[23] The geometry of **32** around the selenium atom is quite similar to that observed for **21** with a bond angle C1-Se1-C15A of $100.3(3)^{\circ}$ (Figure 5). The Se \cdots O2 distance [3.212(2) Å] is also similar to that observed for **21**.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Figure 4. Molecular structure of **21**. Thermal ellipsoids are set at 50 % probability. Significant bond lengths [Å] and angles [°]: Se···O1 3.295(9); Se–C1 1.924(2); Se–C14 1.978(3); O1···Se–C7 115.93(6); C1–Se–C14 100.00(11).

Figure 5. Molecular structure of **32**. Thermal ellipsoids are set at 50 % probability. Significant bond lengths [Å] and angles [°]: Se···O2 3.212(2); Se–C11.926(3); Se–C15B 1.892(10); C1–Se–C14 100.3(3).

Molecular Structures of 29 and 30

The coordination geometry of **29** around the selenium atom is nearly T-shaped with a bond angle O1…Se—N2 of 156.76(11)° (Figure 6). The Se—N2 distance [1.891(3) Å] is found to be similar to that reported for **1** [1.896(3) Å] and **8** [1.896(3)].^[24] The Se…O1 distance [2.591(3) Å] is slightly greater than that reported for **8** [2.573(3) Å],^[24b] which indicates a weak intramolecular secondary Se…O interaction in **29**. The geometry of **30** around the selenium atom is quite similar to that observed for **29** with a bond angle O1…Se—N2 of 155.61(10)° (Figure 7). The Se—N2 distance [1.905(3) Å] is slightly greater than that observed for **30**, suggesting a weaker intramolecular secondary Se…O interaction.

Figure 6. Molecular structure of 29. Thermal ellipsoids are set at 50 % probability. Significant bond lengths [Å] and angles [°]: Se \cdots O1

2.591(3); Se-N2 1.891(3); Se-C1 1.861(3); O1…Se-N2 156.76(11); C1-Se-N2 85.69(14); C7 -N2-Se 114.0(2).

Figure 7. Molecular structure of **30**. Thermal ellipsoids are set at 50 % probability. Significant bond lengths [Å] and angles [°]: Se \cdots O1 2.686(3); Se-N2 1.905(3); Se-C1 1.880(3); O1 \cdots Se-N2 155.61(10); C1-Se-N2 88.11(12); C7 -N2-Se 107.00(19).

Molecular Structure of 33

The molecular structure of **33** is shown in Figure 8. The geometry around the selenium shows a "see-saw" type with the bond angle N2–Se···O2 of 152.31(16)°. This angle is quite similar to that reported for 2-(4-bromophenyl)-7-nitro-1,2-benzisoselenazol-(*2H*)-3-one selenium oxide (**43**) [151.74(0)°].^[16] The Se–N distance [1.867(4) Å] is slightly smaller than that observed for **43** [1.888(8) Å]. The Se···O2 distance (2.742(5) Å) is close to that observed for **43** (2.749 Å), indicating a weak secondary Se···O interaction.

Figure 8. Molecular structure of **33**. Thermal ellipsoids are set at 50 % probability. Significant bond lengths [Å] and angles [°]: Se···O2 2.742(5); Se–O1 1.645(4); Se–N2 1.867(4); Se–C1 1.938(6); N2–Se–C1 84.05(21); N2–Se···O2 152.31(16); N2–Se–O1 106.26(20); C1–Se–O1 104.33(21).

Computational Studies

Effect of \mbox{CH}_2 group in place of CO group in the five-membered heterocycle

The reactivity of the Se–N bond in the ebselen analogues plays a crucial role in the GPx-like activity. The cleavage of the Se–N bond by the thiol leads to the formation of the Se–S bond.^[6b,14c,25] Further attack of another thiol on the Se–S bond results in the formation of reactive selenol. The reactivity of the selenosulfide intermediate is tuned by intramolecular secondary Se…O interactions.^[6,25] To find out the effect of the incorporation of CH₂ in the place of C=O and intramolecular secondary Se…O interactions on the nature of the Se–N bond in selenenamides **27-31** and seleninamides **33-34**, DFT calculations have been carried out (for the optimized geometries and coordinates see Tables S1, S3, S5, S7 and S9 of the Supporting Information). The data suggest that incorporation of the CH₂ group

in the place of C=O in compounds **27-31** leads to an increase in the Se–N and Se…O distances (Table 2). In line with this observation, the Se–N distances in **1** (1.880 Å) and **8** (1.908 Å) are shorter when compared with the Se–N distances in **27-31** and **33-34**.

Table 2. The theoretical data for 1, 8, 27-31 and 33-34 obtained by DFT calculations at the B3LYP/6-311+G(d,p) level. The NBO analysis and NICS (0) values were calculated at the B3LYP/6-311+G(d,p) level on the B3LYP/6-31+G(d)-level-optimized geometries.

Ent ry	r _{Se−N} [Á] ^[a]	r _{Se⋯O} [Á́] ^[a]	E _{se⊶o} (kcal/m ol)	$q_{ m Se}$	NICS (0) ppm ^{[[b}]
1	1.880(1.896) ^{[2} a]			+0.626	-7.14
8	1.908(1.896) ^{[2}	2.563(2.57 3)	13.48	+0.771	-5.61
27	1.947	2.603	11.54	+0.706	-2.78
28	1.949	2.585	12.41	+0.709	-2.83
29	1.946(1.891)	2.611(2.59 1)	11.22	+0.704	-2.88
30	1.948(1.905)	2.598(2.68 6)	11.68	+0.711	-2.78
31	1.953	2.499	22.72	+0.778	-1.55
33	1.905(1.867)	2.762(2.74 2)	05.62	+1.576	-1.84
34	1.903	2.65	05.54	+1.575	-1.91

[a] The experimental values are given in parentheses. [b] NICS (0) values are calculated at the centre of the five-membered heterocyclic ring.

Second-order perturbation energy $(E_{\text{Se}\cdots 0})$ between the selenium and oxygen atoms was calculated at the B3LYP/6-311+G(d,p) level on the B3LYP/6-31+G(d)-level-optimized geometries by using the natural bond orbital (NBO) calculation.^[26] The $E_{\text{Se}\cdots O}$ due to the $n_0 \rightarrow \sigma^*_{Se-N}$ orbital interaction was obtained by the NBO analysis. These studies reveal that the replacement of C=O with CH₂ group in 27-30 and 33-34, the E_{SemO} decreased slightly as compared with that of 8 ($E_{\text{Se}\cdots\text{O}}$ = 13.48 kcal/mol) suggesting a weaker Se \cdots O interaction (Table 2). However, the $E_{\text{Se}\cdots O}$ (22.72 kcal/mol) for **31** is found to be higher than 8 and other selenenamides 27-30. This is due to the presence of -NO₂ and -Br groups at the N-phenyl ring. Also the interaction energies for **33** ($E_{\text{Se} \cdots \text{O}} = 05.61$ kcal/mol) and **34** $(E_{\text{Se}\cdots0} = 05.50 \text{ kcal/mol})$ are much lower as compared with that of 27-31, indicating relatively weaker Se. O interactions in 33 and 34. The NBO analysis further shows that weaker Se...O interactions and the presence of the CH₂ group lead to an elongation of the Se-N bond length.

Further, distinct bond critical point (*bcp*) at the Se…O interaction correlates with the strength of the interacting atoms. The presence of *bcp* was identified in compounds **8**, **27-31** and **33-34** using Bader's theory of atoms in molecules (AIM)^[27] with AIM2000 (Table 3).^[28] The values of electron density (ρ) obtained are much smaller than a covalent bond (e.g., $\rho_{C-C} = 0.24 \text{ ea}_0^{-3}$) but larger than those for the practical boundary of molecules ($\rho = 0.001$

ea₀⁻³).^[29] The values of electron density $\rho_{\text{Se}\cdots \text{O}}$ obtained for the Se-O interaction for compounds 8, 27-31 and 33-34 range from 0.022 to 0.031 ea_0^{-3} (See Figure S124 for AIM pictures in the Supporting Information). The trend that ρ_{Se} decreases from 27-30 to **33-34** is in full accordance with the trend of $E_{\text{Se}\cdots\text{O}}$ obtained by the NBO analysis and the Se-O distance by quantum chemical calculation (Table 2). The Laplacian $(\nabla^2 \rho_{\text{Se}\cdots O})$ represents the curvature of the electron density in 3-D space at the bcp of the Se…O interaction. The values of $\nabla^2\rho_{Se…O}$ obtained for the Se…O interaction for 8, 27-31 and 33-34 are all positive, suggesting a dominant electrostatic character. However, the total electron energy density $(H_{Se...O})$ is more reliable to understand the nature of secondary Se···O interactions instead of the $\nabla^2 \rho_{\text{Se···O}}$. According to the H_{SemO} values obtained for 27-30 and 33-34 are positive, which strongly suggests that the Se...O interactions are weak. It has been observed that the negative value of $H_{\text{Se}\cdots0}$ for **31** indicates increase in the strength of the Se...O interaction. The values obtained for 33-34 are found to be more positive as compared to 8 and 27-30. It is evident that the values of $H_{\text{Se}\cdots\text{O}}$ becomes more positive with increase in the Se…O atomic distance (i.e., weakening of the Se…O interaction). A similar observation of the bcp, positive values of $\nabla^2 \rho_{\text{Se}\cdots\text{O}}$ and total energy density $H_{\text{Se}\cdots\text{O}}$ for the Se \cdots O interactions has been obtained by Tomoda and co-workers.^[21a]

Table 3. Summary of properties of electron density at the bond critical point (*bcp*).

Entry	${\pmb ho_{{\sf Se}^{\cdot {\sf O}}}}^{[{\sf a}]}$	$\nabla^2 \rho_{\text{Se} \cdot O}{}^{[b]}$	H _{Se^{··}O} ^[c]
	(ea ₀ -3)	(ea ₀ ⁻⁵)	(ea₀ ⁻⁴)
8	0.031	0.091	+0.0002
27	0.028	0.089	+0.0004
28	0.029	0.092	+0.0003
29	0.028	0.088	+0.0004
30	0.029	0.090	+0.0004
31	0.038	0.116	-0.0008
33	0.022	0.068	+0.0008
34	0.022	0.068	+0.0008

[a] The electron density at the *bcp*. [b] The Laplacian of the electron density at the *bcp*. [c] The total energy density at the *bcp*.

The NBO charge calculation shows that the Se…O interaction leads to an increased higher positive charge on the selenium in **8** (+0.771) than ebselen (Table 2). However, there is a slight decrease in the positive charge on the selenium atom of compounds **27** (+0.706), **28** (+0.709), **29** (+0.704) and **30** (+0.711) as compared to that of **8** (+0.771). It should be noted that the high positive charge on selenium in **8** can be due to the delocalization of the carbonyl double bond in the five-membered heterocycle as well as *ortho*coordinating nitro group. The high positive charge on the selenium atom in compound **31** (+0.778) is due to the presence of the electron withdrawing groups. As expected the NBO charges on the selenium atom in compounds **33** (+1.576) and **34** (+1.575), which contain selenium (IV), are found to be higher as compared to **1**, **8** and **27-31**.

Nucleus-Independent Chemical Shifts (NICS) values for 1 (-7.14 ppm) is more negative than that observed for 8 (-5.61 ppm) (Table 2). This significant loss in the aromatic character in the fivemembered ring is due to the presence of the Se…O interaction and the conjugated carbonyl group. The Se…O interaction enhances the electrophilicty at the selenium atom. This decrease in the aromatic character from 27 (-2.78 ppm), 28 (-2.83 ppm), 29 (-2.88 ppm) and 30 (-2.78 ppm), 31 (-1.55 ppm), 33 (-1.84 ppm) and 34 (-1.91 ppm) is due the absence of carbonyl group (Table 2). The significant decrease in the NICS(0) values of **33-34** is mainly due to high positive charge on the selenium atom. Thus, the introduction of CH₂ group in the five-membered heterocycle leads to a decrease the aromaticity. In our earlier report,^[22] a similar behaviour for the carbonyl *versus* CH₂ group has been observed in the cases of selenenate esters.

The results obtained by DFT calculations have shown that ⁷⁷Se NMR chemical shifts are shifted downfield in selenenamides **27-31**, with CH₂ group as part of the heterocycle, as compared to that observed for analogues **1** and **8** with C=O. Although the experimental Se—N bond distances in **1**, **8**, **29**, **30** and **33** are in the same range, the calculated distances of **29**, **30** and **33** are much longer (i.e. lengthening of the Se—N bond) than that observed for **1** and **8**. These studies suggest that the introduction of CH₂ group in the place of C=O leads to weakening of the Se—N bond and a decrease in the positive charge on the selenium atom as well as the aromaticity of the heterocycle.

Glutathione Peroxidase-Like Activity

The catalytic reduction of H₂O₂ using reduced glutathione (GSH) as co-substrate in the presence and absence of catalysts; 1, 8, 27-30 and **33-34** was studied (Table 4). The initial rates (v_0) for the reduction were determined by the coupled reductase assay from a linear fit spanning the first 5-10 % of the reaction by following the oxidation of reduced nicotinamide adenine dinucleotide (NADPH) at 340 nm in phosphate buffer. Interestingly, it was found that compounds 29 $(411 \pm 1 \ \mu M.min^{-1})$, **33** $(425 \pm 1 \ \mu M.min^{-1})$ and **34** $(506 \pm 4 \ \mu M.min^{-1})$ μ M.min⁻¹) exhibited much higher activities than the carbonyl group based analogues 1 (133 ± 1 μ M.min⁻¹) and 8 (221 ± 2 μ M.min⁻¹). The GPx-like activity of 1 was found to be lower than 27-30, which is due the absence of ortho-nitro group in 1. The selenenyl sulfide derived from 1 has been shown to undergo thiol-exchange reactions due to the presence of a strong Se-O interaction.^[6] The strong Se...O interactions in selenosulfides hamper the generation of the reactive species selenol. Compound 8 showed nearly two times more activity than 1. This enhancement in the GPx-like activity of 8 was due to the presence of an ortho-nitro group to the selenium.^[13b] The GPx-like activity of 28 (204 \pm 3 μ M.min⁻¹) was found to be higher than 27 (172 \pm 5 μ M.min⁻¹) due to the presence of *para*substituent at the N-phenyl ring. Similarly, selenenamide 29 showed better activity with para-tolyl group at the heterocyclic N-atom than other selenenamides 8, 27-28 and 30 (255 \pm 6 μ M.min⁻¹). The activity of 29 decreased to nearly half with additional bromo substituent at the ortho-position to the N-phenyl ring. The high GPxlike activities of seleninamides 33 and 34 are probably due to weak secondary Se...O interactions, lengthening of the Se-N bond and high positive charge on the selenium atom. Related ebselen analogue $43^{[16]}$ also showed good activity (472.7 ± 3.5 μ M.min⁻¹). In our earlier report,^[22] it has been observed that the seleninate esters exhibited much higher activity than selenenate esters. The present study further suggests that the seleninamides 33-34 are even better catalysts than their corresponding selenenamides 27-30. Similarly, the para-substituted selenamides 28 and 29 are found to be better catalysts.

Table 4. Initial rates, v_0 (µM.min⁻¹) for the reduction of H_2O_2 by glutathione (GSH) in the presence of ebselen 1, 8, 27-30 and 33-34.

Entry	v₀(µM.min⁻ ¹) ^[a]	Entry	$\nu_0(\mu M.min^{-1})^{[a]}$
Control ^[b,c]	31 ± 2	29	411 ± 1
1	133 ± 1	30	255 ± 6
8	221 ± 2	33	425 ± 1
27	172 ± 5	34	506 ± 4
28	204 ± 3	43	$472.7\pm3.5^{\left[d\right]}$

[a] Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with ethylenediaminetetraacetate (EDTA): 1 mM; GSH: 2 mM; NADPH: 0.4 mM; glutathione reductase (GR): 1.3 unit/ml; GPx samples: 80 μ M; H₂O₂ (1.6 mM). [b] The control values were obtained from the reduction of H₂O₂ by GSH in absence of GPx samples. [c] All these values were triplicated for initial 10 sec and average values were taken with standard deviation. [d] See Ref. [16].

Determination of the Catalytic Parameters

To further understand the catalytic behavior of compounds 29 and 33 with good catalytic activities, detailed kinetic experiments have been carried out. The Lineweaver-Burk (double-reciprocal) plots for 1, 29 and 33 (see Tables S28-33 and Figures S125-130 of the Supporting Information) were obtained by plotting the reciprocal of initial rate $(1/v_0)$ against the reciprocal of substrate concentration (1/[substrate]) and used for the determination of the catalytic parameters. The catalytic parameters, such as maximum velocity (V_{max}) , Michaelis constant (K_{M}) , catalytic constant (k_{cat}) , and catalytic efficiency (η) were obtained for the reduction of H₂O₂ in the presence of compounds 1, 29 and 33 (Table 5). It is worth mentioning here that the $K_{\rm M}$ values for 29 (2.05 mM) and 33 (0.93 mM) were found to be lower than those obtained for ebselen 1 (14.47 mM) when GSH is variable, indicating that the thiol exchange reactions significantly increase the $K_{\rm M}$ values. The poor catalytic activity of ebselen has been ascribed to the thiol exchange reactions in the selenenyl sulfide due to the presence of strong Se...O interaction.^[6a-c] The catalytic efficiencies of **29** and **33** were determined to be 3.83, 3.48 mM⁻¹ min⁻¹ and 6.74, 8.34 mM⁻¹ min⁻¹ respectively, whereas the catalytic efficiency of 1 was only 2.21, 0.61 mM⁻¹ min⁻¹ when both H₂O₂ and GSH variable. The catalytic efficiency of **33** is nearly ~2 times higher than that observed for **29**. Higher catalytic efficiency of 33 as compared with 29 suggests that 33 is found to be more effective GPx mimetic than that of 29. That may be due to fast reactions in the presence of thiol and peroxide. Moreover, in contrast to H2O2, typical saturation kinetics was observed at higher concentrations of GSH.

Table 5. Effect of H ₂ O ₂ and GSH concentrations on the maximum
velocity (V_{max}), Michaelis constant (K_{M}), catalytic constant (k_{cat}), and
catalytic efficiency (η) for catalysts 1 , 29 and 33 .

Entry	V _{max} (μM min⁻¹)	К _м (mM)	k _{cat} (min⁻ ¹)	η (mM ⁻¹ min ⁻¹)
Catalyst 1				
H ₂ O ₂ (variable) ^[a]	228.31	1.29	2.85	2.21
GSH (variable) ^[b]	709.22	14.47	8.86	0.61
Catalyst 29				
H ₂ O ₂ (variable) ^[a]	444.44	1.45	5.55	3.83
GSH (variable) ^[b]	571.43	2.05	7.14	3.48
Catalyst 33				
H ₂ O ₂ (variable) ^[a]	609.75	1.13	7.62	6.74
GSH (variable) ^[b]	621.12	0.93	7.46	8.34

[a] Assay conditions: Phosphate buffer (100 mM), pH 7.5; GSH: 2 mM; NADPH: 0.4 mM; EDTA: 1 mM; GR: 1 unit/ml; H₂O₂ (variable) and test compound: 80 μ M. [b] Assay conditions: Phosphate buffer (100 mM), pH 7.5; GSH (variable), NADPH: 0.4 mM; EDTA: 1 mM; GR: 1 unit/ml; H₂O₂: 1.6 mM and test compound: 80 μ M. For each value atleast two readings were taken

Consumption of H_2O_2 by GSH in the presence of catalysts 29 and 33

In order to prove that compounds **29** and **33** behaved as catalysts, kinetic reactions were followed for till the completion of the reactions (maximum 10000 sec). Control experiments were carried out in the presence of H_2O_2 and GSH. A combination of catalysts (**29/33**), GSH and H_2O_2 was taken in a cuvette [containing 100 mM phosphate buffer pH 7.5, EDTA, NADPH and GR] and the decrease in the absorbance of NADPH was measured. A graph for the consumption for H_2O_2 versus time was plotted from the data (obtained from Tables S34-36 of the Supporting Information), upto 65 % and 60 % consumptions of H_2O_2 were observed after 70 min and 166.66 min for catalysts **33** and **29**, respectively (Figure 9). This observation further shows that compound **33** is better catalyst than **29**.

Figure 9. Catalytic reduction of H_2O_2 by GSH in the presence and absence of selenium catalyst. The consumption of H_2O_2 was followed by micromoles of NADPH utilized per min: a) control i.e. in the absence of any catalyst; b) **29**+GSH+H_2O_2; c) **33**+GSH+H_2O_2. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5; with EDTA: 1 mM; GSH: 0.25 mM; NADPH: 0.40 mM; GR: 1.3 unit/ml; H_2O_2 : 0.20 mM and selenium catalyst: 10 μ M.

In summary, a structure-activity correlation reavels that selenenamides 27-31 and seleninamides 33-34 with CH_2 group are found to be better GPx mimics as compared to 1 and 8 with C=O. It has also been shown that 28 and 29 with para-substituents are nearly 1.5 and 3 times, respectively more active than 1. On the other hand, as expected seleninamides 33 and 34 are significantly more active than their corresponding selenenamides 27 and 29. To support the observations based on initial rates for selenenamides 27 and seleninamides 29 with CH_2 group, further detailed kinetic studies using various concentrations of thiol and hydrogen peroxide indicate that compounds 27 and 29 are found to be more efficient catalysts than 1.

Catalytic mechanism for catalyst 33

To identify the intermediates involved in the catalytic mechanism of seleninamide 33 with promising GPx-like activity, the ⁷⁷Se NMR spectroscopy was carried out (Scheme 5). When **33** ($\delta = 1182$ ppm) was treated with PhSH (1 equiv) in DMSO-d₆, a new ⁷⁷Se NMR signal was observed at $\delta = 973$ ppm (see Figures S131-132 of the Supporting Information). The signal observed at $\delta = 973$ ppm can be assigned to selenenamide 27. The identity of 27 was further established by its independent synthesis and complete characterization (see the experimental section). Upon addition of one more equiv of PhSH to the above mixture, both the signals at 1182 and 973 ppm completely disappeared and new signals were observed at 514 and 424 ppm (see Figures S133-136 of the Supporting Information). The ⁷⁷Se NMR signals at 514 and 424 ppm can be assigned to the corresponding selenosulfide 44 and diselenide 45, respectively. The ⁷⁷Se NMR signals observed at 514 and 424 ppm were further confirmed by the addition of 2 equiv PhSH to a solution of 27 in CDCl₃ (see Figure S137 of the Supporting Information). A similar observation has been made by Back and coworkers for the related selenenamide 12 which follows a different catalytic mechanism.^[15] In the presence of more thiol, selenosulfide 44 was converted to disulfide (PhSSPh) and selenol 46 (Cycle A). A ⁷⁷Se NMR signal for 46 was not observed in the catalytic cycle. Compound 46 probably oxidizes to selenenic acid 37. Selenenic acid 37, in turn; reacted rapidly with PhSH to regenerate 44 back. In the catalytic cycle, selenosulfide 44 disproportionates to the corresponding diselenide 45. In excess of thiol, diselenide 45 was converted to 46 (Cycle B). Further oxidation of the diselenide 45 regenerates the selenosulfide 44 followed by thiolysis of 37 (Cycle C). In this catalytic cycle, seleninamide 33 was reduced to 27 which is the procatalyst and rapidly gets depleted in the presence of PhSH to give 44 and 45. The observation of diselenide 45 is in contrast to the mechanism reported by Back and co-workers for selenenamide **12**.^[15]

Scheme 5. Proposed catalytic cycle for the reduction of H_2O_2 by PhSH in the presence of **33**.

Conclusion

In conclusion, an efficient methodology has been developed for the synthesis of new selenenamides incorporating CH_2 moiety in the five-membered heterocyclic ring. The facile synthesis of selenenamides **27-31** and seleninamides **33-34** is due to the presence of *ortho*-nitro group to the selenium atom. Theoretical investigations suggest that the replacement of C=O with CH_2 present in the five-membered heterocycles leads to activate the Se–N bond. It also decreases the positive charge on the selenium atom. It was observed that the selenium centre is more deshielded in the heterocycles with CH_2 group which may be due to weak intramolecular secondary Se…O interaction. Selenenamide **29** and seleninamide **33-34** are exhibited excellent GPx-like activity.

Experimental Section

2-Bromo-3-nitrobenzoic acid^[30a] and 2-bromo-3-nitrobenzaldehyde^[30b] were prepared by the reported procedures. Selenium powder and 3nitrophthalic acid used were purchased from Sigma Aldrich. All the reactions were performed under nitrogen or argon atmosphere by modified Schlenk techniques and monitored by using TLC from time to time. Silica gel of 100-200 mesh size was purchaged from merck. Solvents were purified by standard techniques.^[31] Melting points were recorded on a VEEGO melting point (VMP-1) apparatus and are uncorrected. ¹H (399.88 MHz) & ¹H (299.95 MHz), ¹³C (100.6 MHz) and ⁷⁷Se (57.26 MHz) NMR spectra were recorded on a Varian NMR-Mercury plus 400 MHz & Bruker Avance^{III} 400 MHz spectrometer and Varian NMR-Mercury plus 300 MHz for ⁷⁷Se NMR at the indicated frequencies. Chemicals shifts (δ) are shown with respect to SiMe₄ (TMS) as internal standard for nuclei ¹H & ¹³C and Me₂Se for nuclei ⁷⁷Se as the external standard; s = singlet, d = doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets. The high resolution mass spectra (HRMS) were recorded at room temperature on a Micro mass Q-TOF (YA 107) mass spectrometer. FT-IR spectra were recorded in the range 4000-450 cm⁻¹ using KBr for solid samples and neat for liquid samples between CsI plates on a Perkin Elmer precisely spectrum one FT-IR spectrometer. The UV-VIS spectra for GPx-like activity in solution were recorded on a JASCO, V-570 spectrometer. Synthesis of N-(2-bromo-3-nitrobenzylimino)-4-methylaniline

(16): To a solution of **14** (43.4 mmol, 10.0 g) in glacial acetic acid (10 mL) was added *p*-toluidine (43.4 mmol, 4.64 g) with continuous stirring at room temperature. A curdy yellow precipitate was formed.

To complete the precipitation, the reaction mixture was cooled with ice. then filtered and washed with ice-cooled ethanol. Recrystallization from hot ethanol afforded a light yellow solid. Yield: 8.9 g (65 %); mp 110-112 °C. ¹H NMR (CDCl₃): δ = 2.39 (s, 3H, CH₃), 7.19-7.24 (m, ArH), 7.52-7.56 (t, J = 7.9 Hz, 1H), 7.77-7.80 (dd, J = 1.6, 9.51 Hz, 1H), 8.42-8.45 (dd, J = 1.6, 9.5 Hz, 1H), 8.92 ppm (s, 1H); ¹³C NMR (CDCl₃): δ = 21.2, 116.7, 121.3, 126.7, 128.2, 130.1, 132.0, 137.3, 137.5, 148.2, 151.5, 156.4 ppm; IR (KBr): v = 2918, 1616 (C=N), 1534 (NO2), 1426, 1366, 1029, 829, 818, 713, 529, 487 cm⁻¹; HRMS (TOF MS ES⁺) m/z; calcd for C₁₄H₁₁BrN₂O₂ [*M*+H]⁺: 319.0082; found: 319.0088.

Synthesis of *N***-(2-bromo-3-nitrobenzylimino)-4-nitroaniline (17):** Compound **17** was synthesized from **14** (8.69 mmol, 2.0 g) in glacial acetic acid (50 mL) and *p*-nitroaniline (8.69 mmol, 1.2 g) according to the procedure described for the preparation **16**. Yield: 1.6 g (53 %); m.p. 195 °C. ¹H NMR (CDCl₃): δ = 7.30-7.32 (d, *J* = 1.9, 6.73 Hz, 2H), 7.58-7.62 (t, *J* = 7.1 Hz, 1H), 7.62-7.89 (dd, *J* = 1.6, 7.9 Hz, 1H), 8.33-8.34 (d, *J* = 2.8 Hz, 2H), 8.43-8.46 (dd, *J* = 1.6, 7.9 Hz, 2H), 8.91 ppm (s, 1H); ¹³C NMR (CDCl₃): δ = 117.5, 121.7, 125.3, 127.9, 128.6, 132.4, 136.4, 146.4, 151.7, 156.6, 160.3 ppm; IR (KBr): v = 1601, 1582, 1532, 1514, 1341, 1107, 858, 738, 701 cm⁻¹; HRMS (TOF MS ES⁺) *m/z*: calcd for C₁₃H₈BrN₃O₄ [*M*+H]⁺: 349.9776; found: 349.9768.

General procedure for the synthesis of sec-amine-based compounds 18-20: To a suspension of compounds 15-17 in ethanol (50 ml) was added NaBH₄ (4 equiv) portion-wise. The mixture was stirred for 5 h at room temperature under inert atmosphere. The solvent was reduced to give a semi-solid. The usual work-up using water/chloroform afforded a yellow solution. The solvent was evaporated under reduced pressure to give yellow-colored oil, which was solidified by keeping it in deep freeze to afford a crystalline solid. Synthesis of N-(2-bromo-3-nitrobenzyl)aniline (18): Compound 15 (9.8 mmol, 3.0 g). Yield: 2.4 g (80 %); m.p. 110 °C. ¹H NMR (CDCl₃): δ = 4.34, (br s, 1H, NH), 4.48-4.49 (d, J = 4.9 Hz, 2H, CH₂), 6.54-6.56 (dd, J = 1.0, 7.7 Hz, 2H), 6.73-6.77 (td, J = 1.0, 7.4 Hz, 1H), 7.16-7.20 (t, J = 7.7 Hz, 2H), 7.35-7.39 (t, J = 7.7 Hz, 1H), 7.59-7.62 ppm (t, J = 6.6 Hz, 2H); ¹H NMR (D₂O-exchange): δ = 4.48 (s, 2H, CH₂), 6.54-6.56 (m, 1H), 6.73-6.74 (t, J = 7.7 Hz, 1H), 7.16-7.20 (t, J = 7.7 Hz, 2H), 7.35-7.39 (t, J = 7.7 Hz, 1H), 7.59-7.62 ppm (t, J = 6.6 Hz, 2H); ¹³C NMR (CDCl₃): δ = 48.9, 112.9, 114.0, 118.4, 123.6, 128.1, 129.5, 131.7, 141.7, 147.0, 151.2 ppm; IR (KBr): v = 3412 (N-H), 3075, 3046, 3013, 2899, 1601, 1533, 1375, 1270, 755, 699 cm⁻¹; HRMS (TOF MS ES⁺) m/z: calcd for C₁₃H₁₁BrN₂O₂ [M+H]⁺: 307.0082; found: 307.0087.

Synthesis of *N*-(2-bromo-3-nitrobenzyl)-4-methylaniline (19): Compound 16 (15.7 mmol, 5.0 g). Yield: 3.95 g (78 %); m.p. 99-92 °C. ¹H NMR (CDCl₃): δ = 2.23 (s, 3H, CH₃), 4.21 (br s, 1H, NH), 4.46 (s, 2H, CH₂), 6.46-6.48 (d, *J* = 8.4 Hz, 2H), 6.98-6.99 (d, *J* = 8.1 Hz, 2H), 7.34-7.38 (t, *J* = 7.8 Hz, 1H), 7.58-7.62 ppm (t, *J* = 7.8 Hz, 2H); ¹H NMR (D₂O-exchange): δ = 2.23 (s, 3H, CH₃), 4.46 (s, 2H, CH₂), 4.80 (due to H₂O in D₂O), 6.46-6.48 (d, *J* = 8.4 Hz, 2H), 6.98-6.99 (d, *J* = 8.1 Hz, 2H), 7.34-7.38 (t, *J* = 7.8 Hz, 1H), 7.58-7.62 ppm (t, *J* = 7.8 Hz, 2H); ¹³C NMR (CDCl₃): δ = 20.5, 49.1, 113.0, 114.0, 123.6, 127.6, 128.1, 130.0, 131.7, 141.9, 144.8, 151.3 ppm; IR (KBr): v = 3402, 3077, 2919, 1611, 1534, 1522, 1372, 1303, 1271, 825, 810, 797, 789 cm⁻¹; HRMS (TOF MS ES⁺) *m/z*: calcd for C₁₄H₁₃BrN₂O₂ [*M*+H]⁺: 321.0239; found: 321.0224.

Synthesis of *N*-(2-bromo-3-nitrobenzyl)-4-nitroaniline (20): Compound 17 (5.2 mmol, 2.2 g). Yield: 1.35 g (61 %); m.p. 162 °C. ¹H NMR (CDCl₃): δ = 4.60-4.62 (d, *J* = 6.3 Hz, 2H, CH₂), 5.12-5.14 (t, NH), 6.54-6.57 (d, *J* = 7.9 Hz, 2H), 7.42-7.45 (t, *J* = 7.4 Hz, 1H), 7.50-7.52 (dd, 1H), 7.65-7.67 (dd, 1H), 8.08-8.11 ppm (d, *J* = 8.9 Hz, 2H); ¹³C NMR (CDCl₃): δ = 48.3, 111.7, 144.4, 124.3, 126.5, 128.5, 131.2, 139.2, 139.8, 151.6, 152.4 ppm; IR (KBr): v = 3364, 1601, 1529, 1309, 1284, 1112, 844 cm⁻¹; HRMS (TOF MS ES⁺) *m/z*: calcd for C₁₃H₁₀BrN₃O₄ [*M*+H]⁺: 351.9933; found: 351.9926.

General method for the synthesis of unsymmetrical selenides 21-23: To a solution of the *in situ* prepared *n*-BuSeNa (6.5 mmol) was added *sec*-amine-based compounds **18-20** (6.5 mmol) at 0 °C. The mixture was stirred for 3 h at room temperature under inert atmosphere. The excess of the solvent was removed under reduced pressure to yield a yellow viscous solid, which was dissolved in CHCl₃ and then worked up. The combined organic layers were dried over

anhydrous Na_2SO_4 . The solvent was evaporated under reduced pressure and then purified on silica gel column using ethyl acetate and petroleum ether (4 %) as eluent to give an orange liquid.

Synthesis of N-(2-(butylselanyl)-3-nitrobenzyl)aniline (21): The compound was solidified by keeping in open air to afford yellow crystals. Yield 0.85 g (36 %); m.p. 63 °C. ¹H NMR (CDCl₃): δ = 0.86-0.90 (t, J = 7.3 Hz, 3H), 1.33-1.42 (sextet, J = 7.3 Hz, 2H), 1.52-1.64 (quintet, J = 7.3 Hz, 2H), 2.84-2.88 (t, J = 7.3 Hz, 2H), 4.30 (br s, 1H, NH), 4.65 (s, 2H, CH₂), 6.56-6.58 (d, J = 8.1 Hz, 2H), 6.72-6.76 (t, J = 7.3 Hz, 1H), 7.16-7.20 (t, J = 7.3 Hz, 2H), 7.37-7.41 (t, J = 7.7 Hz, 1H), 7.48-7.50 (d, J = 6.9 Hz, 1H), 7.64-7.66 ppm (d, J = 7.3 Hz, 1H); ¹H NMR (D₂O-exchange): δ = 0.86-0.90 (t, J = 7.3 Hz, 3H), 1.33-1.42 (sextet, J = 7.3 Hz, 2H), 1.52-1.64 (quintet, J = 7.3 Hz, 2H), 2.84-2.88 (t, J = 7.3 Hz, 2H), 4.65 (s, 2H, CH₂), 4.80 (due to H₂O in D₂O), 6.56-6.58 (d, J = 8.1 Hz, 2H), 6.72-6.76 (t, J = 7.3 Hz, 1H), 7.16-7.20 (t, J = 7.3 Hz, 2H), 7.37-7.41 (t, J = 7.7 Hz, 1H), 7.48-7.50 (d, J = 6.9 Hz, 1H), 7.64-7.66 ppm (d, J = 7.3 Hz, 1H); ¹³C NMR (CDCl₃): δ = 13.6, $22.9, \ 30.3, \ 32.5, \ 49.2, \ 112.9, \ \underline{113.0}, \ 118.1, \ 121.3, \ 121.9, \ 129.5,$ 130.6, 146.2, 147.4, 156.8 ppm; ⁷⁷Se NMR (CDCl₃): δ = 203 ppm; IR (KBr): v = 3422, 2958, 2930, 1603, 1530, 1370, 1321, 1265, 802, 751 cm⁻¹; HRMS (TOF MS ES⁺) m/z: calcd for C₁₇H₂₀N₂O₂Se [M+H]⁺: 365.0768; found: 365.0771.

Synthesis of N-(2-(butylselanyl)-3-nitrobenzyl)-4-methylaniline (22): Yield 1.46 g (78 %). ¹H NMR (CDCl₃): δ = 0.86-0.90 (t, J = 0.1 Hz, 3H), 1.34-1.39 (sextet, J = 7.3 Hz, 2H), 1.56-1.63 (quintet, J = 7.9 Hz, 2H), 2.23 (s, 3H, CH₃), 2.84-2.88 (t, J = 7.5 Hz, 2H), 4.17 (br s, 1H, NH), 4.62 (s, 2H, CH₂), 6.48-6.51 (d, J = 8.3 Hz, 2H), 6.97-6.99 (d, J = 8.3 Hz, 2H), 7.38-7.47 (t, J = 6.2 Hz, 1H), 7.46-7.49 (dd, J = 1.1, 7.9 Hz, 1H), 7.63-7.65 ppm (d, J = 7.5 Hz, 1H); ¹H NMR (D₂Oexchange): δ = 0.86-0.90 (t, J = 0.1 Hz, 3H), 1.34-1.39 (sextet, J = 7.3 Hz, 2H), 1.56-1.63 (quintet, J = 7.9 Hz, 2H), 2.23 (s, 3H, CH₃), 2.84-2.88 (t, J = 7.5 Hz, 2H), 4.62 (s, 2H, CH₂), 4.80 (due to H₂O in D₂O), 6.48-6.51 (d, J = 8.3 Hz, 2H), 6.97-6.99 (d, J = 8.3 Hz, 2H), 7.38-7.47 (t, J = 6.2 Hz, 1H), 7.46-7.49 (dd, J = 1.1, 7.9 Hz, 1H), 7.63-7.65 ppm (d, J = 7.5 Hz, 1H); ¹³C NMR (CDCl₃): $\delta = 13.6, 20.5, 22.9, 30.3, 32.5,$ 49.5, 113.1, 121.2, 121.8, 127.3, 129.4, 129.9, 130.6, 145.1, 146.3, 156.8 ppm; ⁷⁷Se NMR (CDCI₃): δ = 203 ppm; IR (neat): v = 3420 (N-H), 2958, 2929, 2870, 1617, 1523, 1370, 808 cm⁻¹; HRMS (TOF MS ES^+) *m/z*: calcd for C₁₈H₂₂N₂O₂Se [*M*+H]⁺: 379.0925; found: 379.0916. Synthesis of N-(2-(butylselanyl)-3-nitrobenzyl)-4-nitroaniline (23): Compound 23 was purified on silica gel column using ethyl acetate and petroleum ether (10 %) as eluent to give an orange liquid. This was solidified by keeping it in open air for a long time to give a dark green solid. Yield: 0.80 g (46 %); m.p. 88 °C. ¹H NMR (CDCl₃): δ = 0.86-0.90 (t, J = 7.3 Hz, 3H), 1.32-1.40 (sextet, J = 7.3 Hz, 2H), 1.56-1.64 (quintet, J = 7.6 Hz, 2H), 2.85-2.89 (t, J = 7.6 Hz, 2H), 4.77 (s, 2H, CH₂), 5.31 (br s, 1H, NH), 6.55-6.57 (d, J = 9.2 Hz, 2H), 7.42-7.46 (t, J = 7.6 Hz, 1H), 7.52-7.54 (d, J = 7.6 Hz, 1H), 7.57-7.59 (d, J = 7.6 Hz, 1H), 8.05-8.05 ppm (d, J = 8.9 Hz, 2H); ¹³C NMR (CDCl₃): $\delta =$ 13.6, 22.9, 30.7, 32.5, 48.6, 111.7, 121.7, 122.5, 126.5, 129.9, 130.5, 138.8, 144.7, 152.7, 157.0 ppm; ⁷⁷Se NMR (CDCl₃): δ = 206 ppm; IR (KBr): v = 3354, 2950, 2926, 2868, 1602, 1525, 1300, 1105, 834 cm⁻¹; HRMS (TOF MS ES⁺) m/z: calcd for C₁₇H₁₉N₃O₄Se [*M*+H]⁺: 410.0619; found: 410.0631.

General procedure for the synthesis of 27 and 28: To a solution of compound 21 (2.75 mmol, 1.0 g), in dry CHCl₃ (2 mL) was added Br₂ (3.30 mmol, 0.52 g, 0.18 mL, CHCl₃ {2 mL}) for 30 min at 0 °C under an inert atmosphere. After the complete bromination, triethylamine (2.75 mmol, 0.27 g, 0.38 mL) was added to the reaction mixture. The reaction was further stirred at room temperature for 2 h. The mixture was extracted with CHCl₃ by adding water (10 mL). Separated organic layers were combined and dried over anhydrous Na₂SO₄. Removal of solvent and purification of the residue by silica gel column chromatography (eluted with 2 % ethyl acetate/petroleum ether mixture) afforded **27** and **28**.

Synthesis of 7-nitro-2-phenyl-2,3-dihydrobenzo[d][1,2]selenazole (27): Compound 27 was recrystallized from dichloromethane/diethyl ether to give a dark purple colored solid. Yield: 0.06 g (7 %); m.p. 146 °C (decomposed). ¹H NMR (CDCl₃): δ = 5.04 (s, 2H), 6.70-6.99 (m, 2H), 7.27-7.29 (m, 1H), 7.38-7.42 (t, *J* = 7.9 Hz, 1H), 7.59-7.61 (d, *J* = 7.3 Hz, 1H), 8.19-8.21 ppm (d, *J* = 8.3 Hz, 1H); ¹³C NMR (CDCl₃): δ = 60.0, 116.6, 120.2, 123.5, 127.2, 128.3, 129.5, 139.1, 141.7, 143.1, 151.2 ppm; ⁷⁷Se NMR (CDCl₃): δ = 974 ppm; IR (KBr): v = 2925, 1595, 1511, 1293, 733 cm⁻¹; HRMS (TOF MS ES⁺) *m/z* calcd for C₁₃H₁₀N₂O₂Se [*M*+H]⁺: 306.9986; found: 306.9977.

Synthesis of **2-(4-bromophenyl)-7-nitro-2,3dihydrobenzo[d][1,2]selenazole** (28): Recrystallization from dichloromethane/diethyl ether afforded a dark purple colored compound **28**. Yield: 0.37 g (35 %); m.p. 155 °C (decomposed). ¹H NMR (CDCl₃): δ = 5.00 (s, 2H, CH₂), 6.67-6.69 (d, *J* = 8.8 Hz, 2H), 7.33-7.36 (d, *J* = 9.2 Hz, 2H), 7.39-7.44 (t, *J* = 7.7 Hz, 1H), 7.58-7.61 (d, *J* = 8.3 Hz, 1H), 8.19-8.21 ppm (d, *J* = 8.1 Hz, 1H); ¹³C NMR (CDCl₃): δ = 59.9, 112.3, 117.9, 123.6, 127.4, 128.4, 132.2, 138.6, 141.2, 142.9, 150.0 ppm; ⁷⁷Se NMR (CDCl₃): δ = 977 ppm; IR (KBr): v = 1589, 1570, 1514, 1286, 801 cm⁻¹; HRMS (TOF MS ES⁺) *m/z*: calcd for C₁₃H₉BrN₂O₂Se [*M*+H]⁺: 384.9091; found: 384.9091.

General procedure for the synthesis of 29-30 and 32: To a solution of selenide 22 (4.29 mmol, 1.62 g), in dry CHCl₃ (20 mL) was added bromine (4.29 mmol, 0.68 g, 222 μ L) and Et₃N (4.29 mmol, 0.433 g, 594 μ L) at 0 °C according to the procedure described for the preparation of 27. Removal of the solvent and purification of the residue by silica gel column chromatography (eluted with 2-6 % ethyl acetate/petroleum ether) afforded 29-30 and 32.

Synthesis of 7-nitro-2-*p*-tolyl-2,3-dihydrobenzo[d][1,2]selenazole (29): Recrystallization from dichloromethane/ether afforded a dark black colored compound. Yield 0.05 g (3 %); m.p. 140 °C. ¹H NMR (CDCl₃): δ = 2.27 (s, 3H, CH₃), 4.99 (s, 2H, CH₂), 6.7-6.8 (d, *J* = 8.5 Hz, 2H), 7.05-7.07 (d, *J* = 8.6 Hz, 2H), 7.37-7.41 (t, *J* = 7.9 Hz, 1H), 7.60-7.62 (d, *J* = 7.3 Hz, 1H), 8.17-8.19 ppm (d, *J* = 7.3 Hz, 1H); ¹³C NMR (CDCl₃): δ = 20.6, 61.0, 117.3, 123.4, 127.2, 128.2, 129.9, 130.5, 139.3, 142.1, 143.3, 149.7 ppm; ⁷⁷Se NMR (CDCl₃): δ = 987 ppm; IR (KBr): v = 2916, 2855, 1615, 1511, 1287, 799, 730 cm⁻¹; HRMS (TOF MS ES⁺) *m/z*: calcd for C₁₄H₁₃N₂O₂Se [*M*+H]⁺: 321.0142; found: 321.0145.

Synthesis of 2-(2-bromo-4-methylphenyl)-7-nitro-2,3dihydrobenzo[d][1,2]selenazole (30): Recrystallization from chloroform/ether afforded orange colored crystals. Yield 0.05 g (3 %); m.p. 165 °C. ¹H NMR (CDCl₃): δ = 2.24 (s, 3H, CH₃), 4.98 (s, 2H, CH₂), 6.79-6.87 (m, 2H), 7.42 (s, 1H), 7.44-7.47 (t, *J* = 7.3 Hz, 1H), 7.69-7.72 (dd, *J* = 1.1, 7.3 Hz, 1H), 8.17-8.19 ppm (d, *J* = 7.7 Hz, 1H); ¹³C NMR (CDCl₃): δ = 20.5, 63.3, 119.2, 119.6, 123.6, 127.5, 127.9, 128.7, 134.3, 135.5, 139.8, 143.7, 144.2, 150.8 ppm; ⁷⁷Se NMR (CDCl₃): δ = 1060 ppm; IR (KBr): v = 3082, 2919, 1598, 1508, 1315, 824 cm⁻¹; HRMS (TOF MS ES⁺) *m/z*: calcd for C₁₄H₁₁BrN₂O₂Se [*M*+H]⁺: 398.9247; found: 398.9232.

Synthesis of 2-bromo-*N***-(2-(butylselanyl)-3-nitrobenzyl)-4methylaniline (32):** Recrystallization from chloroform/ether afforded yellow crystals. Yield 0.35 g (19 %); m.p. 58 °C. ¹H NMR (CDCl₃): δ = 0.86-0.91 (t, *J* = 7.4 Hz, 3H), 1.32-1.43 (sextet, *J* = 7.2 Hz, 2H), 1.56-1.64 (quintet, *J* = 5.4 Hz, 2H), 2.21 (s, 3H, CH₃), 2.84-2.87 (t, *J* = 7.6 Hz, 2H), 4.68-4.69 (s, 2H, CH₂), 4.82-4.85 (br s, 1H, NH), 6.33-6.35 (d, *J* = 8.2 Hz, 1H), 6.89-6.92 (dd, *J* = 1.5, 8.2 Hz, 1H), 7.28-7.30 (dd, *J* = 0.6, 1.0 Hz, 1H), 7.37-7.41 (t, *J* = 7.9 Hz, 1H), 7.47-7.50 (dd, *J* = 1.8, 7.8 Hz, 1H), 7.57-7.59 ppm (dd, *J* = 0.7, 7.8 Hz, 1H); ¹³C NMR (CDCl₃): δ = 13.6, 20.2, 22.9, 30.4, 32.5, 49.2, 109.8, 111.7, 121.4, 122.0, 128.3, 129.2, 129.6, 130.3, 133.0, 141.9, 145.7, 156.9 ppm; ⁷⁷Se NMR (CDCl₃): δ = 203 ppm; IR (KBr): v = 3394 (N-H), 2967, 2925, 1606, 1509, 1365, 803 cm⁻¹; HRMS (TOF MS ES⁺) *m/z*: calcd for C₁₈H₂₁N₂O₂SeBr [*M*+H]⁺: 457.0030; found: 457.0016.

Synthesis 2-(2-bromo-4-nitrophenyl)-7-nitro-2,3of dihydrobenzo[d][1,2]selenazole (31): To a solution of selenide 23 (1.95 mmol, 0.8 g), in dry CHCl₃ (210 mL) was added bromine (1.9 mmol, 0.31 g, 100 $\mu L)$ and Et_3N (1.95 mmol, 0.19 g, 270 $\mu L)$ at 0 $^{\circ}C$ according to the procedure described for the preparation of 27. It was filtered off and the filtrate was reduced to give dark a red semi-solid, which on column chromatography with silica gel (eluted with 10 %ethyl acetate/petroleum ether) afforded 31 as a brown powder. Yield 0.005 g (0.6 %); m.p. 170-174 °C. ¹H NMR (CDCI₃): δ = 5.04 (s, 2H, CH₂), 7.00-7.02 (d, J = 8.8 Hz, 1H), 7.49-7.53 (t, J = 7.6 Hz, 1H), 7.76-7.79 (d, J = 7.4 Hz, 1H), 7.98-8.01 (dd, J = 2.2, 8.9 Hz, 1H), 8.21-8.23 (d, J = 7.9 Hz, 1H), 8.48-8.49 ppm (d, J = 2.2 Hz, 1H); ⁷⁷Se NMR (CDCl₃): δ = 1070 ppm; IR (KBr): v = 1591, 1495, 1315, 1112, 735 cm⁻¹; HRMS (TOF MS ES⁺) m/z: calcd for C₁₃H₈BrN₃O₄Se [*M*+H]⁺: 429.8940; found: 429.8942.

Synthesis of 7-nitro-2-phenyl-2.3-dihydrobenzo[d][1,2]selenazole selenium-oxide (33): To a solution of selenide 21 (3.30 mmol, 1.20 g) in CHCl₃ (5 mL) was added H₂O₂ (30 %) (19.82 mmol, 2.2 mL) at the room temperature. The reaction was stirred for 25 min at room temperature and then heated at 55-60 °C for 40 min. An orange precipitate formed was filtered and dried under vacuum to give orange solid 33. The product was recrystallized from DMSO/diethyl ether to afford dark red needle-like crystals. Yield: 0.42 g (40 %); m.p. 164 °C. ¹H NMR (DMSO-d₆): δ = 5.17-5.22 (d, J = 16.0 Hz, 1H), 5.24-5.29 (d, J = 16.0 Hz, 1H), 6.98-7.03 (t, J = 7.3 Hz, 1H), 7.21-7.24 (d, J = 7.7 Hz, 2H), 7.35-7.40 (t, J = 7.3 Hz, 2H), 7.93-7.98 (t, J = 7.7 Hz, 1H), 8.13-8.15 (d, J = 7.7 Hz, 1H), 8.37-8.40 ppm (d, J = 8.1 Hz, 1H); ¹³C NMR (DMSO-d₆): δ = 55.9, 116.8, 121.3, 123.8, 129.9, 132.1, 133.2, 140.5, 144.0, 144.6, 145.2 ppm; ⁷⁷Se NMR (DMSO-d₆): δ = 1182 ppm; IR (KBr): v = 3081, 2823, 1594, 1531, 1341, 823, 814, 748 cm⁻¹; HRMS (TOF MS ES⁺) m/z: calcd for C₁₄H₁₀N₂O₃Se [M+H]⁺: 322.9935; found: 322.9932.

Synthesis of 7-nitro-2-*p***-tolyl-2,3-dihydrobenzo[***d***][1,2]selenazole selenium-oxide (34): Compound 34 was synthesized from 22 (1.32 mmol, 0.50 g), CHCl₃ (2 mL) and H₂O₂ (30 %) (7.96 mmol, 0.90 mL) according to the procedure described for the preparation of 33. A red colored precipitate obtained was filtered and dried under vacuum. The product was recrystallized from DMSO/diethyl ether to afford dark red crystals. Yield: 0.18 g (38 %); m.p. 156-158 °C. ¹H NMR (DMSO-d₆):** *δ* **= 2.27 (s, 3H, CH₃), 5.14-5.19 (d,** *J* **= 16.0 Hz, 1H), 5.22-5.27 (d,** *J* **= 16.0 Hz, 1H), 7.12-7.15 (d,** *J* **= 8.7 Hz, 2H), 7.18-7.21 (d,** *J* **= 8.7 Hz, 2H), 7.95-7.97 (t,** *J* **= 7.8 Hz, 1H), 8.12-8.15 (d,** *J* **= 7.8 Hz, 1H), 8.37-8.39 ppm (d,** *J* **= 7.8 Hz, 1H); ¹³C NMR (DMSO-d₆):** *δ* **= 20.1, 55.9, 117.2, 123.6, 130.1, 130.4, 131.9, 132.9, 142.8, 141.9, 143.9, 145.3 ppm; ⁷⁷Se NMR (DMSO-d₆):** *δ* **= 1174 ppm; IR (KBr): v = 3091, 2824, 1570, 1530, 1340, 1280, 827, 733 cm⁻¹; HRMS (TOF MS ES⁺)** *m/z***: calcd for C₁₄H₁₂N₂O₃Se [***M***+H]⁺: 337.0091; found: 337.0087.**

Preparation of 2-bromo-3-nitro-N-phenylbenzamide (41): To a mixture of thionyl chloride (50 mL) and DMF (1 mL) was added 2bromo-3-nitrobenzoic acid^[30a] (40.0 mmol, 10.0 g) and refluxed for 3-4 h. The excess of thiony chloride was removed under vacuum applying a liquid N₂ trap. The brown precipitate was obtained, which was further dissolved in dichloromethane. Aniline (100 mmol, 10 mL) in dry dichloromethane was added dropwise to a suspension of the brown precipitate obtained at room temperature over a period of 2-3 h. Additionally, the reaction was stirred at room temperature for overnight. The mixture was extracted with dichloromethane by adding water (10 mL). The separated layers were combined and dried over anhvdrous Na₂SO₄. The solvent was evaporated under reduced pressure to give yellow-colored oil, which was solidified by keeping in deep freeze to give a crystalline solid 41. Yield: 6.5 g (50 %); m.p. 153-155 °C. ¹H NMR (CDCl₃): δ = 7.18-7.23 (t, J = 7.3 Hz, 1H), 7.36-7.41 (t, J = 7.3 Hz, 2H), 7.50-7.55 (t, J = 7.8 Hz, 1H), 7.59-7.61 (d, J = 7.3 Hz, 2H), 7.68-7.71 (dd, J = 1.5, 7.8 Hz, 1H), 7.45-7.78 ppm (dd, J = 1.5, 7.8 Hz, 1H); ¹³C NMR (CDCl₃): δ = 111.6, 120.4, 125.6, 126.2, 128.9, 129.4, 131.9, 137.2, 141.2, 151.2, 164.4 ppm; IR (KBr): v = 3289 (NH), 1661, 1528, 1369, 1326, 755 cm⁻¹; HRMS (TOF MS ES⁺) *m*/*z*: calcd for C₁₃H₉BrN₂O₃ [*M*+H]⁺: 320.9875; found: 320.9873.

Synthesis of 2-(butylselanyl)-3-nitro-N-phenylbenzamide (42): Compound 42 was synthesized from 41 (6.22 mmol, 2.0 g) with the in situ prepared n-BuSeNa (6.22 mmol, 0.24 g) in deoxygenated ethanol according to the procedure described for the preparation of 21-23. Removal of solvent and purification of the residue by silica gel column chromatography (eluted with 10 % ethyl acetate/petroleum ether mixture) afforded a yellow solid 42. Yield: 1.2 g (53 %); m.p. 98 °C. ¹H NMR (CDCl₃): δ = 0.74-0.79 (t, J = 7.3 Hz, 3H), .1.19-1.31 (sextet, J = 7.3 Hz, 2H), 1.45-1.55 (quintet, J = 7.3 Hz, 2H), 2.85-2.89 (t, J = 7.3 Hz, 2H), 7.18-7.22 (t, J = 7.3 Hz, 1H), 7.38-7.43 (t, J = 8.3 Hz, 2H), 7.49-7.54 (t, J = 7.8 Hz, 1H), 7.64-7.66 (d, J = 6.8 Hz, 2H), 7.82-7.87 (dd, J = 1.5, 6.8 Hz, 1H), 7.88-7.91 (dd, J = 1.5, 6.8 Hz, 1H), 8.35 ppm (s, 1H, NH); ¹³C NMR (CDCl₃): δ = 13.5, 22.7, 31.1, 31.9, 119.9, 122.4, 125.3, 125.6, 128.9, 129.4, 133.3, 137.6, 142.8, 155.0, 165.4 ppm; ⁷⁷Se NMR (CDCl₃): δ = 276 ppm; IR (KBr): v = 3294 (NH), 1658 (CO), 1520, 1436, 1324, 748, 713 cm⁻¹; HRMS (TOF MS ES⁺) m/z: calcd for C₁₇H₁₈N₂O₃ Se [*M*+H]⁺: 379.0561; found: 379.0546.

Preparation of `2-phenyl-7-nitro-1,2-benzisoselenazol(*2H*)-3-one (8): To a solution of 42 (0.53 mmol, 0.40 g), in dry CHCl₃ (5 mL) was

added bromine (0.53 mmol, 0.084 g, 0.027 mL) and triethylamine (0.53 mmol, 0.053 g, 0.072 mL) according to the procedure described for the preparation of **27**. Removal of solvent and purification of the residue by silica gel column chromatography (eluted with 10 % ethyl acetate/petroleum ether mixture) afforded **8.** Yield: 0.31 g (92 %, lit.^[13a] 78 %); m.p. 168-170 °C (lit. 160-163 °C). ¹H NMR (CDCl₃): δ = 7.30-7.35 (t, *J* = 7.3 Hz, 2H), 7.45-7.50 (t, *J* = 8.6 Hz, 2H) 7.63-7.65 (d, *J* = 7.3 Hz, 1H), 7.71-7.76 (t, *J* = 7.8 Hz, 1H), 8.46-8.49 (dd, *J* = 1.0, 7.7 Hz, 1H), 8.57-8.60 ppm (dd, *J* = 1.0, 8.3 Hz, 1H); ¹³C NMR (CDCl₃): δ = 125.1, 127.2, 127.7, 127.9, 129.7, 131.5, 135.3, 136.4, 138.5, 142.1, 163.9 ppm; ⁷⁷Se NMR (CDCl₃): δ = 924 ppm; IR (KBr): v = 1650 (CO), 1607, 1518 (NO₂), 1298, 751, 736 cm⁻¹; HRMS (TOF MS ES⁺) *m/z*: calcd for C₁₃H₈N₂O₃Se [*M*+H]⁺: 320.9778; found: 320.9769.

Coupled Reductase Assay: GPx-like activity of organoselenium compounds was determined by the spectrophotometric method at 340 nm described by Wilson et al.^[32] The test mixture contained GSH (2 mM), EDTA (1 mM), glutathione reductase (1.3 unit/ml), and NADPH (0.4 mM) in 100 mM potassium phosphate buffer, pH 7.5. GPx samples (80 μ M) were added to the test mixture at 25 °C and the reaction was started by the addition of H₂O₂ (1.6 mM). The initial reduction rates were calculated from the oxidation rate of NADPH at 340 nm. The initial reduction rate was determined at least 3-4 times and calculated from the first 5-10% of the reaction by using 6.22 mM⁻¹ cm⁻¹ as the extinction coefficient for NADPH.

X-ray Crystallographic Analysis: X-ray crystallographic studies were carried out for compounds 21, 29-30 and 32-33 on a Oxford Diffraction Gemini diffractometer using graphite-monochromatized Mo Ka radiation λ = 1.54184 Å for 21, 29-30 and 32-33. The diffraction measurements were performed at 295(2) K. The structures were solved by direct method and refined by a full-matrix least-squares procedure on F² for all reflections in SHELXL-97 software.^[3] Hydrogen atoms were localized by geometrical means. A riding model was chosen for refinement. The isotropic thermal parameters of hydrogen atoms were fixed at 1.5 times for (CH₃ groups) or 1.2 times U (eq) (Ar-H) of the corresponding carbon atoms. Some details of the refinement is given in Tables 6-7. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (CCDC) as supplementary publications CCDC-808887 (21), CCDC-808888 (33), CCDC-808890 (32), CCDC-808891 (29) and CCDC-808892 (30). These data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK or via www.ccdc.cam.ac.uk/data request/cif.

Table 5. Crystal Data and Structure Refinement for 21, 29 and 30.			Compound	32	33	
Compound	21	29	30	Empirical formula	$C_{18}H_{21}BrN_2O_2Se$	$C_{13}H_{10}N_2O_3Se$
Empirical formula	C ₁₇ H ₂₀ N ₂ O ₂ Se	C ₁₄ H ₁₂ N ₂ O ₂ Se	C ₁₄ H ₁₁ BrN ₂ O ₂ Se	Formula weight	456.24	321.19
Formula weight	363.31	319.22	398.12	Crystal system	Monoclinic	Orthorhombic
Crystal system	Triclinic	Monoclinic	Monoclinic	Space group	<u><i>P</i> 1 2, 1</u>	<u>P b c n</u>
Space group	<u><i>P</i> -1</u>	<u>P12₁/c1</u>	<u>P12¦/c1</u>	a(Å)	10.9761(5)	13.1780(4)
a(Å)	8.1599(5)	13.6944(6)	13.0789(2)	b(Å)	8.0108(2)	8.4675(3)
b(Å)	10.1630(6)	6.3988(3)	7.80369(12)	c(Å)	11.7412(5)	22.6182(8)
c(Å)	11.0254(8)	15.6904(8)	13.9947(2)	α(deg)	90	90
α(deg)	93.953(6)	90	90	β(deg)	113.054(5)	90
β(deg)	107.286(6)	106.224(5)	98.9459(16)	γ(deg)	90	90
γ(deg)	99.356(5)	90	90	V(ų)	949.93(7)	2523.85(15)
V(ų)	854.71(10)	1320.17(11)	1410.97(4)	Z	2	8
Z	2	4	4	D(calcd)(Mg/m³)	1.595	1.691
D(calcd)(Mg/m ³)	1.412	1.606	1.874	Abs coeff(mm ⁻¹)	5.240	4.100
Abs coeff(mm ⁻¹)	3.041	3.854	6.951	Obsd reflens [I<2σ]	6828	21353
Obsd reflens [I<2σ]	6633	5302	6152	Final R(F) $[I<2\sigma(I)]^{[a]}$	0.0333	0.0635
Final R(F) $[I<2\sigma(I)]^{[a]}$	0.0381	0.0503	0.0325	wR(F ²) indices[I<2σ(I)]	0.0937	0.1407
wR(F²) indices[I<2σ(I)]	0.1071	0.1404	0.0848	Data/restrain/parameters	3575 / 1 / 238	2659 / 0 / 172
Data/restrain/parame ters	3567 / 0 / 204	2736 / 0 / 173	2942 / 0 / 183	Goodness of fit on F ²	1.062	1.179
Goodness of fit on F ²	1.039	1.060	1.043			

[a] Definitions: $R(F_o) = ||F_o| - |F_c||/|F_o|$ and $wR(F_o^2) = \{\Sigma[w(F_o^2 - F_c^2)^2]/[w(F_c^2)^2\}^{1/2}$.

Table 7. Crystal Data and Structure Refinement for 32 and 33.

[a] Definitions: $R(F_o) = ||F_o| - |F_c||/|F_o|$ and $wR(F_o^2) = \{\Sigma[w(F_o^2 - F_c^2)^2]/[w(F_c^2)^2\}^{1/2}$.

Computational Methods: All theoretical calculations were executed by using Gaussian 03 suite of quantum chemical programs.^[34] The hybrid Becke 3-Lee-Yang-Parr (B3LYP) exchange correlation functional was implemented for DFT calculations.^[35] The geometry optimizations were carried out at the B3LYP level of DFT by using the 6-31G(d) basis sets. The total energies of the optimized geometries were computed based on with inclusion of zero-point corrections. The ⁷⁷Se NMR calculations were performed at B3LYP/6-311+G (d,p) level

on B3LYP/6–31G(d)-level-optimized geometries by using the gauge-including atomic orbital (GIAO) method (referenced with respect to the peak of Me₂Se).^[20] The quantifications of orbital interaction were done by natural bond orbital (NBO) analysis at B3LYP/6–311+G(d,p) level.^[26] Atoms in molecules (AIM)^[27-9] calculations have also been used to confirm distinct bond critical point. Nucleus-Independent Chemical Shifts (NICS)^[36] have been carried out at B3LYP/6–31G(d)//6-311+G(d,p) level.

Acknowledgements

This work was supported by the Department of Science and Technology (DST), New Delhi. We are thankful of Sophisticated Analytical Instrument facility (SAIF), Indian Institute of Technology (IIT), Bombay, for performing 300 MHz NMR spectroscopic analyses for ⁷⁷Se NMR. V.P.S. wishes to thank IIT Bombay for a teaching assistantship.

- a) A. Müller, E. Cadenas, P. Graf, H. Sies, *Biochem. Pharmacol.* **1984**, *33*, 3235-3239; b) A. Wendel, M. Fausel, H. Safayhi, G. Tiegs, R. Otter, *Biochem. Pharmacol.* **1984**, *33*, 3241-3245; c) M. J. Parnham, S. Kindt, *Biochem. Pharmacol.* **1984**, *33*, 3247-3250; d) A. Müller, H. Gabriel, H. Sies, *Biochem. Pharmacol.* **1985**, *34*, 1185-1189; e) H. Safayhi, G. Tiegs, A. Wendel, *Biochem. Pharmacol.* **1985**, *34*, 2691-2694; f) A. Wendel, European Patent 0-165-534, 1985; g) A. Wendel, G. Tiegs, *Biochem. Pharmacol.* **1986**, *35*, 2115-2118; h) T. Schewe, *Gen. Pharmacol.* **1995**, *26*, 1153-1169; i) M. J. Parnham, H. Sies, *Expert Opin. Invest. Drugs* **2000**, *9*, 607-619; j) G. Mugesh, H. B. Singh, *Chem. Soc. Rev.* **2000**, *29*, 347-357; k) G. Mugesh, W.-W. du Mont, H. Sies, *Chem. Rev.* **2001**, *101*, 2125-2179.
- [2] a) L. Flohè, E. A. Günzler, H. H. Schock, *FEBS Lett.* **1973**, *32*, 132-134; b) J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, W. G. Hoekstra, *Science* **1973**, *179*, 588-590; c) C. Jacob, G. I. Giles, N. M. Giles, H. Sies, *Angew. Chem. Int. Ed.* **2003**, *42*, 4742-4758.
- [3] R. Lesser, R. Weiss, Ber. Dtsch, Chem. Gen. 1924, 57, 1077-1082.
- [4] a) R. Weber, M. Renson, *Bull. Soc. Chim. Fr.* **1976**, 1124-1126; b) A. Welter, L. Christiaens, P. Wirtz, Eur. Pat. Appl. EP 44453, 1982; c) L. Engman, A. Hallberg, *J. Org. Chem.* **1989**, *54*, 2964-2966; d) M. C. Fong, C. H. Schiesser, *Tetrahedron Lett.* **1995**, *36*, 7329-7332; e) M. C. Fong, C. H. Schiesser, *J. Org. Chem.* **1997**, *62*, 3103-3108
- [5] S. J. Balkrishna, B. S. Bhakuni, D. J. Chopra, K. Sangit, Org. Lett. 2010, 12, 5394-5397.
- [6] a) B. K. Sarma, G. Mugesh, J. Am. Chem. Soc. 2005, 127, 11477-11485; b) K. P. Bhabak, G. Mugesh, Chem. Eur. J. 2007, 13, 4594-4601; c) B. K. Sarma, G. Mugesh, Chem. Eur. J. 2008, 14, 10603-10614; d) K. P. Bhabak, G. Mugesh, Chem. Eur. J. 2009, 15, 9846-9854; e) K. P. Bhabak, G. Mugesh, Chem. Asian J. 2009, 4, 974-983; f) K. Satheeshkumar, G. Mugesh, Chem. Eur. J. 2011 (DOI: 10.1002/chem.201003417).
- [7] T. Fenner, C. H. Schiesser, Molecules 2004, 9, 472-479.
- [8] a) H. J. Reich, C. P. Jasperse, J. Am. Chem. Soc. 1987, 109, 5549-5551; b) P. Cotelle, P. Chan, N. Cotelle, J. L. Bernier, J. P. Henichart, J. Chim. Phys.-Chim. Biol. 1992, 89, 191-198.
- [9] A. Mohsine, L. Christiaens, *Heterocycles* 1996, 43, 2567-2593.
- [10] P. V. Jacquemin, L. E. Christiaens, M. J. Renson, M. J. Evers, N. Dereu, *Tetrahedron Lett.* 1992, 33, 3863-3866.
- [11] J. Chaudiere, I. Erdelmeier, M. Moutet, J.-C. Yadan, *Phosphorus, Sulfur, Silicon Relat. Elem.* **1998**, *136*, *137 & 138*, 467-470.
- [12] a) J. Chaudière, J.-C. Yadan, I. Erdelmeier, C. Tailhan-Lomont, M. Moutet, In Oxidative processes and Antioxidants, edited by R. Paoletti (Ravan Press, New York, 1994) pp. 165; b) I. Erdelmeier, M. Moutet, J.-C. Yadan, J. Org. Chem. 2000, 65, 8152-8157.
- [13] a) C. Lambert, L. Christiaens, *Tetrahedron* 1991, 47, 9053-9060; b)
 M. J. Parnham, J. Biedermann, Ch. Bittner, N. Dereu, S. Leyck, H. Wetzig, *Agents Actions* 1989, 27, 306-308; c) B. Dakova, L. Lamberts, M. Evers, N. Dereu, *Electrochim. Acta*, 1991, 36, 631-637; d) J. K. Pearson, R. J. Boyd, *J. Phys. Chem. A* 2008, *112*, 1013-1017.
- [14] a) B. Kersting, M. DeLion, Z. Naturforsch. 1999, 54b,1042-1047; b)
 S. S. Zade, S. Panda, S. K. Tripathi, H. B. Singh, G. Wolmershauser, Eur. J. Org. Chem. 2004, 3857-3864; c) G. Roy, G. Mugesh, J. Am. Chem. Soc. 2005, 127, 15207-15217.

- [15] T. G. Back, B. P. Dyck, J. Am. Chem. Soc. 1997, 119, 2079-2083.
- [16] V. P. Singh, H. B. Singh, R. J. Butcher, Eur. J. Inorg. Chem. 2010, 637-647.
- [17] The chiral selenospirocyclic compound will be reported elsewhere.
- [18] A. Burger, A. C. Schmalz, J. Org. Chem. 1954, 19, 1841-1846.
- [19] a) M. Iwaoka, T. Katsuda; H. Komatsu; S. Tomoda, J. Org. Chem.
 2005, 70, 321-327; b) M. Iwaoka, S. Tomoda, J. Am. Chem. Soc.
 1996, 118, 8077-8084.
- [20] C. A. Bayse, Inorg. Chem. 2004, 43, 1208-1210.
- [21] a) M. Iwaoka, H. Komatsu, T. Katsuda, S. Tomoda, J. Am. Chem. Soc.
 2004, 126, 5309-5317; b) W. Nakanishi, S. Hayashi, S. Toyota,
 Chem. Commun. 1996, 371; c) W. Nakanishi, S. Hayashi, A. Sakaue,
 G. Ono, Y. Kwada, J. Am. Chem. Soc. 1998, 120, 3635-3640.
- [22] V. P. Singh, H. B. Singh, R. J. Butcher, *Chem. Asian J.* 2011 (DOI: 10.1002/asia.201000858) and references therein.
- [23] A. Bondi, J. Phys. Chem. 1964, 68, 441-445.
- [24] a) L. Dupont, O. Dideberg, P. Jacqemin, *Acta Cryst.* 1990, *C46*, 484-486; b) L. Dupont, O. Dideberg, M. Sbit, N. Dereu, *Acta Cryst.* 1988, *C44*, 2159-2161.
- [25] K. P. Bhabak, G. Mugesh, Chem. Eur. J. 2008, 14, 8640-8651.
- [26] a) A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* **1988**, *88*, 899-926; b) F. Weinhold, *Natural Bond Orbital (NBO)*, version 5.0.
- [27] R. W. F. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, 1990.
- [28] F. Beigler-Konig, J. Schonbohm, D, Bayles, J. Comput. Chem. 2001, 22, 545-559.
- [29] P. Popelier, Atoms In Molecules: An Introduction; Pearson, Harlow, 2000.
- [30] a) F. C. Whitmore, P. J. Culhane, J. Am. Chem. Soc. 1929, 51, 602-605; b) L. K. A. Rahman, R. M. Scrowston, J. Chem. Soc. Perkin Trans. 1 1984, 385-390.
- [31] D. D. Perrin, W. L. F. Armarego, "Purification of Labratory Chemicals", Pergamon Press, 4th Edition, 1996.
- [32] S. R. Wilson, P. A. Zucker, R.-R. C. Huang, A. Spector, J. Am. Chem. Soc. 1989, 111, 5936-5939.
- [33] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Determination, University of Göttingen, Germany, 1974.
- [34] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nikai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Commi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrazewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghabachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford, CT, 2004.
- [35] a) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, *37*, 785-789; b) A.
 D. Becke, *J. Chem. Phys.* 1993, *98*, 5648-5652.
- [36] a) P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van E. Hommes, *J. Am. Chem. Soc.* 1996, *118*, 6317-6318; b) P. von R. Schleyer, M. Manoharan, Z.-X. Wang, B. Kiran, H. Jiao, R. Puchta, N. J. R. van E. Hommes, *Org. Lett.* 2001, *3*, 2465-2468; c) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. von R. Schleyer, *Chem. Rev.* 2005, *105*, 3842-3888; d) E. Kleinpeter, S. Klod, A. Koch, *THEOCHEM* 2007, *811*, 45-60.

Received: ((will be filled in by the editorial staff)) Revised: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff) Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011