2,2'-Bipyridinyl Carboranes as *B*,*N*,*N*-ligands in Cyclometallated Complexes of Platinum(II)

Anton M. Prokhorov, *^a Pavel A. Slepukhin,^b Vladimir L. Rusinov,^a Valery N. Kalinin,^c and Dmitry N. Kozhevnikov^{a,b}

 ^a Ural Federal University, Mira 28, Ekaterinburg, Russia. Tel: +7 343 3754501; E-mail: <u>aprohor@yandex.ru</u>
 ^b I. Postovsky Institute of Organic Synthesis, Kovalevskoy 20, Ekaterinburg, Russia. E-mail: <u>dnk@ios.uran.ru</u>
 ^c Institute of Organoelement Compounds, Vavilova 28, Moscow, Russia.

Electronic Supplimentary Information (ESI)

General Information

All chemicals and solvents were used as supplied, unless noted otherwise. The ligands were prepared according to following procedure or were described earlier (see references).

Absorption spectra were measured on a Shimadzu UV-2450 spectrometer, using quartz cuvettes of 1 cm pathlength. Steady-state luminescence spectra were measured using a Varian Cary Eclipse spectrofluorimeter. De-aerating was achieved by bubbling argon through the solution for 10 min. Measurements at 77 K were recorded using a Oxford Instruments Optistat DN cryostat with the sample held in 4 mm o.d. quartz tubes.

The ¹H- and ¹³C NMR spectra were recorded using a Bruker Avans II 400 running Delta (400 MHz for ¹H; 100 MHz for ¹³C). Data are expressed in parts per million downfield shift from tetramethylsilane as an internal standard or relative to $CDCl_3$. All *J* values are given in Hz. Assignments are made with the calculation of the constant coupling.

Mass spectra were recorded using a Bruker Daltronics microTOF spectrometer operating in electrospray ionisation (ESI) mode.

Values were obtained in Institute of Organic Synthesis, Russian Academy of Science, Kovalevskoy 20, Ekaterinburg, on CE-440 Elemental Analyser. Calibration performed against acetanilide standards and checked by the use of *S*-benzyl thiouronium chloride as internal standard. Carrier gas is CP-grade Helium and combustion gas is N5.5 grade Oxygen, both from BOC.

Ligand Preparation

General procedure for preparation of 1-(3,6-disubstituted-1,2,4-triazine-5-yl)-1,2-dicarba-*closo*-dodecaboranes (5):

A 1.6 M solution of *n*-butyllithium in pentane (1.10 mmol, 0.69 mL) was added to a solution of corresponding carborane (1.20 mmol) in dry THF (20 mL) at room temperature under argon atmosphere. The resulting solution of carboranyllithium was added dropwise to a suspension of corresponding 6-aryl-1,2,4-triazine 4-oxide¹ **4** (1 mmol) in dry THF (15 mL) at -40 °C, and the mixture was stirred and allowed slowly . When the mixture had become a clear solution, dimethylcarbamyl chloride (1.1 mmol, 0.101 mL) was added. The solvent was removed, and the residue was treated with hot toluene (40 mL). The toluene solution was separated from solids by

Kozhevnikov, V. N.; Kozhevnikov, D. N.; Nikitina, T. V.; Rusinov, V. L.; Chupakhin, O. N.; Zabel, M.; Koenig., B. J. Org. Chem. 2003, 68, 2882.

filtration, and the solvent was removed. The residue was dissolved in acetonitrile (10 mL) and cooled down in a fridge to form yellow crystals of triazinyl carborane **5** which were filtered off.

1-[6-(4-Methylphenyl)-3-(2-pyridyl)-1,2,4-triazine-5-yl]-2-phenyl-1,2-dicarba-*closo*-dodecaborane (5a):

Yield 210 mg, 45%. M.p. 171 °C. ¹H NMR (CDCl₃), δ : 8.92 (1H, d, ³*J* = 4.5 Hz, Py⁶), 8.42 (1H, d, ³*J* = 8.0 Hz, Py³), 7.97 (1H, dd, ³*J*₁ = ³*J*₂ = 8.0 Hz, Py⁴), 7.58-7.54 (3H, m, Tol+Py⁵), 7.08 (2H, m, Tol), 2.46 (3H, s, CH₃), 1.20–3.40 (br.m, 10H, B-H). ¹¹B{¹H} NMR (CDCl₃), δ : –1.4 (2B), –3.5 (2B), –10.3 (6B). Anal. Calcd for C₂₃H₂₆B₁₀N₄: C, 59.21; H, 5.62; N, 12.10. Found: C, 59.33; H, 5.56; N, 12.26.

1-[6-(4-Bromophenyl)-3-(2-pyridyl)-1,2,4-triazine-5-yl]-2-methyl-1,2-dicarba-*closo*-dodecaborane (5b):

Yield 255 mg, 54%. M.p. 167 °C. ¹H NMR (CDCl₃), δ : 8.95 (1H, d, ³*J* = 4.5 Hz, Py⁶), 8.57 (1H, d, ³*J* = 8.0 Hz, Py³), 7.99 (1H, dd, ³*J*₁ = ³*J*₂ = 8.0 Hz, Py⁴), 7.71 (2H, m, Ar), 7.56 (1H, dd, ³*J*₁ = 4.5, ³*J*₂ = 8.0 Hz, Py⁵), 7.37 (2H, m, Ar), 1.85 (3H, s, CH₃), 3.20–1.40 (br.m, 10H, B-H). ¹¹B{¹H} NMR (CDCl₃), δ : -1.6 (2B), -3.7 (2B), -10.4 (6B). Anal. Calcd for C₁₇H₂₁B₁₀BrN₄ : C, 43.50; H, 4.51; N, 11.94. Found: C, 43.33; H, 5.48; N, 11.96.

General procedure for preparation of bipyridyl carboranes (1):

A triazinyl carborane 5 (0.5 mmol) and 2,5-norbornadiene (0.27 mL, 2.5 mmol) were dissolved in toluene (20 mL) and stirred under reflux for 5 h. Then solvent was removed under reduced pressure, and the residue was treated with acetonitrile (10 mL) to form colorless crystals of bipyridyl carborane **1** which were filtered off.

1-[5-(4-Methylphenyl)-2,2'-bipyridine-6-yl]-2-phenyl-1,2-dicarba-*closo*-dodecaborane (1a):

Yield 209 mg, 90%. M.p. 183 °C. ¹H NMR (CDCl₃), δ : 8.67 (1H, d, ³*J* = 4.0 Hz, H6'), 8.53 (1H, d, ³*J* = 8.0 Hz, H3'), 8.26 (1H, d, ³*J* = 8.0 Hz, H4), 7.93 (1H, dd, ³*J*₁ = 7.5, ³*J*₂ = 8.0 Hz, H4'), 7.38 (1H, dd, ³*J*₁ = 7.5, ³*J*₂ = 4.0 Hz, H5'), 7.32 (1H, d, ³*J* = 8.0 Hz, H3), 7.28-7.06 (7H, m, Ar), 6.66 (2H, m, Ar), 2.45 (3H, s, CH₃), 1.50–3.50 (br.m, 10H, B-H). ¹¹B{¹H} NMR (CDCl₃), δ : –1.6 (2B), –3.7 (2B), –10.5 (6B). Anal. Calcd for C₂₅H₂₈B₁₀N₂: C, 64.63; H, 6.07; N, 6.03. Found: C, 64.79; H, 5.98; N, 5.99.

1-[5-(4-Bromophenyl)-2,2'-bipyridine-6-yl]-2-methyl-1,2-dicarba-*closo*-dodecaborane (1b):

Yield 205 mg, 88%. M.p. 177 °C. ¹H NMR (CDCl₃), δ : 8.68 (1H, d, ³*J* = 4.0 Hz, H6'), 8.55 (1H, d, ³*J* = 8.0 Hz, H3'), 8.25 (1H, d, ³*J* = 8.0 Hz, H4), 7.95 (1H, dd, ³*J*₁ = 7.5, ³*J*₂ = 8.0 Hz, H4'), 7.56 (2H, m, Ar), 7.41 (1H, dd, ³*J*₁ = 7.5, ³*J*₂ = 4.0 Hz, H5'), 7.35 (1H, d, ³*J* = 8.0 Hz, H3), 7.30 (2H, m, Ar), 1.88 (3H, s, CH₃), 1.50–3.50 (br.m, 10H, B-H). ¹¹B{¹H} NMR (CDCl₃), δ : -1.4 (2B), -3.6 (2B), -10.1 (6B). Anal. Calcd for C₁₉H₂₃B₁₀BrN₂ : C, 48.82; H, 4.96; N, 5.99. Found: C, 48.73; H, 5.01; N, 5.86.

Complex 2a:

Bipyridinyl carborane **1a** (250 mg, 0.54 mmol) was dissolved in boiling acetonitrile (20 mL), and a water solution (5 mL) of potassium tetrachloroplatinate (223 mg, 0.54 mmol) was added to the mixture. This was stirred and refluxed for 72 h with control of consumption of starting material by TLC. After reaction was completed the solvent was removed and complex **2a** was isolated by coloumn chromatography on silica (eluent – ethylacetate). The product was purified by crystallization from acetonitrile to give yellow crystals of **2a**. A single crystal for X-ray analysis was grown by slow evaporation of acetonitrile solution. Yield 53% (200 mg, 0.29 mmol). ¹H NMR (CDCl₃), δ : 9.19 (1H, dd, ${}^{3}J = 5.0$, ${}^{4}J = 1.0$ Hz, H6'), 8.07 (3H, m, H4'+Ar), 7.97 (1H, d, ${}^{3}J = 8.0$ Hz, H3'), 7.86 (1H, d, ${}^{3}J = 8.0$ Hz, H4), 7.78 (1H, dd, ${}^{3}J_{1} = 8.0$, ${}^{3}J_{2} = 5.0$, Hz, H5'), 7.74 (1H, ${}^{3}J = 8.0$ Hz, H3), 7.38 (1H, m, Ar), 7.39-7.21 (4H, m, Ar), 7.10-7.04 (3H, m, Ar), 2.52 (3H, s, Me), 3.40-1.60 (9H, br.m, B-H). ${}^{11}B{}^{1}H{}$ NMR (CDCl₃), δ : -0.3 (2B), -3.7 (2B), -5.2 (1B), -8.9 (2B), -10.8 (1B), -12.4 (1B). ESI-MS, m/z: found 695.2547, calcd. 695.2573 for C₂₅H₂₇B₁₀ClN₂Pt.

X-ray data: A single crystal for X-ray analysis was grown by slow evaporation of

acetonitrile solution.

Complex 2b:

Bipyridinyl carborane **1b** (250 mg, 0.54 mmol) was dissolved in boiling acetonitrile (20 mL), and a water solution (5 mL) of potassium tetrachloroplatinate (222 mg, 0.54 mmol) was added to the mixture. This was stirred and refluxed for 72 h with control of consumption of starting material by TLC. After reaction was completed the solvent was removed and complex **2b** was isolated by coloumn chromatography on silica (eluent – ethylacetate). The product was purified by crystallization from acetonitrile to give yellow crystals of **2b**. Yield 46% (175 mg, 0.25 mmol). ¹H NMR (CDCl₃), δ : 9.32 (1H, dd, ³*J* = 4.5, ⁴*J* = 1.0 Hz, H6'), 8.18 (2H, m, H4'+ H3'), 7.97 (2H, m, H3+H4), 7.90 (1H, dd, ³*J*₁ = 8.0, ³*J*₂ = 5.0, Hz, H5'), 7.62 (2H, m, Ar), 7.22 (1H, m, Ar), 7.03 (1H, m, Ar), 1.96 (3H, s, Me), 3.40-1.60 (9H, br.m, B-H). ¹¹B{¹H} NMR (CDCl₃), δ : -0.3 (2B), -3.4 (2B), -5.2 (1B), -8.3 (2B), -10.2 (1B), -12.3 (1B). ESI-MS, m/z: found 697.1267, calcd. 697.1223 for C₁₉H₂₂B₁₀BrClN₂Pt.

Complex 3b:

Complex **2b** (100 mg, 0.14 mmol) was dissolved in boiling acetonitrile, and anhydrous potassium carbonate and phenylacetylene were added. The mixture was stirred and refluxed for 24 h. Then solids were filtered off and solvent was removed. The residue was washed with toluene (3x10 mL) and dissolved in boiling acetonitrile (10 mL). The resulting acetonitrile solution was kept in fridge to give yellow crystals of **3b**, which were collected by filtration. A single crystal for X-ray analysis was grown on slow cooling of acetonitrile solution. Yield 46% (55 mg, 0.07 mmol). ¹H NMR (CDCl₃), δ : 9.26 (1H, dd, ³*J* = 5.0, ⁴*J* = 1.0 Hz, H6'), 8.39 (1H, d, ³*J* = 8.0 Hz, H3'), 8.31 (2H, m, H4'+H4), 8.04 (1H, ³*J* = 8.0 Hz, H3), 7.91 (1H, dd, ³*J* = 8.0, ³*J*₂ = 5.0, Hz, H5'), 7.66 (2H, m, Ar), 7.40-7.26 (6H, m, Ar), 7.16 (1H, m, Ar), 1.83 (3H, s, Me), 3.40-1.60 (9H, br.m, B-H). ¹¹B{¹H} NMR (CDCl₃), δ : -0.3 (2B), -2.9 (2B), -5.5 (1B), -7.9 (2B), -9.5 (1B), -12.2 (1B). ESI-MS, m/z: found 763.1954, calcd. 763.1936 for C₂₇H₂₇B₁₀BrN₂Pt.

Computational methods

For all calculations, the Orca 2.8.0 package of programs was used.² In the RKS-DFT calculations

² "Orca 2.8.0. " – calculation program package. F. Neese *et al.*, Universitaet Bonn, Bonn, Germany, 2010.

the B3LYP hybrid functional was applied.^{3,4} The metals were described by the Stuttgart-Dresden⁵ effective core potential (treating the valence electrons explicitly) using the Ahlrichs def2-TZVP⁶ basis set of triple- ζ quality together with the Ahlrichs auxiliary basis set (def2-TZVP/J)⁷, while the Ahlrichs triple- ζ basis set TZVP⁸ and TZVP/J auxiliary basis were used for non-metal atoms. The COSMO solvation model⁹ was used to calculate solvent effect in DCM ($\varepsilon = 9.08$, $n_D = 1.424$). The ground state geometries of the complexes were fully optimized without symmetry constraints. To accelerate calculations we employed the RIJCOSX approximation combining RI-J method and COSX approximation. It means, that in performing two electron integrals, the first integration is done numerically on a grid and the second (involving the Coulomb singularity) is done analytically.¹⁰

Figure S1. Calculated geometries of the Pt complexes

- ³ A.D. Becke, J. Chem. Phys. **1993**, 98, 5648.
- ⁴ C. Lee, W. Yang and R.G. Parr, *Phys. Rev. B* **1988**, *37*, 785.
- ⁵ D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta* **1990**, 77, 123.
- ⁶ F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297.
- ⁷ F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057.
- ⁸ A. Schaefer, H. Horn, R. Ahlrichs, *J. Chem. Phys.* **1992**, *97*, 2571.
- ⁹ A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2, **1993**, 799.
- ¹⁰ F. Neese, F. Wennmohs, A. Hansen, U. Becker, *Chem. Phys.* **2009**, *356*, 98.

Figure S2. Contour plots of the frontier molecular orbitals in the ground state of the Pt complexes.

Crystallographic Data

X-ray structures were determined using a Oxford Diffraction Xcalibur S system (MoK_{α} radiation, $\lambda = 0.71093$ Å, graphite monochromator, $\omega/2\theta$ scan). Analytical absorptions correction was performed.¹¹ Structure solution and structure refinement was performed using *SHELXL-97* program package.^{12,13} Nonhydrogen atoms were refined by full-matrix least-squares procedures (with F^2) in an anisotropic approximation. H-atoms were added in calculated positions and refined in an isotropic approximation in the "riding" model.

Crystallographic data (excluding structure factors) for structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 817579 & 817580. Copies of the data can be obtained free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 (0) 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk). Abbreviated crystallographic data are given in Table S1.

 Table S1. Crystal data and structure refinement

¹¹ Clark, R. C., Reid, J. S Acta Crystallogr., Sect. A: Found. Crystallogr. **1995**, 51, 887.

¹² Sheldrick G. M., *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, *64*, 112.

¹³ "SHELXL-97" - program for the Refinement of Crystal Structures. G. M. Sheldrick, University of Göttingen, Göttingen, Germany, 1997.

	2a	3b
Crystal size, mm	0.12x0.08x0.04	0.15x0.11x0.05
Crystal color	orange	orange
Empirical formula	$C_{25}H_{27}B_{10}ClN_2Pt$	$C_{27}H_{27}B_{10}BrN_2Pt$
Formula weight	694.13	762.61
Temperature, K	295(2)	295(2)
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_1/n$	Pbca
a, Å	10.7374(7)	17.4108(4)
b, Å	15.9467(10)	16.0201(9)
c, Å	16.1973(12)	21.0923(12)
α, °	90	90
β, ^o	92.138(5)	90
γ, ⁰	90	90
Volume, Z	2771.5(3) Å ³ , 4	$5883.1(5) \text{ Å}^3, 8$
μ , mm ⁻¹	5.180	6.151
$D_{calc}, g/cm^3$	1.664	1.722
θ range for data collection, ^o	$2.65 \text{ to } 28.30^{\circ}$	2.72 to 26.39
Reflections collected	11046	22833
Independent reflections(R _{int})	6469 (0.0510)	5997(0.0449)
Reflections with $I \ge 2\sigma(I)$	3156	3178
Completeness (to θ , °)	96.5 % (26.00)	99.5 % (26.39)
S	0.996	1.006
$R_1[I \ge 2\sigma(I)]$	0.0393	0.0255
$WR_2[I \ge 2\sigma(I)]$	0.0540	0.0359
R_1 (all data)	0.1099	0.0689
wR_2 (all data)	0.0698	0.0373
Largest diff. peak and hole, $\bar{e}/Å^3$	1.343/-1.392	1.134/-0.546

Figure S3. Molecular structure of 2a

Figure S4. Crystal packing of 2a

Table S2. Bond lengths [A] and angles [deg]	for 2a
---	--------

Pt1	B10	1.903(9)	В	3	B5	1.767(12)
Pt1	N1	1.951(6)	В	33	B10	1.814(12)
Pt1	N2	2.118(6)	B	3	Н3	1.1000
Pt1	Cl1	2.284(2)	B	310	B8	1.805(11)
N1	C12	1.384(8)	C	24	C5	1.380(10)
N1	C8	1.386(7)	C	24	H4A	0.9300
C1	C20	1.572(9)	C	25	C6	1.354(10)
C1	C2	1.685(9)	C	25	H5A	0.9300
C1	B2	1.715(10)	B	85	B6	1.748(13)
C1	B3	1.724(11)	B	85	B9	1.766(15)
C1	B4	1.735(11)	B	85	Н5	1.1000
C1	B10	1.841(12)	C	C6	C7	1.371(9)
B1	B8	1.742(13)	C	C6	H6A	0.9300
B1	B6	1.745(13)	B	6	B8	1.734(11)
B1	B5	1.758(13)	B	6	B9	1.778(15)
B1	B3	1.773(12)	B	6	B7	1.805(13)
B1	B10	1.826(11)	B	6	H6	1.1000
B1	H1	1.1000	C	27	C8	1.470(9)
N2	C3	1.318(9)	B	37	B8	1.769(12)
N2	C7	1.374(8)	B	37	B9	1.768(12)
C2	C12	1.536(8)	B	37	B4	1.783(12)
C2	B7	1.709(9)	B	37	H7	1.1000
C2	B8	1.725(10)	B	88	H8	1.1000
C2	B4	1.727(11)	C	28	C9	1.361(9)
C2	B10	1.843(11)	C	29	C10	1.342(9)
B2	B9	1.756(12)	C	29	H9A	0.9300
B2	B3	1.784(13)	B	19	B4	1.803(13)
B2	B4	1.821(12)	B	19	H9	1.1000
B2	B5	1.821(14)	C	C10	C11	1.387(8)
B2	H2	1.1000	C	C10	H10A	0.9300
C3	C4	1.397(9)	B	34	H4	1.1000
C3	H3A	0.9300	C	211	C12	1.402(9)

						_	
C11	C13	1	1.479(9)	C19	H19	В	0.9600
C13	C18		1.391(9)	C19	H19	C	0.9600
C13	C14	C14 1.399(8)		C20	C25		1.407(10)
C14	C15	C15 1.353(9)		C20	C21		1.428(11)
C14	H14	Α	0.9300	C21	C22		1.348(10)
C15	C16		1.416(10)	C21	H21	Α	0.9300
C15	H15	A	0.9300	C22	$\overline{C23}$		1.324(11)
C16	C17		1.371(9)	C22	H22	A	0.9300
C16	C19	1	1.371(9) 1 476(10)	C22	C24		1.392(12)
C10 C17	C19		1.470(10)	C23	U27		0.9300
C17	C10 H17	^ A	1.302(9)	C23	112.3 C 25		1.462(0)
C18	H17 H18		0.9300	C24	U23	•	0.0300
C10 C10	1110 1110		0.9500	C24 C25	1124 U25		0.9300
019	п19		0.2000	C23	п23		0.2500
D10	D /4						110.0
B10	Ptl	NI	87.6(3)	B10	BI	HI	119.0
B10	Pt1	N2	167.0(3)	C3	N2	C7	118.3(7)
N1	Pt1	N2	80.0(2)	C3	N2	Pt1	128.8(6)
B10	Pt1	Cl1	94.3(3)	C7	N2	Pt1	112.9(5)
N1	Pt1	Cl1	177.80(16)	C12	C2	C1	117.6(5)
N2	Pt1	Cl1	98.15(19)	C12	C2	B7	126.6(6)
C12	N1	C8	117.9(6)	C1	C2	B7	109.7(5)
C12	N1	Pt1	124.1(4)	C12	C2	B8	119.8(6)
C8	N1	Pt1	118.0(5)	C1	C2	B8	108.1(6)
C20	C1	C2	117.0(5)	B7	C2	B8	62.0(5)
C20	C1	B2	121.5(6)	C12	C2	B4	122.4(6)
C2	C1	B2	111.1(5)	C1	C2	B4	61.1(4)
C20	C1	B3	123.7(6)	B7	C2	B4	62.5(5)
C2	C 1	B3	109.6(6)	B8	C2	B4	112.9(5)
B2	C1	B3	62.5(5)	C12	C2	B10	108.9(5)
C20	C1	R4	115.2(7)	C1	$\tilde{C2}$	B10	62.7(4)
C2	Č1	B4	60.6(4)	B7	C2	B10	113.9(6)
B2	C1	R4	63.7(5)	B8	C2	B10	60.7(4)
B3	C1	R4	114,3(6)	R4	C2	R10	116.1(5)
C20	C1	R10	115 8(6)		R2	R9	104 5(6)
C^2	C1	R10	67 9(4)		R2	R3	59 0(5)
B2	C1	B10 B10	1147(6)	R9	B2 B2	B3	105 5(8)
R3	C1	B10	61 1(5)		R2	R4	587(4)
R4	C1	R10	115 8(5)	RQ	R2	R4	60.7(+)
R8	R1	R6	59 6(5)	R3	R)	R/	107 5(6)
R8	R1	D0 R5	106 0(7)		D2 R)	R5	107.3(0) 104.7(7)
DO R6	D1 D1	D3 D <i>2</i>	500.7(7)		D2 D1	DJ D <i>5</i>	10+.7(7)
	DI D1	D3 D2	J7.7(J) 105 6(7)	D7 D2	D∠ D2	DJ D <i>5</i>	37.1(0)
DO De	DI D1	ДЈ 112	103.0(7) 107.1(9)	DJ D4	D2 D2	DJ D <i>5</i>	JO. /(J)
	DI D1	БЈ 112	$10/.1(\delta)$		D⊿ D2	D3 112	108.2(7)
D3 D0	ĎI D1	ВЭ D10	00.1(3)		B2 D2	H2	124.4
В ð	В1 В1	B10	00./(4)	BY B2	B2	HZ	123.3
В0 D5	B1 D1	B10	110.8(7)	B3	B2	HZ	122.8
B5	BI	B10	110.9(7)	B4	B2	H2	121.1
B 3	B1	B10	60.5(4)	B5	B2	H2	122.7
B8	B1	H1	123.3	N2	C3	C4	121.2(8)
B6	B1	H1	121.3	N2	C3	H3A	119.4
B5	B1	H1	121.2	C4	C3	H3A	119.4
B3	B1	H1	123.1	C1	B3	B5	106.7(7)

C1	B3	B1	107.6(6)	C7	C6	H6A	120.6
B5	B3	B1	59.6(5)	B8	B6	B1	60.1(5)
C1	B3	B2	58.5(5)	B8	B6	B5	107.7(6)
B5	B3	B2	61.7(5)	B1	B6	B5	60.4(5)
B1	B3	B2	109.7(7)	B8	B6	B9	106.3(6)
C1	B3	B10	62.6(4)	B1	B6	B9	108.1(7)
B5	B3	B10	111.1(6)	B5	B6	B9	60.1(5)
B1	B3	B10	61.2(5)	B8	B6	B7	60.0(5)
B2	B3	B10	112.6(6)	B1	B6	B7	108.9(6)
C1	B3	H3	123.0	B5	B6	B7	108.3(7)
B5	B3	Н3	121.4	B9	B6	B7	59.1(5)
B1	B3	H3	121.8	B8	B6	H6	122.5
B2	B3	H3	119.9	B1	B6	H6	121.0
B10	B3	Н3	117.9	B5	B6	H6	121.4
B8	B10	B3	101.3(6)	B9	B6	H6	122.6
B8	B10	B1	57.3(5)	B7	B6	H6	121.5
B3	B10	B1	58.3(4)	C6	C7	N2	122.6(7)
B8	B10	C2	56.4(4)	C6	C7	C8	122.8(7)
B3	B10	C2	99.2(6)	N2	C7	C8	114.5(7)
B1	B10	C2	100.7(6)	C2	B7	B8	59.4(4)
B8	B10	C1	98.5(6)	C2	B7	B9	105.2(6)
B3	B10	C1	56.3(4)	B8	B7	B9	105.2(7)
B1	B10	C1	100.6(6)	C2	B7	B4	59.2(4)
C2	B10	C1	54.4(4)	B8	B7	B4	108.2(6)
B8	B10	Pt1	121.0(5)	B9	B7	B4	61.0(5)
B3	B10	Pt1	137.3(5)	C2	B7	B6	105.4(6)
B1	B10	Pt1	141.2(6)	B8	B7	B6	58.1(5)
C2	B10	Pt1	108.3(4)	B9	B7	B6	59.7(6)
C1	B10	Pt1	117.1(5)	B4	B7	B6	109.6(6)
C5	C4	C3	119.6(8)	C2	B7	H7	123.8
C5	C4	H4A	120.2	B8	B7	H7	123.0
C3	C4	H4A	120.2	B9	B7	H7	123.1
C6	C5	C4	119.5(8)	B4	B7	H7	120.2
C6	C5	H5A	120.2	B6	B7	H7	122.3
C4	C5	H5A	120.2	C2	B8	B6	107.8(6)
B6	B5	B1	59.7(5)	C2	B8	B1	109.1(6)
B6	B5	B9	60.8(5)	B6	B8	B1	60.3(5)
B1	B5	B9	108.0(7)	C2	B8	B7	58.6(4)
B6	B5	B3	107.3(6)	B6	B8	B7	62.0(5)
B1	B5	B3	60.4(5)	B1	B8	B7	110.7(7)
B9	B5	B3	105.8(7)	C2	B8	B10	62.9(4)
B6	B5	B2	108.0(7)	B6	B8	B10	112.3(7)
B1	B5	B2	108.7(6)	B1	B8	B10	61.9(5)
B9	B5	B2	58.6(5)	B 7	B8	B10	112.9(6)
B3	B5	B2	59.6(5)		B8	H8	122.3
B6	B5	H5	121.6	B6	B8	H8	120.6
B1	B5	H5	121.1	B1	B8	H8	120.8
B9	B5	H5	122.6	B7	B8	H8	119.8
B3	B5	H5	122.7	B10	B8	H8	117.4
B2	B5	H5	121.8	C9	C8	N1	120.8(7)
C5	C6	C7	118.8(8)	C9	C8	C7	124.5(7)
C5	C6	H6A	120.6	N1	C8	C7	114.7(7)

C10	С9	C8	119.7(7)	C18	C13	C11	124.2(7)
C10	С9	H9A	120.1	C14	C13	C11	117.0(7)
C8	C9	H9A	120.1	C15	C14	C13	120.0(8)
B2	B9	B5	62.2(6)	C15	C14	H14A	120.0
B2	B9	B7	109.5(6)	C13	C14	H14A	120.0
B5	B9	B7	109.1(8)	C14	C15	C16	121.7(7)
B2	B9	B6	109.6(8)	C14	C15	H15A	119.1
B5	B9	B6	59.1(6)	C16	C15	H15A	119.1
B7	B9	B6	61.2(5)	C17	C16	C15	117.2(7)
B2	B9	B4	61.5(5)	C17	C16	C19	122.3(8)
B5	B9	B4	111.4(7)	C15	C16	C19	120.5(7)
B7	B9	B4	59.9(5)	C18	C17	C16	121.7(8)
B6	B9	B4	109.8(7)	C18	C17	H17A	119.1
B2	B9	H9	120.0	C16	C17	H17A	119.1
B5	B9	H9	120.4	C17	C18	C13	120.9(7)
B7	B9	H9	121.3	C17	C18	H18A	119.6
B6	B9	H9	121.3	C13	C18	H18A	119.6
B4	B9	H9	120.0	C16	C19	H19A	109.5
C9	C10	C11	123.8(7)	C16	C19	H19B	109.5
C9	C10	H10A	118.1	H19A	C19	H19B	109.5
C11	C10	H10A	118.1	C16	C19	H19C	109.5
C2	B4	C1	58.3(4)	H19A	C19	H19C	109.5
C2	B4	B7	58.3(5)	H19B	C19	H19C	109.5
C1	B4	B7	104.2(7)	C25	C20	C21	120.4(7)
C2	B4	B9	103.0(7)	C25	C20	C1	114.6(8)
C1	B4	B9	101.7(7)	C21	C20	C1	124.9(7)
B7	B4	B9	59.1(5)	C22	C21	C20	120.2(8)
C2	B4	B2	104.3(7)	C22	C21	H21A	119.9
C1	B4	B2	57.6(4)	C20	C21	H21A	119.9
B7	B4	B2	106.0(7)	C23	C22	C21	123.4(10)
B9	B4	B2	58.0(5)	C23	C22	H22A	118.3
C2	B4	H4	124.3	C21	C22	H22A	118.3
C1	B4	H4	125.1	C22	C23	C24	118.7(9)
B7	B4	H4	122.8	C22	C23	H23A	120.6
B9	B4	H4	125.2	C24	C23	H23A	120.6
B2	B4	H4	123.4	C23	C24	C25	122.8(8)
C10	C11	C12	115.0(7)	C23	C24	H24A	118.6
C10	C11	C13	118.1(7)	C25	C24	H24A	118.6
C12	C11	C13	126.6(6)	C20	C25	C24	114.4(8)
N1	C12	C11	122.7(6)	C20	C25	H25A	122.8
N1	C12	C2	111.1(6)	C24	C25	H25A	122.8
C11	C12	C2	126.1(7)				
C18	C13	C14	118.4(7)				

Figure S5. Molecular structure of 3b

Figure S6. Crystal packing of 3b

Pt1	C17	1.925(4)	B7	B9	1.795(7)
Pt1	B6	1.941(5)	B7	H7	1.1000
Pt1	N2	2.022(3)	C7	C8	1.360(6)
Pt1	N1	2.122(4)	C7	H7A	0.9300
Br1	C14	1.882(5)	C8	С9	1.406(5)
N1	C1	1.338(5)	C8	H8A	0.9300
N1	C5	1.366(5)	B8	C26	1.686(6)
C1	C2	1.377(6)	B8	H8	1.1000
C1	H1A	0.9300	B9	C25	1.705(6)
B1	B10	1.747(7)	B9	B10	1.753(6)
B1	B9	1.762(7)	B9	H9	1.1000
B1	B2	1.769(7)	C9	C10	1.411(5)
B1	B3	1.778(7)	C9	C11	1.488(5)
B1	B4	1.778(8)	C10	C26	1.510(5)
B1	H1	1.1000	B10	C26	1.709(6)
N2	C10	1.353(5)	B10	C25	1.714(6)
N2	C6	1.354(5)	B10	H10	1.1000
B2	C26	1.698(6)	C11	C12	1.373(5)
B2	B8	1.748(7)	C11	C16	1.400(5)
B2	B10	1.761(7)	C12	C13	1.384(6)
B2	B4	1.763(7)	C12	H12A	0.9300
B2	H2	1.1000	C13	C14	1.389(6)
C2	C3	1.369(5)	C13	H13A	0.9300
C2	H2A	0.9300	C14	C15	1.380(5)
C3	C4	1.381(6)	C15	C16	1.371(5)
C3	H3A	0.9300	C15	H15A	0.9300
B3	B7	1.756(7)	C16	H16A	0.9300
B3	B9	1.756(8)	C17	C18	1.218(5)
B3	B4	1.763(7)	C18	C19	1.443(5)
B3	B5	1.773(7)	C19	C24	1.356(6)
B3	H3	1.1000	C19	C20	1.390(5)
B4	B8	1.776(7)	C20	C21	1.378(5)
B4	B5	1.787(7)	C20	H20A	0.9300
B4	H4	1.1000	C21	C22	1.357(7)
C4	C5	1.391(6)	C21	H21A	0.9300
C4	H4A	0.9300	C22	C23	1.347(6)
C5	C6	1.473(6)	C22	H22A	0.9300
B5	B7	1.745(7)	C23	C24	1.383(6)
B5	B8	1.782(6)	C23	H23A	0.9300
B5	B6	1.802(7)	C24	H24A	0.9300
B5	H5	1.1000	C25	C27	1.499(5)
B0	B7 625	1.800(6)	C25	C26	1.660(5)
B0 DC	C25	1.806(5)	C27	H27A	0.9600
B0 DC	C26	1.831(5)	C27	H27B	0.9600
С(В0	B8	1.830(7)	C27	H2/C	0.9000
	C/	1.380(3)			
R/	025	1./05(6)	l		
C17	D 41	$\mathbf{D} \boldsymbol{\zeta} = (0.1 \boldsymbol{\zeta} \boldsymbol{\lambda} / 1.7)$	C17	D41 NT	170 04(14)
UI/	ru	DU 94.04(17)		FU N2	, 1/8.84(14)

Table S3. Bond lengths [A] and angles [deg] for $\mathbf{3b}$

D	D41	NO	95 50(15)	1	D7	D2	D <i>5</i>	50 2(2)
		INZ	83.39(13)		D/	Б 3 РС	D3 D <i>5</i>	39.5(5)
	PtI	NI	100.24(16)		B9	B3	B2	109.0(4)
B6	Pt1	N1	165.08(15)		B4	B 3	B 5	60.7(3)
N2	Pt1	N1	79.56(14)		B7	B3	B1	109.0(4)
C1	N1	C5	117.7(4)		B9	B3	B1	59.8(3)
C1	N1	Pt1	129.3(3)		B4	B3	B1	60.3(3)
C5	N1	Pt1	112.8(3)		B5	B3	B1	109.1(4)
N1	C1	C2	124.0(4)		B7	B3	H3	121.3
N1	C1	H1A	118.0		B9	B3	H3	121.1
C2	C1	H1A	118.0		B4	B3	H3	121.5
B10	B1	B9	59.9(3)		B5	B3	H3	121.3
B10	B1	B2	60.1(3)		B1	B3	H3	121.2
B9	B1	B2	107.7(4)		B2	B4	B3	107.7(4)
B10	B1	B3	107.0(4)		B2	B4	B8	59.2(3)
R9	B1	B3	59 5(3)		B3	B4	B8	107.2(4)
B2	R1	B3	1067(4)		B2	B4 R4	R1	60.0(3)
B10	R1	B3 R4	100.7(1) 107 6(4)		B2 B3	B4 R4	R1	60.3(3)
B10 B0	B1 R1	D4 B/	107.0(4) 107.5(4)		BS BS	B4 B4	B1 R1	107.3(4)
D9 D9	DI D1	D4 D4	107.3(4)			D4 D4	DI D5	107.3(4) 107.7(4)
	DI D1	D4 D4	59.0(3)			D4 D4	D3 D5	107.7(4)
DJ D10	DI D1	Б4 111	39.3(3) 121.0		B3 D0	B4 D4	B5 D5	59.9(5)
BIU	B1 D1	HI	121.9		Bð D1	B4	B2	60.0(3)
B9	BI	HI	121.9		BI	B4	B2	108.4(4)
B2	BI	HI	122.1		B2	B4	H4	122.1
B 3	B1	H1	122.7		B 3	B4	H4	121.9
B4	B1	H1	122.1		B8	B4	H4	122.5
C10	N2	C6	121.3(3)		B1	B4	H4	121.6
C10	N2	Pt1	122.6(3)		B5	B4	H4	121.5
C6	N2	Pt1	116.0(3)		C3	C4	C5	118.4(5)
C26	B2	B8	58.6(3)		C3	C4	H4A	120.8
C26	B2	B10	59.2(3)		C5	C4	H4A	120.8
B8	B2	B10	107.8(3)		N1	C5	C4	121.4(4)
C26	B2	B4	105.8(4)		N1	C5	C6	115.1(4)
B8	B2	B4	60.8(3)		C4	C5	C6	123.4(4)
B10	B2	B4	107.7(3)		B7	B5	B3	59.9(3)
C26	B2	B1	105.6(4)		B7	B5	B8	107.1(3)
B8	B2	B1	108.9(4)		B3	B5	B8	106.6(4)
B10	B2	B1	59.3(3)		B7	B5	B4	107.6(4)
B4	B2	B1	60.4(3)		B3	B5	B4	59.4(3)
C26	B2	H2	124.1		B8	B5	B4	59.7(3)
B 8	B2	H2	121.2		B7	B5	B6	61.0(3)
B10	B2	H2	122.0		B3	B5	B6	110.6(3)
B4	B2	H2	121.8		B8	B5	B6	61.6(3)
B1	B2	H2	121.9		B4	B5	B6	111.4(3)
C3	C2	<u>C1</u>	117.5(5)		B7	B5	H5	122.3
C3	C^2	H2A	121.2		B3	B5	H5	121.9
C1	$\overline{C^2}$	H2A	121.2		R8	R5	H5	121.5
C^2	C^2		121.2		R/	R5	н5 H5	122.0
	C_{2}		110.5		R6	D3 D5	115	121.2 118 6
	C_{2}	113A 112 A	119.5			ДЈ Д	113 P5	58 0(2)
D7	UJ 102	ПЈА Да	117.J 61 5(2)		D/ D7	DU D2	ДЭ С?5	56.0(3)
D/ D7	ДЈ 17	D7 ת	109.2(4)		D/ D5	DU D/	C25	30.4(2)
	BJ D2	Б4 Б4	108.2(4)		D5	В0 Р(C25	99.7(3)
ВЯ	В3	В4	108.4(4)	J	B ./	Вб	C26	99.1(3)

	Dí	CA (00.4(0)	l	D 40	DA	D 4	105 5(4)
B5	B 6	C26	99.4(3)		B10	B 9	B 3	107.7(4)
C25	B6	C26	54.3(2)		C25	B9	B1	105.6(3)
B7	B6	B8	102.6(4)		B10	B9	B1	59.6(3)
B5	B6	B8	58.6(3)		B3	B9	B1	60.7(3)
C25	B6	B8	97.8(3)		C25	B9	B7	58.2(3)
C26	B6	B 8	54.8(2)		B10	B9	B7	107.5(4)
R7	B6	D0 Pt1	1361(3)		B10 B3	R0	B7 B7	59 3(3)
D7 D5	DU DC	I 11 D41	130.1(3) 142.4(2)		DJ D1	D) D0	D7 D7	1080(4)
D5 025	DU D(142.4(3)			D9 D0	D/	106.0(4)
C25	BO	Pt1	110.0(3)		C25	B9 D0	H9	124.4
C26	B6	PtI	109.1(3)		BIO	B9	Hy	121.7
B 8	B6	Pt1	121.0(3)		B 3	B 9	H9	122.6
N2	C6	C7	120.3(4)		B1	B9	H9	121.8
N2	C6	C5	116.1(4)		B7	B9	H9	122.1
C7	C6	C5	123.6(4)		C8	C9	C10	115.9(4)
C25	B7	B5	106.1(3)		C8	С9	C11	116.8(4)
C25	B7	B3	104.5(4)		C10	С9	C11	127.2(4)
B5	B7	B3	60.8(3)		N2	C10	C9	121.1(4)
C25	B7	B9	58.2(3)		N2	C10	C26	114.0(3)
B5	B7	B9	108.5(4)		C9	C10	C26	124.9(4)
B3	B7	R9	59 3(3)		C26	B10	C25	580(2)
C25	B7 B7	B6	62.0(2)		C26	B10 B10	R1	1061(3)
C23 R5	D7 B7	B6	61.1(3)		C20 C25	B10 B10	B1 B1	105.1(3)
D3 D2	D7 D7	DU DC	1114(4)		C_{23}	D10 D10		105.9(3) 106.0(2)
	D/ D7	D0 DC	111.4(4) 111.9(2)		C20 C25	D10 D10	D9 D0	100.0(3)
B9 C25	B/	B0	111.8(3)		C25	B10 D10	B9 D0	58.9(2)
C25	B7	H7	124.3		BI	B10 B10	B9	60.5(3)
B5	B7	H7	121.9		C26	B10	B2	58.6(3)
B 3	B 7	H7	122.0		C25	B10	B2	105.2(3)
B9	B 7	H7	121.2		B1	B10	B2	60.6(3)
B6	B7	H7	117.8		B9	B10	B2	108.6(4)
C8	C7	C6	118.9(4)		C26	B10	H10	123.7
C8	C7	H7A	120.5		C25	B10	H10	124.0
C6	C7	H7A	120.5		B1	B10	H10	122.1
C7	C8	C9	122.5(4)		B9	B10	H10	121.6
C7	C8	H8A	118.8		B2	B10	H10	122.0
C9	C8	H8A	118.8		C12	C11	C16	119.3(4)
C26	B8	B2	59.2(3)		C12	C11	C9	118.8(4)
C26	B8	B4	105.7(4)		C16	C11	С9	121.7(4)
B2	B8	B4	60.0(3)		C11	C12	C13	120.5(4)
C26	B8	B5	106.1(3)		C11	C12	H12A	119.8
B2	B8	B5	108.7(4)		C13	C12	H12A	119.8
B4	B8	B5	60.3(3)		C12	C13	C14	119.4(4)
C26	B8	B6	625(2)		C12	C13	H13A	120.3
R2	B8	B6	1126(3)		C12 C14	C13	H13A	120.3
D2 B4		D0 B6	112.0(3) 110.2(2)		C14 C15	C13 C14	C13	120.5 120 6(4)
D4 D5		DU DC	110.3(3)		C15 C15	C14	C13 Dn1	120.0(4)
D5		D0 110	39.7(3)		C15 C12	C14 C14	Drl D1	120.4(4)
C20 D2	Бð 100	110 110	123.3				ВГІ С14	119.0(4)
B2	R9 B9	Hð	120.2			C15	C14	119.5(4)
B4	B8	H8	122.0		C16	C15	H15A	120.2
B5	B8	H8	122.7		C14	C15	H15A	120.2
B6	B8	H8	118.4		C15	C16	C11	120.6(4)
C25	B9	B10	59.4(3)		C15	C16	H16A	119.7
C25	B9	B3	104.4(4)		C11	C16	H16A	119.7

C18	C17	Pt1	177.0(4)	Γ	B7	C25	B10	113.6(4)
C17	C18	C19	176.0(4)		B9	C25	B10	61.7(3)
C24	C19	C20	117.7(4)		C27	C25	B6	116.8(3)
C24	C19	C18	120.9(4)		C26	C25	B6	63.6(2)
C20	C19	C18	121.4(4)		B7	C25	B6	61.6(3)
C21	C20	C19	120.2(5)		B9	C25	B6	116.0(3)
C21	C20	H20A	119.9		B10	C25	B6	116.4(3)
C19	C20	H20A	119.9		C10	C26	C25	117.4(3)
C22	C21	C20	121.1(5)		C10	C26	B8	118.1(4)
C22	C21	H21A	119.4		C25	C26	B8	110.2(3)
C20	C21	H21A	119.4		C10	C26	B2	125.7(3)
C23	C22	C21	118.9(5)		C25	C26	B2	110.6(3)
C23	C22	H22A	120.5		B8	C26	B2	62.2(3)
C21	C22	H22A	120.5		C10	C26	B10	123.2(3)
C22	C23	C24	120.9(6)		C25	C26	B10	61.1(2)
C22	C23	H23A	119.6		B8	C26	B10	113.2(3)
C24	C23	H23A	119.6		B2	C26	B10	62.2(3)
C19	C24	C23	121.3(5)		C10	C26	B6	108.6(3)
C19	C24	H24A	119.4		C25	C26	B6	62.1(2)
C23	C24	H24A	119.4		B8	C26	B6	62.8(3)
C27	C25	C26	119.0(3)		B2	C26	B6	115.3(3)
C27	C25	B7	122.2(4)		B10	C26	B6	115.4(3)
C26	C25	B7	110.4(3)		C25	C27	H27A	109.5
C27	C25	B9	119.0(3)		C25	C27	H27B	109.5
C26	C25	B9	110.4(3)		H27A	C27	H27B	109.5
B7	C25	B9	63.5(3)		C25	C27	H27C	109.5
C27	C25	B10	115.6(3)		H27A	C27	H27C	109.5
C26	C25	B10	60.8(2)		H27B	C27	H27C	109.5