Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃

Wenpo Shan, Fudong Liu*, Hong He, Xiaoyan Shi, Changbin Zhang

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

*Corresponding author. Tel: 86-10-62911040; Fax: 86-10-62911040; E-mail address: fdliu@rcees.ac.cn

Electronic Supplementary Information

Preparation of Ce_aW_bO_x, V₂O₅-WO₃/TiO₂ and Fe-ZSM-5 catalysts

The serial Ce-W mixed oxide catalysts were prepared by homogeneous precipitation method using cerium nitrate and ammonium tungstate as precursors. $(NH_4)_{10}W_{12}O_{41}$ with equal weight $H_2C_2O_4 \cdot 2H_2O$ were added to deionized water. After the dissolution of $(NH_4)_{10}W_{12}O_{41}$, the aqueous solution of $Ce(NO_3)_3 \cdot 6H_2O$ was added with required molar ratio (Ce/W = 2:1, 1:1 and 1:2). Excessive urea aqueous solution was then added into the mixed solution, with an urea/(Ce + W) molar ratio being 10:1. The mixed solution was then heated to 90 °C and held there for 12 h under vigorous stir. After filtration and washing with deionized water, the resulting precipitant was dried at 100 °C overnight and subsequently calcined at 500 °C for 5 h in air condition. The obtained catalysts were denoted as $Ce_aW_bO_x$, where "a/b" denotes the Ce/W molar ratio, such as $Ce_2W_1O_x$, $CeWO_x$ and $Ce_1W_2O_x$. Pristine CeO_x and WO_x were also prepared using the same method as reference samples for activity test and characterizations. The CeWO_x catalyst calcined at 800 °C for 1 h in air condition was also prepared to investigate its thermal stability for practical use, which was denoted as CeWO_x-800. Before the NH₃-SCR activity test, the power catalysts were pressed, crushed and sieved to 40-60 mesh.

In order to comprehensively evaluate the activity of Ce-W mixed oxide catalyst in this study, a conventional V_2O_5 -WO₃/TiO₂ catalyst with 4.5 wt.% V_2O_5 and 10

wt.% WO_3 and a Fe-ZSM-5 catalyst with an iron loading of 7 wt.% were prepared as reference materials.

The V₂O₅-WO₃/TiO₂ catalyst with 4.5 wt.% V₂O₅ and 10 wt.% WO₃ was prepared by conventional impregnation method using NH₄VO₃, (NH₄)₁₀W₁₂O₄₁, H₂C₂O₄·2H₂O as precursors and anatase TiO₂ as support. After impregnation, the excess water was removed in a rotary evaporator at 80 °C. The sample was dried at 100 °C overnight and then calcined at 550 °C for 3h in air condition.

The Fe-ZSM-5 catalyst with an iron loading of 7 wt.% was prepared by incipient wetness impregnation method using FeCl₂·4H₂O as precursor and H-ZSM-5 (Si/Al = 25) as support. FeCl₂·4H₂O was firstly dissolved in deionized water and then added to H-ZSM-5 to form a paste. The paste was aged for 24 h at room temperature and dried at 60 °C overnight. Finally, the sample was calcined in air condition at 550 °C for 6 h.

Characterizations

The surface areas of the catalysts were obtained from N_2 adsorption/desorption analysis at 77 K using a Quantachrome Quadrasorb SI-MP. Prior to the N_2 physisorption, the catalysts were degassed at 300 °C for 4 h. Surface areas were determined by BET equation in 0.05-0.35 partial pressure range.

Powder X-ray diffraction (XRD) measurements of $Ce_aW_bO_x$ serial catalysts were carried out on a computerized PANalytical X'Pert Pro diffractometer with Cu K α (λ = 0.15406 nm) radiation. The data of 2 θ from 20 to 80 ° were collected at 8 °/min with the step size of 0.07 °.

Visible Raman spectra of $Ce_aW_bO_x$ serial catalysts were collected at room temperature on a Spex 1877 D triplemate spectrograph with spectral resolution of 2 cm⁻¹. A 532 nm DPSS diode-pump solid semiconductor laser was used as the excitation source and the power output was about 40 mW. Before measurements, the samples were well ground and mounted into a spinning holder to avoid thermal damage during the scanning. The Raman signals were collected with conventional 90 ^o geometry and the time for recording each spectrum was about 1000 ms. All Raman spectra used in the paper were original and unsmoothed. The XPS of CeO_x , WO_x and $CeWO_x$ were recorded on a Scanning X-ray Microprobe (PHI Quantera, ULVAC-PHI, Inc.) using Al Ka radiation (1486.7 eV). Binding energies of Ce 3d and O 1s were calibrated using C 1s peak (BE = 284.8 eV) as standard.

The *in situ* DRIFTS experiments were performed on an FTIR spectrometer (Nicolet Nexus 670) equipped with a smart collector and an MCT/A detector cooled by liquid nitrogen. The reaction temperature was controlled precisely by an Omega programmable temperature controller. Prior to each experiment, the sample was pretreated at 400 °C for 0.5 h in a flow of 20 vol.% O_2/N_2 and then cooled down to 200 °C. The background spectrum was collected in flowing N₂ and automatically subtracted from the sample spectrum. The reaction conditions were controlled as follows: 300 ml/min total flow rate, 500 ppm NH₃, 500 ppm NO, 5 vol.% O_2 and N₂ balance. All spectra were recorded by accumulating 100 scans with a resolution of 4 cm⁻¹.

Influence of H₂O + CO₂ on the SCR activity of CeWO_x catalyst

Fig. S1 NH₃-SCR activity of CeWO_x catalyst in the presence of H₂O + CO₂. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol.%, 5 vol.% H₂O, 5 vol.% CO₂, N₂ balance and GHSV = 250,000 h⁻¹.

The description of Fig. S1was already shown in the main text.

BET surface area derived from N_2 physisortion and CeO_2 crystallite size calculated by Scherrer equation from XRD results

Sample	BET surface area (m²/g)	CeO ₂ crystallite size (nm)
CeO_x	46.1	17.6
$Ce_2W_1O_x$	44.4	8.8
CeWO _x	70.5	9.5
$Ce_1W_2O_x$	74.1	11.8
WO_x	6.1	_

Table S1 BET surface area and CeO₂ crystallite size of the catalysts

Raman spectra

Fig. S2 Raman spectra of $Ce_a W_b O_x$ serial catalysts ($\lambda_{ex} = 532$ nm). The peak at 465 cm⁻¹ is assigned to CeO₂, and the peaks at 280, 332, 720 and 811 cm⁻¹ are assigned to WO₃.

The visible Raman spectra of $Ce_aW_bO_x$ serial catalysts are presented in Fig. S2. The band at 465 cm⁻¹ is assigned to the Raman active F_{2g} mode of CeO₂, the typical band of a fluorite structural material.^{S1} The bands at 280 and 332 cm⁻¹ are assigned to the W-O-W bending modes (F_{2g}) of the bridging oxygen, and the bands at 720 and 811 cm⁻¹ are assigned to the W-O stretching mode (A_{Ig}) and W-O bending mode (E_g) , respectively.^{S2-S4} The lower band intensity of CeO₂ on Ce_aW_bO_x serial catalysts showed that the particle size of CeO₂ on the catalyst surface was rather small due to the inhibition of crystallization by W doping. In addition, no WO₃ species was detected at all, which was in well accordance with the XRD results in Fig. 4.

Normalized NH₃-SCR activity by BET surface area

Fig. S3 NH₃-SCR activity of the Ce-W mixed oxide catalysts normalized by BET surface area. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol.%, N₂ balance and GHSV = 250,000 h⁻¹.

In order to deduce the main active component in the Ce-W mixed oxide catalyst, we normalized the NO_x conversion over the catalysts with different Ce/W molar ratios using BET surface area (see Fig. S3). With the increase of Ce/W molar ratio, the normalized NO_x conversion showed a monotonic increase, indicating that small CeO₂ crystallite might be the main active component. Though the normalized NH₃-SCR activity of CeWO_x is lower than that of Ce₂W₁O_x, from the viewpoint of application we still chose CeWO_x as the model catalyst for further study due to its high apparent NH₃-SCR activity.

NO and NH₃ oxidation activity

In order to investigate the synergistic effect of Ce and W species in $CeWO_x$ catalyst, the separate NO oxidation (NO + O₂) and separate NH₃ oxidation (NH₃ + O₂) experiments were carried out.

The NO₂ production during separate NO oxidation reaction over CeO_x, WO_x and CeWO_x are shown in Fig. S4. The NO₂ production over CeWO_x is obviously higher than those over pristine CeO_x and WO_x in the low temperature range. Many studies have shown that, if the SCR catalyst can oxidize NO to NO₂ *in situ*, its low temperature SCR activity will be significantly enhanced due to the occurrence of "fast SCR" reaction.^{S5,S6} Therefore, the synergistic effect of CeO_x and WO_x could enhance the low temperature activity of CeWO_x, by promoting NO oxidation to NO₂ to facilitate the "fast SCR" reaction.

Fig. S4 NO₂ production during separate NO oxidation reaction over CeO_x, WO_x and CeWO_x. Reaction conditions: [NO] = 500 ppm, $[O_2] = 5$ vol.%, N₂ balance and GHSV = 250,000 h⁻¹.

The NH₃ oxidation activities of CeO_x, WO_x and CeWO_x are presented in Fig. S5. The NH₃ oxidation ability of CeWO_x is obviously higher than those of pristine CeO_x and WO_x, which means that synergistic effect of CeO_x and WO_x makes the CeWO_x catalyst more effective in NH₃ activation. Besides, the N₂ selectivity in NH₃ oxidation reaction over $CeWO_x$ catalyst was much higher than that over CeO_x , suggesting that the introduction of W species into $CeWO_x$ catalyst greatly suppressed the unselective oxidation of NH₃ to N₂O or NO_x, which is also beneficial to the enhancement of N₂ selectivity in NH₃-SCR reaction.

Fig. S5 Separate NH₃ oxidation activity and corresponding N₂ selectivity (inserted) over CeO_x, WO_x and CeWO_x. Reaction conditions: $[NH_3] = 500$ ppm, $[O_2] = 5$ vol.%, N₂ balance and GHSV = 250,000 h⁻¹.

XPS results

Fig. S6 XPS results of Ce 3d of CeO_x and $CeWO_x$.

The XPS results of Ce 3d on CeO_x and CeWO_x are shown in Fig. S6. The Ce 3d peaks were fitted by searching for the optimum combination of Gaussian bands with the correlation coefficients (r^2) above 0.99. The sub-bands labeled u' and v' represent the 3d¹⁰4f¹ initial electronic state corresponding to Ce³⁺, and the sub-bands labeled u, u", u", v, v", and v" represent the 3d¹⁰4f⁰ state of Ce⁴⁺.^{S7,S8} The Ce³⁺ ratio on CeWO_x (37.2%) calculated by Ce³⁺/(Ce³⁺ + Ce⁴⁺) is much higher than that on CeO_x (7.8%). The higher Ce³⁺ ratio in CeWO_x indicates the presence of more surface oxygen vacancies, which will facilitate the adsorption of oxygen species or activate reactants in SCR reaction.

Fig. S7 XPS results of O 1s of CeO_x , WO_x and $CeWO_x$.

The XPS results of O 1s on CeO_x, WO_x and CeWO_x are shown in Fig. S7. The O 1s peak was fitted into two sub-bands by searching for the optimum combination of Gaussian bands with the correlation coefficients (r^2) above 0.99. The sub-bands at lower binding energy (528.7-530.9 eV) corresponded to the lattice oxygen O²⁻ (denoted as O_β), and the sub-bands at higher binding energy (531.4-532.5 eV) corresponded to the surface adsorbed oxygen (denoted as O_α), such as O₂²⁻ or O⁻ belonging to defect-oxide or hydroxyl-like group.^{S9} The O_α ratio on CeWO_x (37.2%) calculated by O_α/(O_α + O_β) is much higher than those on CeO_x (7.8%) and WO_x (8.4%), which means that the synergistic effect between Ce and W species indeed resulted in more surface oxygen vacancies. Usually, O_α is more reactive in oxidation

reactions due to its higher mobility than O_{β} .^{S10} Therefore, the higher O_{α} ratio on CeWO_{*x*} is beneficial for the NO oxidation to NO₂ in the SCR reaction and thereafter facilitate the "fast SCR" reaction.

In situ DRIFTS study

Fig. S8 *In situ* DRIFTS of (A) NH₃ adsorption, (B) NO + O₂ adsorption, (C) NO + O₂ reacted with pre-adsorbed NH₃ species, and (D) NH₃ reacted with pre-adsorbed NO_x species at 200 $^{\circ}$ C on CeWO_x catalyst.

Band assignments: \$9,\$11-\$18

- (A) 1668 cm⁻¹ and 1419/1421 cm⁻¹: symmetric and asymmetric bending vibrations of ionic NH_4^+ ; 1591/1593 cm⁻¹ and 1190/1155 cm⁻¹: asymmetric and symmetric bending vibrations of coordinated NH_3 ; 1539/1549 cm⁻¹: scissoring vibration mode of NH_2 species; 3257 and 3350 cm⁻¹: N-H stretching vibration modes; 1620 cm⁻¹ and 3637, 3670 cm⁻¹: hydroxyl consumption due to the interaction with NH_3 to form NH_4^+ .
- (B) 1601/1558 cm⁻¹ and 1232/1219 cm⁻¹: bridging nitrate; 1578/1539 cm⁻¹: bidentate nitrate; 1549/1527 cm⁻¹: monodentate nitrate; 1508 cm⁻¹: unknown species.

- (C) 1603 and 1232 cm⁻¹: bridging nitrate; 1578 cm⁻¹: bidentate nitrate; 1549 cm⁻¹: monodentate nitrate; 1508 cm⁻¹: unknown species.
- (D) 1668 and 1419 cm⁻¹: symmetric and asymmetric bending vibrations of ionic NH₄⁺; 1591 and 1188 cm⁻¹: asymmetric and symmetric bending vibrations of coordinated NH₃; 1620 cm⁻¹: hydroxyl consumption due to the interaction with NH₃ to form NH₄⁺; 1556 cm⁻¹: bidentate nitrate with red shift; 1250 cm⁻¹: surface ammonium nitrate species.

The description of Fig. S8 was already shown in the main text.

References

- S1 M. Luo, J. Chen, L. Chen, J. Lu, Z. Feng and C. Li, *Chem. Mater.* 2001, **13**, 197.
- S2 S. S. Chan, I. Wachs, L. L. Murrell and N. C. Dispenziere, J. Catal., 1985, 92, 1.
- S3 C. Santato, M. Odziemkowski, M. Ulmann and J. Augustynski, J. Am. Chem. Soc. 2001, 123, 10639.
- S4 A. S. Mamede, E. Payen, P. Grange, G. Poncelet, A. Ion, M. Alifanti and V.I.
 Pârvulescu. J. Catal., 2004, 223, 1.
- S5 G. Qi and R. T. Yang, Appl. Catal., B, 2003, 44, 217.
- S6 F. Liu, H. He, C. Zhang, Z. Feng, L. Zheng, Y. Xie and T. Hu, *Appl. Catal.*, *B*, 2010, 96, 408.
- S7 L. Chen, J. Li and M. Ge, J. Phys. Chem. C, 2009, 113, 21177.
- S8 G. Li, D. Zhang and J. C. Yu, Phys. Chem. Chem. Phys., 2009, 11, 3775.
- S9 F. Liu, H. He, Y. Ding, C. Zhang, Appl. Catal., B, 2009, 93, 194.
- S10 Z. Wu, R. Jin, Y. Liu and H. Wang, Catal. Commun., 2008, 9, 2217.
- S11 Z. Liu, P.J. Millington, J.E. Bailie, R.R. Rajaram and J.A. Anderson, *Microporous Mesoporous Mater.*, 2007, 104, 159.
- S12 W.S. Kijlstra, D.S. Brands, H.I. Smit, E.K. Poels and A. Bliek, *J. Catal.*, 1997, 171, 219.
- S13 G.M. Underwood, T.M. Miller and V.H. Grassian, J. Phys. Chem. A, 1999, 103, 6184.
- S14 W.S. Kijlstra, D.S. Brands, E.K. Poels and A. Bliek, J. Catal., 1997, 171, 208.

- S15 G. Ramis, M.A. Larrubia and G. Busca, Top. Catal., 2000, 11-12, 161.
- S16 G. Busca, M.A. Larrubia, L. Arrighi and G. Ramis, *Catal. Today*, 2005, **107-108**, 139.
- S17 L. Lietti, G. Ramis, F. Berti, G. Toledo, D. Robba, G. Busca and P. Forzatti, *Catal. Today*, 1998, 42, 101.
- S18 N.Y. Topsøe, Science, 1994, 265, 1217.