Elegant Approach to Spacer Arranged Silagermylene and Bis(germylene) Compounds

Sankaranarayana Pillai Sarish, Sakya S. Sen, Herbert W. Roesky,* Ina Objartel, and Dietmar

Stalke*

Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.

Content:

- S1. Experimental Section
- S2. Crystallographic Details
- S3. References

S1. Experimental Section

All manipulations were performed under a dry and oxygen free atmosphere (N₂) using standard Schlenk techniques or inside a MBraun MB 150-GI glove box maintained at or below 1 ppm of O₂ and H₂O. All solvents were distilled from Na/benzophenone prior to use. The starting materials **1**,¹⁰ **2**,⁶ **3**,¹¹ and **6**¹⁸ are prepared using literature procedures. Other chemicals are purchased commercially and used as received. ¹H, ¹³C, ²⁷Al, and ²⁹Si NMR spectra were recorded on a Bruker Avance DRX instrument and referenced to the SiMe₄ in the case of the ¹H, ¹³C, and ²⁹Si NMR spectra. Elemental analyses were performed by the Analytisches Labor des Instituts für Anorganische Chemie der Universität Göttingen. EI-MS were measured on a Finnigan Mat 8230 or a Varian MAT CH5 instrument. Melting points were measured in sealed glass tubes with a Büchi melting point B 540 instrument.

Synthesis of 4. A solution of LSiCl (1) (0.295 g, 1.00 mmol) in toluene (10 mL) was added to a toluene (10 mL) solution of L¹Ge (3) (0.489 g, 1.00 mmol) at room temperature under stirring for 12 h. The solvent was removed in vacuum and the residue was dissolved in a mixture of *n*-pentane and toluene, concentrated and stored for crystallization at -32 °C in a freezer for 48 h. Compound 4 was obtained as yellow crystals. Yield (0.688 g, 87.7%); mp. 185-187 °C. ¹H NMR (500 MHz, C₆D₆): δ 7.27-7.14, 6.94-6.83 (m, 11H, Ar-*H*); 5.64 (s, 1H, *γ*CH), 4.33 (sept, 1H, CH(CH₃)₂), 4.10 (sept, 1H, CH(CH₃)₂), 3.68 (sept, 1H, CH(CH₃)₂), 3.49 (sept, 1H, CH(CH₃)₂), 2.79 (d, 1H, J = 10.76 Hz, NCCH₂), 2.39 (d, 1H, J = 10.71 Hz, NCCH₂), 1.84 (s, 3H, CH₃), 1.71 (d, 3H, J = 6.73 Hz, CH(CH₃)₂), 1.60 (d, 3H, J = 6.51 Hz, $CH(CH_3)_2$, 1.57 (d, 3H, J = 6.59 Hz, $CH(CH_3)_2$), 1.49 (d, 3H, J = 6.83 Hz, $CH(CH_3)_2$), 1.37 (d, 3H, J = 6.78 Hz, CH(CH₃)₂), 1.36 (d, 3H, J = 6.73 Hz, CH(CH₃)₂), 1.33 (d, 3H, J = 6.93Hz, $CH(CH_3)_2$), 1.25 (d, 3H, J = 6.77 Hz, $CH(CH_3)_2$), 1.03 (s, 9H, $C(CH_3)_3$), 0.70 (s, 9H, $C(CH_3)_3$ ppm; ¹³C NMR (125.77 MHz, C₆D₆): δ 171.8, 162.0, 161.3, 148.0, 146.7, 145.3, 145.0, 140.83, 140.76, 133.9, 130.0, 129.7, 129.5, 128.5, 127.6, 125.5, 125.3, 124.9, 124.0, 102.5, 53.1, 53.0, 41.6, 32.1, 31.2, 29.1, 28.9, 28.8, 28.7, 28.4, 27.9, 27.86, 25.2, 24.8, 24.6, S2 24.2, 23.6 ppm; ²⁹Si NMR (99.36 MHz, C₆D₆): δ 42.45 ppm. MS (70 eV): *m/z* (%): 475.2 (100) [M-LSi-Cl-Me]⁺, 784.5 (8) [M]⁺, Anal. calcd. for C₄₄H₆₃ClGeN₄Si (784.18): C, 67.39; H, 8.10; N 7.14. Found: C, 66.41; H, 8.29; N 6.94.

Synthesis of 5. A solution of LGeCl (2) (0.340 g, 1.00 mmol) in toluene (10 mL) was added to a toluene (10 mL) solution of $L^{1}Ge$ (3) (0.489 g, 1.00 mmol) at room temperature and stirred for 12 h. The solvent was removed in vacuum and the residue was dissolved in a mixture of *n*-pentane and toluene, concentrated and stored for crystallization at -5° C in a freezer for 48 h. Compound 5 was obtained as pale yellow crystals. Yield: (0.742 g, 89.59%); mp. 198-199 °C. ¹H NMR (500.13 MHz, C₆D₆): δ 7.15-7.13, 6.97-6.88 (m, 11H, Ar-H); 5.64 (s, 1H, \(\nuCH)\), 4.34 (sept, 1H, CH(CH_3)_2), 4.15 (sept, 1H, CH(CH_3)_2), 3.64 (sept, 1H, $CH(CH_3)_2$, 3.48 (sept, 1H, $CH(CH_3)_2$), 2.88 (d, 1H, J = 8.94 Hz, $NCCH_2$), 2.71 (d, 1H, J =8.92 Hz, NCCH₂), 1.83 (s, 3H, CH₃), 1.60 (d, 3H, J = 6.48 Hz, CH(CH₃)₂), 1.56 (2d, 6H, J =6.64 Hz, $CH(CH_3)_2$, 1.50 (d, 3H, J = 6.80 Hz, $CH(CH_3)_2$), 1.34 (3d, 9H, J = 7.01 Hz, $CH(CH_3)_2$), 1.24 (d, 3H, J = 6.78 Hz, $CH(CH_3)_2$), 0.94 (s, 9H, $C(CH_3)_3$), 0.67 (s, 9H, $C(CH_3)_3$ ppm. ¹³C NMR (125.77 MHz, C₆D₆): δ 172.4, 167.1, 161.7, 148.0, 147.1, 145.3, 144.6, 141.0, 140.7, 135.7, 129.7, 128.4, 127.6, 125.6, 125.3, 124.7, 124.0, 101.9, 53.1, 53.0, 46.1, 32.2, 31.5, 29.2, 28.8, 28.7, 28.6, 28.4, 27.9, 27.8, 25.1, 24.8, 24.4, 24.2, 24.1, 23.7 ppm. MS (70 eV): m/z (%): 475.2 (100) [M-LGe-Cl-Me]⁺, 830.3(4) [M]⁺ Anal. calcd. for C₄₄H₆₃ClGe₂N₄, (828.73): C, 63.77; H, 7.66; N, 6.76. Found: C, 64.4; H, 8.3; N, 5.7.

Synthesis of 7. A solution of LSiCl (1) (0.295 g, 1.00 mmol) in toluene (10 mL) was added to a toluene (10 mL) solution of L¹AlMe·thf (6) (0.531 g, 1.00 mmol) at room temperature and stirred for 12 h. The solvent was removed in vacuum and the residue was dissolved in a mixture of *n*-pentane and toluene, concentrated and stored for crystallization at -5°C in a freezer for 72 h. Compound 7 was obtained as an off-white solid. Yield: (0.656 g, 86.88%); mp. 116-117 °C. ¹H NMR (500.13 MHz, C₆D₆): δ 7.27-6.83, 6.94-6.83 (m, 11H, Ar-*H*); 5.71 (s, 1H, γ CH), 4.23 (sept, 1H, CH(CH₃)₂), 3.99 (sept, 1H, CH(CH₃)₂), 3.52 (sept, 1H, CH(CH₃)₂), 3.50 (sept, 1H, CH(CH₃)₂), 2.46 (d, 2H, J = 3.19 Hz, NCCH₂), 1.82 (s, 3H, CH₃), 1.62 (d, 3H, J = 6.76 Hz, CH(CH₃)₂), 1.57 (d, 3H, J = 6.73 Hz, CH(CH₃)₂), 1.55 (d, 3H, J = 6.88 Hz, CH(CH₃)₂), 1.53 (d, 3H, J = 6.57 Hz, CH(CH₃)₂), 1.39 (d, 3H, J = 6.80 Hz, CH(CH₃)₂), 1.36 (d, 3H, J = 6.85 Hz, CH(CH₃)₂), 1.28 (d, 3H, J = 6.86 Hz, CH(CH₃)₂), 1.18 (d, 3H, J = 6.99 Hz, CH(CH₃)₂), 0.96 (s, 9H, C(CH₃)₃), 0.95 (s, 9H, C(CH₃)₃), -0.50 (s, 3H, Al-Me) ppm. ¹³C NMR (125.77 MHz, C₆D₆): δ 177.6, 167.5, 161.1, 146.7, 146.6, 144.5, 144.0, 140.8, 140.5, 134.1, 130.0, 129.7, 129.3, 128.7, 127.2, 125.6, 125.24, 125.20, 124.5, 124.0, 99.8, 53.3, 53.2, 42.2, 31.8, 31.7, 29.1, 28.8, 28.4, 28.2, 28.1, 27.3, 25.7, 25.5, 25.0, 24.8, 24.4, 24.1, 23.6, -10.8 ppm. ²⁹Si NMR (99.36 MHz, C₆D₆): δ 41.16 ppm. MS (70 eV): m/z (%): 479.2 (100) [M-LSi-Me]⁺, 753 (20) [M]⁺. Anal. calcd. for C₄₅H₆₆AlClN₄Si, (753.55): C, 71.72; H, 8.83; N, 7.44. Found: C, 70.3; H, 8.2; N, 7.3.

S2. Crystallographic details for compounds 4 and 5

A shock cooled crystal was selected and mounted under nitrogen atmosphere using the X-TEMP2.^{S1} The data sets were collected on an INCOATEC Microfocus with mirror optics instrument equipped with a Bruker Apex II detector (Mo K α radiation, $\lambda = 0.71073$ Å, 100K).^{S2} The integration was performed with SAINT V7.68A^{S3}, which was followed by an empirical absorption correction with SADABS 2008/1.^{S4} The structures were solved by direct methods (SHELXS)^{S5} and refined against F^2 using the full-matrix least-squares methods with SHELXL.^{S6} All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were refined isotropically on calculated positions using a riding model except H16A, H16B, and H18 in **4** which was found and refined freely.

Table 1.	X-ray	data	for	com	oound	4	and	5
----------	-------	------	-----	-----	-------	---	-----	---

	4	5
empirical formula	C44H63ClGeN4Si	$C_{44}H_{63}ClGe_2N_4$
CCDC number	819683	819684

formula weight	784.11	828.61	
T(K)	99(2)	100(2)	
crystal system	monoclinic	monoclinic	
space group	$P2_{1}/n$	$P2_1/n$	
<i>a</i> (Å)	13.1815(10)	13.207(2)	
b (Å)	22.4798(17)	22.515(3)	
<i>c</i> (Å)	15.2220(11)	15.273(2)	
β (°)	106.3880(10)	106.601(2)	
$V, (\text{\AA}^3)$	4327.3(6)	4352.4(11)	
Ζ	4	4	
$\rho_{\text{calc}} (\text{Mg m}^{-3})$	1.204	1.265	
$\mu (\text{mm}^{-1})$	0.831	1.476	
<i>F</i> (000)	1672	1744	
reflections collected	96322	90869	
data/restraints/parameters	9189 / 0 / 487	7962 / 0 / 475	
GooF	1.047	1.038	
$R1, wR2[I > 2\sigma(I)]^{a}$	0.0318, 0.0673	0.0325, 0.0642	
R1, $wR2$ (all data)	0.0453, 0.0722	0.0459, 0.0690	
largest diff peak, hole (e Å ⁻³)	0.571, -0.313	0.710, -0.474	

Fig. 2 Molecular structure of **5**. The anisotropic displacement parameters are depicted at the 50% probability level. All hydrogen atoms are omitted for clarity.

S3. References

 (S1). (a) T. Kottke and D. Stalke, J. Appl. Crystallogr. 1993 26, 615-619. (b) D. Stalke, Chem. Soc. Rev. 1998, 27, 171-178.

- (S2). T. Schulz, K. Meindl, D. Leusser, D. Stern, J. Graf, C. Michaelsen, M. Ruf, G. M. Sheldrick and D. Stalke, J. Appl. Crystallogr. 2009, 42, 885-891.
- (S3). Bruker SAINT v7.68A, WI, USA, Madison, 2009.
- (S4). G. M. Sheldrick, SADABS 2008/1, Göttingen, 2008.
- (S5). G. M. Sheldrick, SHELXS in SHELXTL v2008/4, WI, USA, Madison, 2008.
- (S5). G. M. Sheldrick, SHELXS in SHELXTL v2008/4, WI, USA, Madison, 2008.