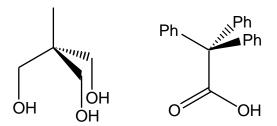
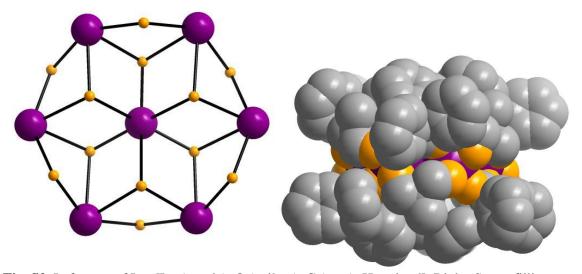
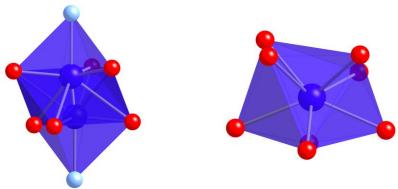
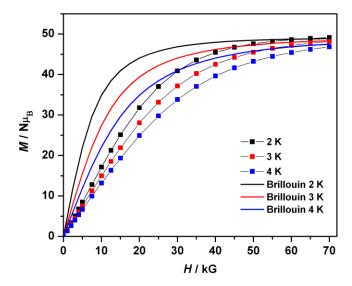
Supplementary Information for

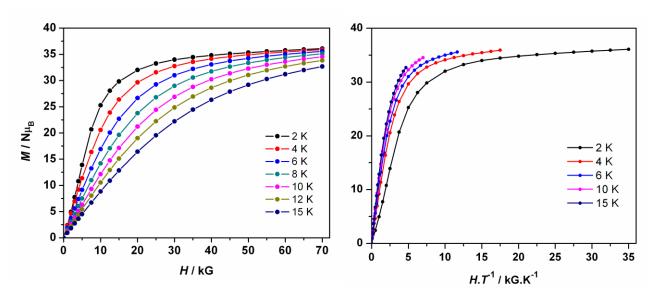
Lanthanide Discs Chill Well and Relax Slowly

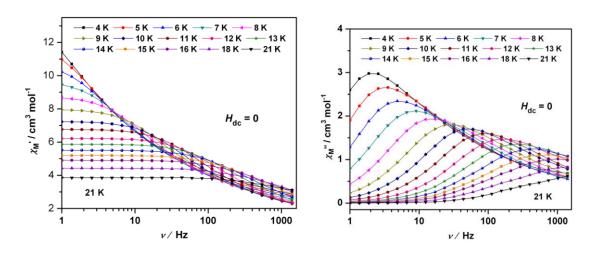
Joseph W. Sharples, ^a Yan-Zhen Zheng, ^a Floriana Tuna, ^a Eric J. L. McInnes ^a and David Collison* ^a

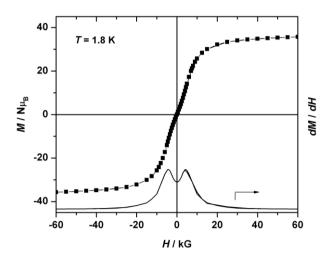
^a School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. Fax: +44 (0) 161 275 4598; Tel: +44 (0) 161 306 9260; E-mail: david.collison@manchester.ac.uk


Fig S1. Schematic of organic ligands thmeH₃ (left) and tpaH (right).


Fig. S2. Left: core of Ln_7 [Ln (purple), O (yellow), C (grey), H omitted]. Right: Space-filling diagram, viewed in the Ln_7 plane.


Fig S3. Views of the $\{LnN_2O_6\}$ (left) and $\{LnO_8\}$ (right) coordination polyhedra; the two disordered metal ion sites are shown in the former. The geometry at the central ion can be described as bi-capped compressed octahedral, with the caps on the trigonal compression axis (N-Dy-N). [An alternative description is as distorted cubic, with elongation along the N-Dy-N body diagonal.] The peripheral ions are lower symmetry, best described as bicapped trigonal prismatic.


Fig. S4. Experimental M(H) for **2** at 2, 3 and 4 K, with calculated Brillouin curves for seven uncoupled s = 7/2 ions (g = 2.0).

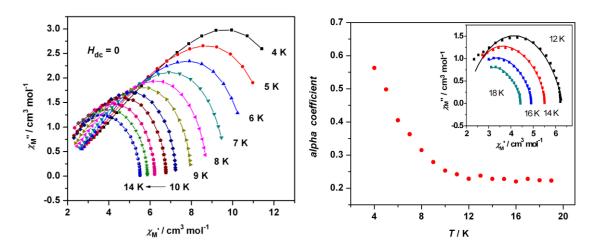

Fig. S5 Left: *M*(*H*) for **1** at 2-15 K. Right: *M*(*H*/*T*) for **1** at 2, 4, 6, 10 and 15 K

Fig S6. Frequency dependence (in zero-dc field) of the (left) in-phase (χ_M ') and (right) out-of-phase (χ_M ') ac susceptibility of **1** at several temperatures between 4 and 21 K.

Fig S7. M(H) for **1** at 1.8 K between -60 and 60 kG.

Fig S8. Left: Cole-Cole diagrams for **1** at different temperatures between 4 and 14 K. Right: temperature dependence of α parameter from fits to Cole-Cole plots (shown as solid lines in inset).