Supporting Information:

Synthesis and Enantioselective Hydrogenation of Seven-membered Cyclic Imines: Substituted Dibenzo[*b*,*f*][1,4]oxazepines

Kai Gao,^a Chang-Bin Yu,^a Wei Li,^b Yong-Gui Zhou,^{*a} and Xumu Zhang^{*b}

^aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China

^bDepartment of Chemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United

States

Table of Contents

1.	General and Materials
2.	Typical Procedure for the Preparation of Diaryl Ether
3.	Typical Procedure for the Reduction of Nitro Group and Acylation
4.	Typical Procedure for Cyclization to Seven-membered Cyclic Imines
5.	General Procedure for Ir-catalyzed Asymmetric Hydrogenation of Cyclic
	Imines
6.	The Determination of the Absolute Configuration
7.	References
8.	Copy of NMR, HRMS and HPLC for Racemic and Chiral Compounds

1. General and Materials

General: All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques, unless otherwise noted. ¹H NMR and ¹³C NMR spectra were recorded at room temperature in CDCl₃ on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Enantiomeric excess was determined by HPLC analysis, using chiral column described below in detail. Optical rotations were measured by polarimeter. Flash column chromatography was performed on silica gel (200-300 mesh). All reactions were monitored by TLC analysis. The configuration was determined by X-ray crystallographic analysis.

Materials: Commercially available reagents were used throughout without further purification other than those detailed below. The solvents for asymmetric hydrogenation reaction were purchased without further purification.

2. Typical Procedure for the Preparation of Diaryl Ether

NaH (0.32 g, 8 mmol) and DMF (10 mL) was added dropwise a solution of phenol (0.71 g, 7.5 mmol) in DMF, it was stirred for 1 h at room temperature. Subsequently, *o*-fluoro nitrobenzene (0.71 g, 5 mmol) in DMF (2 mL) was dropped slowly to the mixture above and stirred for another 1 h at room temperature, then stirred for 12 h at 50 °C. After routine workup, the crude product was purified by flash chromatography on silica gel using petroleum ether and EtOAc to give **6a**.

1-nitro-2-phenoxybenzene (6a).¹ 92% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.00-7.06 (m, 3H), 7.17-7.21 (m, 2H), 7.36-7.40 (m, 2H), 7.48-7.49 (m, 1H), 7.95 (dd, J = 8.2, 1.7Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.1, 119.4, 120.7, 123.3, 124.8, 125.9, 130.3, 134.3, 150.9, 156.0.

1-nitro-2-(*p*-tolyloxy)benzene (6b).² 93% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 3H), 6.96 (dd, *J* = 8.0, 5.0 Hz, 3H), 7.16 (dd, *J* = 14.6, 8.0 Hz, 3H), 7.44-7.49 (m, 1H), 7.92 (dd, *J* = 8.0, 1.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 119.6, 120.0, 122.8, 125.8, 130.7, 134.2, 134.6, 141.2, 151.5, 153.4.

1-methyl-2-(2-nitrophenoxy)benzene (6c).³ 93% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.23 (s, 3H), 6.80 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 7.9 Hz, 1H), 7.12-7.15 (m, 2H), 7.20 (t, J = 7.9 Hz, 1H), 7.27 (d, J = 7.4 Hz, 1H), 7.43 (t, J = 1.6 Hz, 1H), 7.93 (dd, J = 8.0, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 16.1, 118.5, 120.0, 122.3, 125.5, 125.9, 127.6, 130.2, 132.0, 134.3, 140.5, 151.3, 153.1.

1-isopropyl-2-(2-nitrophenoxy)benzene (6d). 75% yield, ¹H NMR (400 MHz, CDCl₃) δ 1.22 (d, J = 8.0 Hz, 3 H), 1.26 (d, J = 4.7 Hz, 3H), 3.21-3.28 (m, 1H), 6.86 (d, J = 8.4Hz, 1H), 6.91 (t, J = 4.9 Hz, 1H), 7.15 (t, J = 7.3 Hz, 1H), 7.19-7.21 (m, 2H), 7.39 (t, J = 4.4 Hz, 1H), 7.44 (t, J = 1.1 Hz, 1H), 7.95 (dd, J = 8.0, 1.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.1, 27.4, 118.7, 120.0, 122.3, 125.6, 125.9, 127.3, 127.6, 134.2, 140.5, 140.7, 151.7, 152.2; HRMS Calculated for

C₁₅H₁₅NO₃Na[M+Na]⁺280.0950, found 280.0948.

4-(2-nitrophenoxy)biphenyl (6e).³ 81% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.09-7.13 (m, 3H), NO₂ 6e 7.18-7.22 (m, 1H), 7.29-7.36 (m, 1H), 7.45 (t, J = 7.3 Hz, 2H), 7.53-7.61 (m, 5H), 7.98 (dd, J = 8.2, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.6, 120.9, 123.5, 126.0, 127.2, 127.5, 128.9, 129.0, 134.4, 137.9, 140.4, 141.6, 150.8, 155.5.

2-(2-nitrophenoxy)biphenyl (6f).⁴ 83% yield, ¹H NMR (400 MHz, CDCl₃) δ 6.75 (d, J = 8.4 Hz, Ph 1H), 7.00 (t, J = 7.8 Hz, 1H), 7.08 (d, J = 7.9 Hz, 1H), 7.25 (d, J = 6.8 Hz, 1H), 7.30-7.38 (m, 5H), 7.48 (d, J = 7.4 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.0, 120.8, 122.4, 125.8, 127.7, 128.4, 129.2, 131.8, 134.1, 137.0, 140.5, 151.2, 152.0.

4-methyl-1-nitro-2-phenoxybenzene (6g).⁵ 27% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H), 6.80 (s, 1H), 6.98-7.05 (m, 3H), 7.18 (dd, J = 7.4, 1.0 Hz, 1H), 7.35-7.40 (m, 2H), 7.89 (dd, J

= 8.4, 1.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.8, 119.3, 121.2, 124.2, 124.6, 126.0, 130.2, 139.2, 146.2, 150.9, 156.1.

1-(4-fluorophenoxy)-2-nitrobenzene (6h).⁶ 81% yield, ¹H NMR (400 MHz, CDCl₃) δ 6.96 (d, J = 8.4 Hz, 1H), 6.99-7.08 (m, 4H), 7.19 (dd, J = 13.6, 7.9 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H), 7.92 (t, J = 3.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 116.7, 117.0, 120.0, 121.0, 123.3, 125.9, 134.4, 141.3, 151.4 (d, J_{C-F} = 65 Hz), 159.6 (d, J_{C-F} = 242 Hz).

1-chloro-2-(2-nitrophenoxy)benzene (6i).⁷ 81% yield, ¹H NMR (400 MHz, CDCl₃) δ 6.76 (d, J =8.4 Hz, 1H), 6.99 (dd, J =8.0, 1.3 Hz, 1H), 7.10-7.14 (m, 2H), 7.18-7.21 (m, 1H), 7.39-7.43 (m, 2H), 7.90 (dd, J =8.2, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 119.1, 121.6, 123.4, 126.1, 126.4, 128.5, 131.3, 134.5, 140.6, 150.5, 151.0.

1-bromo-2-(2-nitrophenoxy)benzene (6j).⁸ 82% yield, ¹H NMR (400 MHz, CDCl₃) δ 6.85 (d, J Br = 8.4 Hz, 1H), 7.04 (d, J = 8.1 Hz, 1H), 7.11 (dd, J = 7.8, 1.2 Hz, 1H), 7.20 (t, J = 8.1 Hz, 1H), 7.33 (t, J = 7.9 Hz, 1H), 7.50 (t, J = 8.3 Hz, 1H), 7.65 (dd, J = 8.0, 1.3 Hz, 1H), 7.98 (d, J = 8.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 115.3, 119.3, 121.4, 123.4, 126.1, 126.6, 129.2, 134.3, 134.5, 150.4, 152.3.

3. Typical Procedure for the Reduction of Nitro Group and Acylation

Typical Procedure for the Preparation of Intermediate 7a: Compound **6a** (2.0 g, 9.3 mmol) was dissolved in 5 mL of EtOH, 5% palladium on charcoal (0.10 g) and 0.25 ml of AcOH were added to the solution, the reduction was carried out with hydrogen gas at an initial pressure of 60 psi for 12 h. The catalyst was filtered off. Then concentration in vacuo and purification by flash chromatography afforded aniline derivative. Subsequently, the product was dissolved in 20 mL of CH₂Cl₂ and cooled to 0 °C, then acetyl chloride (0.70 g, 8.9 mmol) was added slowly to the solution, the temperature increased spontaneous to ambient temperature, and monitored by TLC. Then water (20 mL) was added to the mixture. The organic layers was washed by brine (1×30 mL), dried by anhydrous Na₂SO₄, concentrated in vacuo. The residue was purified by flash chromatography on silica gel using petroleum ether and EtOAc to give **7a**.

N-(2-phenoxyphenyl)acetamide (7a).⁵ White solid, mp = 74-76 °C, 89% yield, ¹H NMR (400

MHz, CDCl₃) δ 2.16 (s, 3H), 6.83 (d, J = 8.1 Hz, 1H), 7.01 (dd, J = 14.0, 8.1 Hz, 3H), 7.09-7.17 (m, 2H), 7.36 (t, J = 8.4 Hz, 2H), 7.77 (br, 1H), 8.43 (d, J = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, 117.8, 118.8, 121.1, 124.1, 124.2, 130.0, 130.2, 145.7, 156.6, 168.5.

N-(2-(p-tolyloxy)phenyl) acetamide (7b).⁵ White solid, mp = 74-75 °C, 92% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.18 (s, 3H), 2.35 (s, 3H), 6.79 (d, J = 8.0 Hz, 1H), 6.91-6.99 (m, 3H), 7.08 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 8.2 Hz, 2H), 7.79 (br, 1H), 8.43 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 25.1, 117.2, 119.0, 7b NHAc 120.9, 123.8, 124.0, 129.7, 130.6, 133.8, 146.2, 154.1, 168.5.

N-(2-(o-tolyloxy)) phenyl) acetamide (7c).⁵ White solid, mp = 79-82 °C, 92% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.18 (s, 3H), 2.24 (s, 3H), 6.59 (d, *J* = 8.1 Hz, 1H), 6.91 (dd, *J* = 16.7, 7.9 Hz, 2H), 7.03 (t, J = 7.8 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 7.4 Hz, 1H), 7.89 (br, 1H), 8.43 (d, J = 8.1 Hz, 1H); NHAc 7c ¹³C NMR (100 MHz, CDCl₃) δ 16.2, 25.0, 115.5, 119.9, 120.8, 123.1, 123.9, 124.8, 127.6, 128.9, 129.9, 131.8, 146.3, 153.8, 168.5.

N-(2-(2-isopropylphenoxy)phenyl)acetamide (7d). White solid, mp = 63-66 °C, 93% yield, ¹H

NMR (400 MHz, CDCl₃) & 1.26 (s, 3H), 1.27 (s, 3H), 2.20 (s, 3H), 3.24-3.31 (m, 1H), 6.66 (d, J = 8.1 Hz, 1 H), 6.86 (t, J = 5.6 Hz, 1H), 6.95 (t, J = 8.0 Hz, 1H), 7.06 (t, J = 7.7 Hz, 1H), 7.18 (dd, J = 5.6, 3.2 Hz, 2H), 7.39 (dd, J = 5.4, 3.6 Hz, 1H), 7.88 (br, 1H), 8.44 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 23.2, 25.0, 27.2, 116.0, 119.7, 120.8, 123.2, 124.0, 125.0, 127.3, 129.1,

140.1, 146.7, 152.9, 168.4; HRMS Calculated for C₁₇H₁₉NO₂Na [M+Na]⁺ 292.1313, found 292.1317.

N-(2-(biphenyl-4-yloxy)phenyl)acetamide (7e). White solid, mp = 136-138 °C, 94% yield, ¹H

NMR (400 MHz, CDCl₃) δ 2.18 (s, 3H), 6.92 (d, J = 8.0 Hz, 1H), 7.04 (t, J= 7.4 Hz, 1H), 7.09-7.16 (m, 3H), 7.36 (t, J = 6.9 Hz, 1H), 7.46 (t, J = 7.2 Hz, 2H), 7.58-7.60 (m, 4H), 7.80 (br, 1H), 8.47 (d, J = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, 118.0, 119.0, 121.2, 124.2, 124.3, 127.1,

127.4, 128.8, 129.0, 130.1, 137.2, 140.4, 145.6, 156.1, 168.5; HRMS Calculated for C₂₀H₁₈NO₂ [M+H]⁺ 304.1338, found 304.1347.

N-(2-(biphenyl-2-yloxy)phenyl)acetamide (7f). 95% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.04 (s, 3H), 6.83 (d, J = 8.1 Hz, 1H), 6.99-7.03 (m, 3H), 7.25 (t, J = 7.5 Hz, 1H), Ph 7.29-7.38 (m, 4H), 7.46 (t, J = 5.8 Hz, 3H), 7.49 (br, 1H), 8.34 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.9, 117.1, 120.1, 121.0, 123.7, 123.9, NHAc 7f 124.9, 127.7, 128.5, 129.1, 129.2, 129.6, 131.6, 133.9, 137.6, 146.3, 153.0,

168.4; HRMS Calculated for $C_{20}H_{18}NO_2 [M+H]^+$ 304.1338, found 304.1345.

N-(4-methyl-2-phenoxyphenyl)acetamide (7g).⁵ White solid, mp = 59-60 °C, 83% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.14 (s, 3H), 2.24 (s, 3H), 6.66 (s, 1H), 6.92 (d, J = 8.2 Hz, 1H), 7.01 (d, J = 7.9 Hz, 2H), 7.15 (t, J = 7.3 Hz, 1H), 7.36 (t, J =8.2 Hz, 2H), 7.65 (br, 1H), 8.27 (d, J = 8.3 Hz, 1H); ¹³C NMR (100 MHz, NHAc **7g** CDCl₃) § 21.1, 25.0, 118.5, 118.7, 121.1, 123.9, 124.8, 127.4, 130.1, 134.2,

145.6, 156.7, 168.4.

N-(2-(4-fluorophenoxy)phenyl)acetamide (7h). White solid, mp = 76-78 °C, 89% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.18 (s, 3H), 6.76 (d, J = 8.1 Hz, 1H), 6.97-7.00 (m, 3H), 7.03-7.11 (m, 3H), 7.76 (br, 1H), 8.42 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, 116.6, 116.9, 120.5, 120.6, 121.2, 124.1, NHAc 7h 129.6, 146.2, 152.2, 159.3 (d, $J_{C-F} = 241$ Hz), 168.5; HRMS Calculated for

 $C_{14}H_{13}NO_{2}F[M+H]^{+}$ 246.0930, found 246.0924.

N-(2-(2-chlorophenoxy)phenyl)acetamide (7i).⁹ White solid, mp = 82-84 °C, 93% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.16 (s, 3H), 6.83 (d, J = 7.8 Hz, 1H), 6.98-7.03 (m, CI 2H), 7.09-7.17 (m, 2H), 7.36 (t, J = 8.3 Hz, 2H), 7.76 (br, 1H), 8.43 (d, J = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, 117.9, 118.8, 121.1, 124.1, 124.2, NHAc 7i 125.6, 128.4, 130.2, 131.1, 145.7, 156.6, 168.5.

N-(2-(2-bromophenoxy)phenyl)acetamide (7j).⁹ White solid, mp = 90-92 °C, 91% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.19 (s, 3H), 6.75 (t, *J* = 1.0 Hz, 1H), 6.98-7.00 (m, 2H), 7.04-7.12 (m, 2H), 7.28 (t, J = 7.5 Hz, 1H), 7.65 (dd, J = 8.0, 1.4 Hz, 1H), 7.82 (br, 1H), 8.42 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, NHAc 7j 114.8, 117.1, 120.6, 121.4, 124.0, 124.4, 125.9, 129.1, 129.5, 134.1, 145.4, 152.9, 168.6.

N-(2-phenoxyphenyl)propionamide (7k).⁵ 75% yield, ¹H NMR (400 MHz, CDCl₃) δ 1.17-1.22

(m, 3H), 2.35-2.42 (m, 2H), 6.86 (t, J = 1.3 Hz, 1H), 7.01-7.03 (m, 3H), 7.10-7.15 (m, 2H), 7.34-7.38 (m, 2H), 7.74 (br, 1H), 8.47 (d, J = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 9.8, 31.1, 118.0, 118.7, 121.0, 124.0, 124.3, 130.2, 145.5, 156.7, 172.2.

N-(2-phenoxyphenyl)butyramide (71).⁵ White solid, mp = 65-66 °C, 85% yield, ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, J = 7.4 Hz, 3H), 1.68-1.75 (m, 2H), 2.33 (t, J = 7.4 Hz, 3H) 2H), 6.85 (d, J = 8.1 Hz, 1H), 6.98-7.02 (m, 3H), 7.13 (dd, J = 17.8, 7.4 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.72 (br, 1H), 8.47 (d, J = 8.0 Hz, 1H); ¹³C H || 0 71 NMR (100 MHz, CDCl₃) & 13.8, 19.2, 40.1, 118.0, 118.7, 121.1, 124.0, 124.3,

130.2, 145.6, 156.7, 171.5.

N-(2-phenoxyphenyl)-2-phenylacetamide (7m). White solid, mp = 134-136 °C, 78% yield, ¹H NMR (400 MHz, CDCl₃) δ 3.68 (s, 2H), 6.76 (d, J = 7.9 Hz, 2H), 6.84 (d, J = 8.1 Hz, 1H), 6.99 (t, J = 7.8 Hz, 1H), 7.06-7.17 (m, 4H), 7.23-7.29 (m, 5H), 7.68 (br, 1H), 8.41 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 45.2, 117.6, 119.0, 121.0, 123.6, 124.4, 124.8, 127.7, 129.3, 129.6, 130.0, 130.4,

134.3, 144.9, 156.8, 169.3; HRMS Calculated for $C_{20}H_{18}NO_2[M+H]^+$ 304.1338, found 304.1344.

N-(2-phenoxyphenyl)benzamide (7n).¹⁰ White solid, mp = 72-74 °C, 86% yield, ¹H NMR (400 MHz, CDCl₃) δ 6.94 (d, J = 1.2 Hz, 1H), 7.07-7.10 (m, 3H), 7.17-7.20 (m, 2H), 7.37-7.52 (m, 5H), 7.82 (t, J = 7.8 Hz, 2H), 8.57 (br, 1H), 8.67 (d, J = 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 118.0, 118.6, 121.0, 124.1, 124.3, 127.1, 7n

128.8, 130.0, 130.1, 131.9, 135.0, 146.0, 156.5, 165.4.

Typical Procedure for the Preparation of Cyclic Imine 8a: To a mixture of polyphosphoric acid (PPA) (7.0 g) and phosphorus oxychloride (2.1 g, 13.5 mmol) was added amido derivative of diphenyl ether 7a (0.62 g, 2.7 mmol). The reaction mixture was heated at 120 °C for 3 h and poured into ice-cold water, then treated with aqueous ammonia and extracted with CH₂Cl₂ (3×50 mL), dried with anhydrous Na₂SO₄, concentrated under vacuum, the crude product was purified by flash chromatography on silica gel eluted by petroleum ether and EtOAc to give 8a.

(Z)-11-methyldibenzo[b,f][1,4]oxazepine (8a).¹¹ Yellow solid, mp = 82-84 °C, 88% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.63 (s, 3H), 7.13-7.15 (m, 3H), 7.16-7.20 (m, 2H), 7.26-7.29 (m, 1H), 7.41 (dd, J = 15.8, 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 27.8, 120.8, 121.0, 125.2, 125.7, 127.4, 127.8, 128.6, 129.2, 132.9, 140.8, Me 8a 152.7, 161.0, 167.5.

(Z)-2,11-dimethyldibenzo[b,f][1,4]oxazepine (8b). 89% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.30 (s, 3H), 2.63 (s, 3H), 7.06 (d, J = 8.8 Hz, 1H), 7.14 (dd, J = 3.7, 1.8 Hz, 3H), 7.19-7.20 (m, 2H), 7.29-7.31 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.8, 27.6, 120.4, 120.6, 125.5, 127.2, 127.6, 128.7, 133.3, 134.6, 140.8, Me 152.7, 158.8, 167.4; HRMS Calculated for $C_{15}H_{14}NO [M+H]^+ 224.1075$,

found 224.1086.

8b

(Z)-4,11-dimethyldibenzo[b,f][1,4]oxazepine (8c). Yellow solid, mp = 49-52 °C, 93% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 2.61 (s, 3H), 7.05 (t, J = 7.6 Hz, 1H), 7.11-7.15 (m, 3H), 7.23-7.27 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 16.5, 27.9, 121.0, 124.7, 125.5, 126.2, 127.0, 127.7, 129.1, 130.2, 134.0, 141.1, 152.5, 158.8, 167.9; HRMS Calculated for $C_{15}H_{14}NO [M+H]^+$ 224.1075, found Me 8c 224.1082.

(Z)-4-isopropyl-11-methyldibenzo[b,f][1,4]oxazepine (8d). White solid, mp = 46-48 °C, 89% yield, ¹H NMR (400 MHz, CDCl₃) δ 1.27 (s, 3H), 1.29 (s, 3H), 2.63 (s, 3H), *i*-Pr 3.76-3.82 (m, 1H), 7.12-7.17 (m, 4H), 7.24-7.29 (m, 2H), 7.38 (dd, J = 7.6, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.6, 26.5, 28.1, 121.0, 125.1, 125.6, 126.0, 127.1, 127.8, 129.3, 129.6, 140.8, 141.3, 152.7, 157.9, 168.2; HRMS Me 8d Calculated for $C_{17}H_{18}NO [M+H]^+ 252.1388$, found 252.1394.

(Z)-11-methyl-2-phenyldibenzo[b,f][1,4]oxazepine (8e). White solid, mp = 83-84 °C, 91% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.71 (s, 3H), 7.17-7.19 (m, 3H), 7.25 (d, J = 7.9 Hz, 1H), 7.33-7.39

(m, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.52 (t, J = 1.2 Hz, 2H), 7.63 (t, J = 2.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 27.8, 120.8, 121.3, 125.8, 127.2, 127.3, 127.5, 127.8, 127.9, 129.1, 129.4, 131.5, 138.6, 140.0, 140.8, 152.6, 160.5, 167.4; HRMS Calculated for C₂₀H₁₆NO [M+H]⁺ 286.1232, found

286.1236.

(Z)-11-methyl-4-phenyldibenzo[*b*,*f*][1,4]oxazepine (8f). Yellow solid, mp = 152-154 °C, 87% ph yield, ¹H NMR (400 MHz, CDCl₃) δ 2.70 (s, 3H), 6.33 (d, *J* = 8.0 Hz, 1H), 6.91 (t, *J* = 8.0Hz, 1H), 7.06 (t, *J* = 7.9 Hz, 1H), 7.23-7.26 (m, 2H), 7.42-7.44 (m, 2H), 7.45-7.49 (m, 3H), 7.59 (d, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 28.0, 120.9, 125.1, 125.5, 127.1, 127.4, 127.6, 127.8, 128.2, 129.9, 130.1, 133.5, 134.9, 137.1, 141.0, 152.3, 157.3, 167.6; HRMS Calculated for

C₂₀H₁₆NO [M+H]⁺ 286.1232, found 286.1235.

(Z)-2-fluoro-11-methyldibenzo[*b*,*f*][1,4]oxazepine (8h). Yellow solid, mp = 72-74 °C, 95% yield, $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}$

N N N N Hz), 119.5 (d, $J_{C-F} = 23$ Hz), 120.7, 122.3, 125.9, 127.7, 128.0, 130.1, 140.5, 152.5, 156.9, 159.6 (d, $J_{C-F} = 243$ Hz), 165.9; HRMS Calculated for

 $C_{14}H_{11}NOF[M+H]^+$ 228.0825, found 228.0823.

(Z)-4-chloro-11-methyldibenzo[*b*,*f*][1,4]oxazepine (8i). 87% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.63 (s, 3H), 7.13 (t, *J* = 7.9 Hz, 1H), 7.17 (dd, *J* = 5.9, 3.6 Hz, 2H), 7.27-7.31 (m, 1H), 7.35 (dd, *J* = 5.8, 3.6 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 27.8, 121.5, 125.6, 126.1, 126.6, 126.8, 127.6, 127.7, 130.7, 132.7, 140.5, 151.9, 155.6, 166.5; HRMS Calculated for C₁₄H₁₁NOCl [M+H]⁺ 244.0529, found 244.0527.

(Z)-4-bromo-11-methyldibenzo[*b*,*f*][1,4]oxazepine (8j).¹¹ 96% yield, ¹H NMR (400 MHz, CDCl₃) δ 2.63 (s, 3H), 7.05 (t, *J* = 7.9 Hz, 1H), 7.18 (dd, *J* = 6.0, 3.6 Hz, 2H), 7.28-7.31 (m, 1H), 7.36 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.43 (t, *J* = 3.6 Hz, 1H), 7.66 (dd, *J* = 7.9, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 27.9, 115.7, 121.7, 126.1, 127.5, 127.6, 127.7, 130.6, 135.8, 140.4, 152.0, 156.6, 166.4.

(Z)-11-ethyldibenzo[*b*,*f*][1,4]oxazepine (8k). 91% yield, ¹H NMR (400 MHz, CDCl₃) δ 1.32 (t, *J* = 7.4 Hz, 3H), 2.95 (dd, *J* = 14.8, 7.4 Hz, 2H), 7.14-7.21 (m, 5H), 7.30 (dd, *J* = 4.3, 1.0 Hz, 1H), 7.42 (t, *J* = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 11.9, 33.4, 120.7, 121.0, 125.3, 125.7, 127.2, 127.9, 128.2, 128.6, 132.6, 141.0, 152.7, 8k Et 161.6, 171.6; HRMS Calculated for $C_{15}H_{14}NO[M+H]^+$ 224.1075, found 224.1085.

(Z)-11-propyldibenzo[*b*,*f*][1,4]oxazepine (8l).¹¹ Yellow solid, mp = 65-67 °C, 92% yield, ¹H NMR (400 MHz, CDCl₃) δ 1.02 (t, *J* = 7.4 Hz, 3H), 1.72-1.77(m, 2H), 2.90 (t, *J* = 7.4 Hz, 2H), 7.13-7.20 (m, 5H), 7.26 (t, *J* = 8.2 Hz, 1H), 7.39-7.43(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 21.1, 42.3, 120.7, 121.0, 125.2, 125.7, 127.2, 127.9, 128.4, 128.6, 132.7, 140.9, 152.8, 161.6, 171.0.

(Z)-11-benzyldibenzo[*b*,*f*][1,4]oxazepine (8m). Yellow solid, mp = 92-95 °C, 81% yield, ¹H NMR (400 MHz, CDCl₃) δ 4.29 (s, 2H), 7.12-7.20 (m, 6H), 7.28 (t, *J* = 7.2 Hz, 2H), 7.35-7.39 (m, 4H), 7.46 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 47.0, 120.8, 121.1, 125.2, 125.8, 126.8, 127.7, 128.0, 128.4, 128.5, 128.8, 129.0, 132.8, 137.6, 140.8, 152.7, 161.7, 168.8; HRMS Calculated for

C₂₀H₁₆NO [M+H]⁺ 286.1232, found 286.1234.

(Z)-11-phenyldibenzo[*b,f*][1,4]oxazepine (8n).¹¹ Yellow solid, mp = 105-107 °C, 71% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.12-7.19 (m, 5H), 7.27-7.33 (m, 1H), 7.42-7.47 (m, 5H), 7.82 (dd, *J* = 7.7, 1.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 120.9, 121.2, 124.7, 125.8, 127.6, 127.7, 128.4, 129.9, 130.6, 131.5, 133.2, 140.3, 141.1, 152.6, 162.2, 167.3.

5. General Procedure for Ir-catalyzed Asymmetric Hydrogenation of Cyclic Imines

A mixture of $[Ir(COD)Cl]_2$ (1.7 mg, 0.0025 mmol) and (*S*)-Xyl-C₃*-TunePhos (4.0 mg, 0.0055 mmol) in 1 mL CH₂Cl₂ was stirred at room temperature for 10 min in a glovebox, then morpholine-HCl salt (6.2 mg, 0.05 mmol) and substrate **8** (0.25 mmol) together with 2 mL of CH₂Cl₂ were added and the solution was stirred for another 10 min. The hydrogenation was performed at room temperature under H₂ (700 psi) for 20 h. After the hydrogen gas was carefully released, the reaction mixture was purified with a silica gel column eluted with petroleum ether and EtOAc to give pure product **9**.

Racemates of 9 were prepared by NaBH₄ reduction of the corresponding hydrogen substrates 8 in MeOH.

(-)-(*S*)-11-methyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9a).¹² 98% yield, 94% ee, $[\alpha]^{30}_{D} =$

-109.1 (c 1.26, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.63 (d, J = 6.8 Hz, 3H), 3.67 (br, 1H), 5.05 (dd, J = 13.6, 6.8 Hz, 1H), 6.53 (dd, J = 7.9, 1.4 Hz, 1H), 6.67 (t, J = 7.8 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 7.10 (t, J = 7.0 Hz, 2H), 7.15-7.24 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 20.1, 50.1, 118.6, 119.1, 121.0, 122.0, 124.6, 124.7, 125.5, 129.0, 135.4, 138.4, 144.5, 157.8; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 80/20, detector: 254 nm, flow rate: 0.7 mL/min), $t_1 = 7.9$ min (major), $t_2 = 9.2$ min (minor).

(-)-(*S*)-2,11-dimethyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9b). 96% yield, 90% ee, $[\alpha]^{30}_{D}$ = -149.2 (*c* 1.22, CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 1.63 (d, *J* = 6.8 Hz, 3H), 2.32 (s, 3H), 3.71 (br, 1H), 5.03 (dd, *J* = 13.6, 6.8 Hz, 1H), 6.53 (d, *J* = 7.9 Hz, 1H), 6.66 (t, *J* = 7.6 Hz, 1H), 6.84 (t, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 7.05-7.09 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 20.2, 21.2,

50.1, 118.6, 119.1, 120.7, 121.9, 124.6, 126.0, 129.3, 134.1, 134.9, 138.4, 144.7, 155.6; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 80/20, detector: 254 nm, flow rate: 0.7 mL/min), t_1 = 8.3 min (major), t_2 = 9.4 min (minor); HRMS Calculated for $C_{15}H_{16}NO$ [M+H]⁺ 226.1232, found 226.1232.

(-)-(*S*)-4,11-dimethyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9c). Yellow solid, mp = 52-55

^oC, 98% yield, 91% ee, $[\alpha]^{30}_{D}$ = -73.6 (*c* 1.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.64 (d, *J* = 6.8 Hz, 3H), 2.43 (s, 3H), 3.72 (br, 1H), 5.11 (dd, *J* = 13.7, 6.8 Hz, 1H), 6.53 (d, *J* = 7.9 Hz, 1H), 6.66 (t, *J* = 7.7 Hz, 1H), 6.85 (t, *J* = 7.6 Hz, 1H), 6.99-7.06 (m, 2H), 7.14 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 16.4, 19.9, 49.6, 118.4, 118.7, 122.3, 122.7, 124.3, 124.7, 130.4, 130.6,

135.5, 138.9, 143.8, 156.0; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 80/20, detector: 254 nm, flow rate: 0.5 mL/min), $t_1 = 9.7$ min (major), $t_2 = 10.3$ min (minor); HRMS Calculated for $C_{15}H_{16}NO$ [M+H]⁺ 226.1232, found 226.1238.

(-)-(*S*)-4-*iso*-propyl-11-methyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9d). Yellow solid, mp *i*-Pr *i*-Pr

118.4, 118.8, 122.2, 122.5, 124.6, 125.9, 135.7, 138.9, 140.9, 144.2, 155.0; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 99/1, detector: 254 nm, flow rate: 0.7 mL/min), $t_1 = 12.4$ min (minor), $t_2 = 13.8$ min (major); HRMS Calculated for $C_{17}H_{20}NO$ [M+H]⁺ 254.1545, found 254.1541.

(-)-(*S*)-11-methyl-2-phenyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9e). Yellow solid, mp = 70-71 °C, 94% yield, 86% ee, $[\alpha]^{30}_{D} = -179.2$ (*c* 1.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.68 (d, *J* = 6.8 Hz, 3H), 3.75 (br, 1H), 5.07 (dd, *J* = 13.6, 6.8 Hz, 1H), 6.55 (dd, *J* = 7.9, 1.5 Hz, 1H), 6.63-6.65 (m, 1H), 6.78-6.81 (m, 1H), 7.11 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.23 (t, *J* = 8.2 Hz, 1H), 7.32 (t, *J* = 8.2 Hz, 1H), 7.38-7.45 (m, 4H), 7.53 (t, *J* = 1.4 Hz, 2H); ¹³C

NMR (100 MHz, CDCl₃) δ 20.3, 50.5, 118.7, 119.3, 121.4, 122.0, 124.5, 124.7, 127.3, 127.7, 128.7, 129.0, 135.5, 137.8, 138.2, 141.1, 144.5, 157.2; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 0.7 mL/min), t₁ = 24.9 min (minor), t₂ = 26.2 min (major); HRMS Calculated for C₂₀H₁₈NO [M+H]⁺ 288.1388, found 288.1385.

(+)-(S)-11-methyl-4-phenyl-10,11-dihydrodibenzo[b,f][1,4]oxazepine (9f). 98% yield, 90% ee,

[α]³⁰_D = + 87.4 (*c* 1.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.66 (d, *J* = 6.8 Hz, 3H), 3.71 (br, 1H), 5.16 (dd, *J* = 13.3, 6.6 Hz, 1H), 6.47-6.49 (m, 3H), 6.77 (dd, *J* = 11.4, 7.2 Hz, 1H), 7.14-7.21 (m, 2H), 7.30 (d, *J* = 7.3 Hz, 1H), 7.38-7.46 (m, 3H), 7.53 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.9, 49.8, 118.2, 118.8, 122.3, 124.4, 124.5, 124.6, 127.4, 128.1, 130.2, 130.4,

135.0, 136.4, 138.2, 138.7, 144.0, 154.7; HPLC (OD-H, elute: Hexanes/*i*-PrOH = 99/1, detector: 254 nm, flow rate: 0.8 mL/min), $t_1 = 15.9$ min (minor), $t_2 = 21.5$ min (major); HRMS Calculated for C₂₀H₁₈NO [M+H]⁺ 288.1388, found 288.1378.

(-)-(*S*)-7,11-dimethyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9g). Yellow solid, mp = 62-64 Me MeMe

MHz, CDCl₃) δ 20.2, 20.4, 50.4, 118.9, 120.9, 122.3, 124.4, 125.2, 125.6, 128.9, 129.1, 135.3, 135.6, 144.5, 157.7; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 70/30, detector: 254 nm, flow rate: 0.7 mL/min), t₁ = 8.5 min (major), t₂ = 9.8 min (minor); HRMS Calculated for C₁₅H₁₆NO [M+H]⁺ 226.1232, found 226.1228.

(-)-(*S*)-2-fluoro-11-methyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9h). White solid, mp= 73-74 °C, 98% yield, 90% ee, $[\alpha]^{30}_{D} = -180.1$ (*c* 1.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.62 (d, *J* = 6.8 Hz, 3H), 3.69 (br, 1H), 5.09 (dd, *J* = 13.5, 6.7 Hz, 1H), 6.54 (dd, *J* = 7.9, 1.5 Hz, 1H), 6.68 (t, *J* = 1.1 Hz, 1H), 6.87-6.94 (m, 3H), 7.08-7.13 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.6,

49.4, 112.2 (d, $J_{C-F} = 24$ Hz), 115.1 (d, $J_{C-F} = 23$ Hz), 118.6, 119.3, 121.9, 122.2, 124.9, 137.2, 138.2, 144.4, 153.7, 159.4 (d, $J_{C-F} = 241$ Hz); HPLC (OD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 254 nm, flow rate: 0.7 mL/min), t₁ = 10.9 min (minor), t₂ = 13.0 min (major); HRMS Calculated for C₁₄H₁₃NOF [M+H]⁺ 230.0981, found 230.0986.

(+)-(S)-4-chloro-11-methyl-10,11-dihydrodibenzo[b,f][1,4]oxazepine (9i). 95% yield, 90% ee,

[α]³⁰_D = +60.3 (*c* 0.88, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.64 (d, *J* = 6.8 Hz, 3H), 3.73 (br, 1H), 5.13 (dd, *J* = 13.2, 6.5 Hz, 1H), 6.53 (d, *J* = 8.0 Hz, 1H), 6.69 (t, *J* = 7.6 Hz, 1H), 6.88 (t, *J* = 7.5 Hz, 1H), 7.03-7.12 (m, 2H), 7.26-7.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 49.7, 118.2, 119.0, 122.8, 123.6, 125.2, 125.3, 126.5, 129.6, 137.5, 138.3, 143.3, 153.3; HPLC (OD-H, elute:

Hexanes/*i*-PrOH = 95/5, detector: 254 nm, flow rate: 0.7 mL/min), $t_1 = 12.0 \text{ min (maj.)}, t_2 = 13.0 \text{ min (min.)};$ HRMS Calculated for $C_{14}H_{13}NOC1 [M+H]^+$ 246.0686, found 246.0691.

(+)-(S)-4-bromo-11-methyl-10,11-dihydrodibenzo[b,f][1,4]oxazepine (9j). 97% yield, 87% ee,

 $[\alpha]^{30}{}_{\rm D}$ = +110.7 (*c* 0.63, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.64 (d, *J* = 6.8 Hz, 3H), 3.73 (br, 1H), 5.12 (dd, *J* = 13.7, 6.8 Hz, 1H), 6.53 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.70 (t, *J* = 7.7 Hz, 1H), 6.87 (t, *J* = 7.7 Hz, 1H), 6.98 (t, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.35 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.50 (dd, *J* =

8.0, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 49.8, 115.8, 118.2, 119.0, 123.0, 124.4, 125.3, 125.7, 132.6, 137.4, 138.2, 143.2; HPLC (OD-H, elute: Hexanes/*i*-PrOH = 97/3, detector: 254 nm, flow rate: 0.8 mL/min), t₁ = 13.8 min (minor), t₂ = 14.7 min (major); HRMS Calculated for C₁₄H₁₃NOBr [M+H]⁺ 290.0181, found 290.0184.

(-)-(*S*)-11-ethyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9k).¹³ Yellow solid, mp = 41-43 °C, 98% yield, 83% ee, $[\alpha]^{30}_{D} = -40.9$ (*c* 1.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.03 (t, *J* = 7.3 Hz, 3H), 2.01-2.15 (m, 2H), 3.49 (br, 1H), 4.33 (t, *J* = 7.5 Hz, 1H), 6.57 (d, *J* = 7.9 Hz, 1H), 6.67 (t, *J* = 7.7 Hz, 1H), 6.86 (t, *J* = 7.6 Hz, 1H), 7.08 (t, *J* = 7.9 Hz, 2H), 7.16 (t, *J* = 8.2 Hz, 2H), 7.22-7.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 11.6, 28.0, 59.0, 118.7, 119.0, 121.2, 121.9, 124.3, 124.6, 127.3, 128.9, 134.2, 137.9, 144.2, 157.4; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 80/20, detector: 254 nm, flow rate:

0.5 mL/min), $t_1 = 11.0$ min (major), $t_2 = 11.8$ min (minor).

(-)-(*S*)-11-propyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9I). 97% yield, 81% ee, $[\alpha]^{30}_{D} = -87.7 \ (c \ 1.58, CHCl_3); {}^{1}H \ NMR \ (400 \ MHz, CDCl_3) \ \delta \ 0.98 \ (t, J = 7.2 \ Hz, 3H), 1.33-1.42 \ (m, 1H), 1.47-1.56 \ (m, 1H), 2.00-2.08 \ (m, 2H), 3.95 \ (br, 1H), 4.46 \ (t, J = 7.4 \ Hz, 1H), 6.56 \ (d, J = 7.9 \ Hz, 1H), 6.66 \ (t, J = 7.4 \ Hz, 1H), 6.85 \ (t, J = 7.3 \ Hz, 1H), 7.07 \ (t, J = 7.8 \ Hz, 2H), 7.16 \ (t, J = 7.6 \ Hz, 2H), 7.22-7.26 \ (m, 1H); 1^{3}C \ NMR \ (100 \ MHz, CDCl_3) \ \delta \ 14.2, 20.2, 37.1, 56.9, 118.7, 118.9, 121.2, 121.9, 124.4, 124.6, 127.2, 128.9, 134.5, 137.9, 144.1, 157.5; HPLC \ (AD-H, elute: Hexanes/$ *i*-PrOH = 80/20, detector:

127.2, 128.9, 134.5, 137.9, 144.1, 157.5; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 80/20, detector: 254 nm, flow rate: 0.7 mL/min), $t_1 = 7.4$ min (major), $t_2 = 8.3$ min (minor); HRMS Calculated for $C_{16}H_{18}NO [M+H]^+ 240.1388$, found 240.1389.

(-)-(*S*)-11-benzyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9m). 90% conv., 52% ee, $[\alpha]^{30}_{D} =$

-100.3 (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.30-3.34 (m, 1H), 3.41-3.47 (m, 1H), 3.97 (br, 1H), 4.58 (dd, *J* = 9.8, 4.7 Hz, 1H), 6.46 (d, *J* = 7.9 Hz, 1H), 6.73 (t, *J* = 7.4 Hz, 1H), 6.86 (t, *J* = 7.8 Hz, 1H), 7.08 (t, *J* = 7.2 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 2H), 7.20-7.27 (m, 5H), 7.31 (dd, *J* = 14.5, 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 41.7, 59.5, 119.0, 119.2, 121.4, 122.0, 124.4,

124.6, 126.8, 127.7, 128.8, 129.2, 129.6, 133.7, 137.6, 138.9, 144.1, 157.3; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 80/20, detector: 254 nm, flow rate: 0.7 mL/min), $t_1 = 8.9$ min (major), $t_2 = 10.4$ min (minor); HRMS Calculated for $C_{20}H_{18}NO$ [M+H]⁺ 288.1388, found 288.1388.

(-)-(*S*)-11-phenyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (9n).¹³ 12% conv., 78% ee, $[\alpha]^{30}_{D} = -16.4 (c \ 0.2, CHCl_3); {}^{1}H \ NMR (400 \ MHz, CDCl_3) \delta 4.23 (br, 1H), 5.89 (s, 1H), 6.63 (t,$ *J* $= 1.4 \ Hz, 1H), 6.69-6.71 (m, 1H), 6.88 (t,$ *J* $= 7.6 \ Hz, 2H), 7.02-7.05 (m, 1H), 7.08-7.10 (m, 1H), 7.18-7.24 (m, 2H), 7.33-7.42 (m, 5H); {}^{13}C \ NMR (100 \ MHz, CDCl_3) \delta 60.5, 118.8, 119.6, 121.3, 122.0, 124.4, 124.9, 127.4, 124$

127.9, 128.6, 128.9, 129.4, 134.5, 138.4, 141.9, 144.9, 157.7; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 70/30, detector: 254 nm, flow rate: 0.7 mL/min), $t_1 = 9.2 \text{ min (major)}$, $t_2 = 12.4 \text{ min (minor)}$.

6. The Determination of the Absolute Configuration

(+)-(*S*)-4-bromo-10-benzoyl-11-methyl-10,11-dihydrodibenzo[*b*,*f*][1,4]oxazepine (10). To a stirred solution of **9**j (215 mg, 0.74 mmol) in anhydrous benzene (5.0 mL) was added dropwisely a solution of benzoyl chloride (104 mg, 0.74 mmol) at 0 °C. The mixture was stirred at room temperature for 72 h. Benzene was removed in vacuum, then water (20 mL) was added, which was extracted by CH₂Cl₂ (2×30 mL), the combined organic layer was washed successively with saturated NaHCO₃ solution and brine, then dried with anhydrous Na₂SO₄. After removal of the solvent, the residue was subjected to column chromatograph to give the desired white solid **10** (266 mg, 91% yield). The product was finally recrystallized from hexane and dichloromethane to give the colorless crystals with > 99% ee. mp = 129-131 °C, $[\alpha]^{20}_{D}$ = +526.6 (*c* 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.35 (d, *J* = 7.0 Hz, 3H), 6.39 (d, *J* = 5.7 Hz, 1H), 6.72 (d, *J* = 7.5 Hz, 1H), 6.88-6.95 (m, 2H), 7.14-7.26 (m, 5H), 7.37-7.43 (m, 3H), 7.51 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.4, 52.0, 115.7, 122.3, 124.4, 125.2, 128.1, 128.5, 129.0, 129.5, 130.4, 130.8, 132.2, 132.4, 133.0, 135.5, 150.0, 153.0, 170.1; HPLC (OD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 0.7 mL/min), t₁ = 9.0 min (minor), t₂ =11.2 min (major); HRMS Calculated for C₂₁H₁₇NO₂Br [M+H]⁺ 394.0443, found 394.0438.

Fig. 1 X-Ray Crystal Structure of (S)-10.

Table 1 Crystal data and structure refinement for (S)-10.

Identification code	cd21162
Empirical formula	$C_{21}H_{16}BrNO_2$
Formula weight	394.26
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Tetragonal, P4(3)2(1)2
Unit cell dimensions	a = 8.0493(5) A alpha = 90 deg.
	b = 8.0493(5) A beta = 90 deg.
	c = 54.900(5) A gamma = 90 deg.
Volume	$3557.1(4) A^3$

Z, Calculated density	8, 1.472 Mg/m^3									
Absorption coefficient	2.325 mm ⁻¹									
F(000)	1600									
Crystal size	0.386 x 0.257 x 0.122 mm									
Theta range for data collection	2.56 to 25.99 deg.									
Limiting indices	-9<=h<=9, -9<=k<=9, -67<=l<=41									
Reflections collected / unique	19376 / 3481 [R(int) = 0.0631]									
Completeness to theta $= 25.99$	100.0 %									
Absorption correction	Empirical									
Max. and min. transmission	1.0000 and 0.4536									
Refinement method	Full-matrix least-squares on F ²									
Data / restraints / parameters	3481 / 0 / 228									
Goodness-of-fit on F ²	1.056									
Final R indices [I>2sigma(I)]	R1 = 0.0433, $wR2 = 0.1064$									
R indices (all data)	R1 = 0.0667, wR2 = 0.1149									
Absolute structure parameter	0.028(14)									
Extinction coefficient	0.0000(5)									
Largest diff. peak and hole	0.420 and -0.390 e.A ⁻³									

Table 2Bond lengths [A] and angles [deg] for (S)-10.

Br(1)-C(2)	1.893(5)
N(1)-C(9)	1.369(5)
N(1)-C(16)	1.424(4)
N(1)-C(7)	1.458(5)
O(1)-C(1)	1.363(5)
O(1)-C(17)	1.381(4)
O(2)-C(9)	1.217(5)
C(1)-C(2)	1.388(5)
C(1)-C(6)	1.407(6)
C(2)-C(3)	1.367(7)
C(3)-C(4)	1.366(7)
C(3)-H(3)	0.9300
C(4)-C(5)	1.381(7)
C(4)-H(4)	0.9300
C(5)-C(6)	1.393(5)
C(5)-H(5)	0.9300
C(6)-C(7)	1.518(5)
C(7)-C(8)	1.537(6)
C(7)-H(7)	0.9800
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600
C(9)-C(10)	1.496(6)

C(10)-C(15)	1.379(6)
C(10)-C(11)	1.381(6)
C(11)-C(12)	1.385(7)
C(11)-H(11)	0.9300
C(12)-C(13)	1.356(8)
C(12)-H(12)	0.9300
C(13)-C(14)	1.369(8)
C(13)-H(13)	0.9300
C(14)-C(15)	1.380(7)
C(14)-H(14)	0.9300
C(15)-H(15)	0.9300
C(16)-C(21)	1.367(5)
C(16)-C(17)	1.375(5)
C(17)-C(18)	1.375(5)
C(18)-C(19)	1.377(6)
C(18)-H(18)	0.9300
C(19)-C(20)	1.364(7)
C(19)-H(19)	0.9300
C(20)-C(21)	1.388(6)
C(20)-H(20)	0.9300
C(21)-H(21)	0.9300
C(9)-N(1)-C(16)	121.4(3)
C(9)-N(1)-C(7)	118.4(3)
C(16)-N(1)-C(7)	117.5(3)
C(1)-O(1)-C(17)	118.7(3)
O(1)-C(1)-C(2)	115.9(4)
O(1)-C(1)-C(6)	124.4(3)
C(2)-C(1)-C(6)	119.6(4)
C(3)-C(2)-C(1)	122.5(5)
C(3)-C(2)-Br(1)	118.5(4)
C(1)-C(2)-Br(1)	118.8(3)
C(4)-C(3)-C(2)	118.3(5)
C(4)-C(3)-H(3)	120.9
C(2)-C(3)-H(3)	120.9
C(3)-C(4)-C(5)	120.7(5)
C(3)-C(4)-H(4)	119.7
C(5)-C(4)-H(4)	119.7
C(4)-C(5)-C(6)	122.2(5)
C(4)-C(5)-H(5)	118.9
C(6)-C(5)-H(5)	118.9
C(5)-C(6)-C(1)	116.6(4)
C(5)-C(6)-C(7)	116.8(4)
C(1)-C(6)-C(7)	126.6(3)
N(1)-C(7)-C(6)	114.4(3)

N(1)-C(7)-C(8)	110.9(3)
C(6)-C(7)-C(8)	112.0(3)
N(1)-C(7)-H(7)	106.3
C(6)-C(7)-H(7)	106.3
C(8)-C(7)-H(7)	106.3
C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
O(2)-C(9)-N(1)	121.7(4)
O(2)-C(9)-C(10)	121.2(4)
N(1)-C(9)-C(10)	117.0(4)
C(15)-C(10)-C(11)	119.6(4)
C(15)-C(10)-C(9)	122.3(4)
C(11)-C(10)-C(9)	118.0(4)
C(10)-C(11)-C(12)	119.1(5)
С(10)-С(11)-Н(11)	120.4
С(12)-С(11)-Н(11)	120.4
C(13)-C(12)-C(11)	121.0(5)
С(13)-С(12)-Н(12)	119.5
С(11)-С(12)-Н(12)	119.5
C(12)-C(13)-C(14)	120.1(5)
C(12)-C(13)-H(13)	120.0
C(14)-C(13)-H(13)	120.0
C(13)-C(14)-C(15)	119.9(6)
C(13)-C(14)-H(14)	120.1
C(15)-C(14)-H(14)	120.1
C(10)-C(15)-C(14)	120.2(5)
C(10)-C(15)-H(15)	119.9
C(14)-C(15)-H(15)	119.9
C(21)-C(16)-C(17)	119.2(3)
C(21)-C(16)-N(1)	121.9(4)
C(17)-C(16)-N(1)	118.9(3)
C(16)-C(17)-C(18)	122.0(4)
C(16)-C(17)-O(1)	119.9(3)
C(18)-C(17)-O(1)	117.8(4)
C(17)-C(18)-C(19)	118.0(4)
C(17)-C(18)-H(18)	121.0
C(19)-C(18)-H(18)	121.0
C(20)-C(19)-C(18)	121.0(4)
C(20)-C(19)-H(19)	119.5
С(18)-С(19)-Н(19)	119.5

C(19)-C(20)-C(21)	120.1(4)
C(19)-C(20)-H(20)	119.9
С(21)-С(20)-Н(20)	119.9
C(16)-C(21)-C(20)	119.7(4)
C(16)-C(21)-H(21)	120.1
C(20)-C(21)-H(21)	120.1

7. References

- (1) R. A. Bunce and K. M. Easton, Org. Prep. Pro. Int., 2004, 36, 76.
- (2) F. W. Wassmundt and R. P. Pedemonte, J. Org. Chem., 1996, 60, 4991.
- (3) A. B. Shahripour, M. S. Plummer, E. A. Lunney, T. K. Sawyer, C. J. Stankovic and M. K. Connolly, *Bioorg. Med. Chem. Lett.*, 2001, **11**, 2779.
- (4) A. J. Neale, T. J. Rawlings and E. B. McCall, Tetrahedron, 1965, 21, 1299.
- (5) T. Okubo, R. Yoshikawa, S. Chaki, S. Okuyama and A. Nakazato, *Bioorg. Med. Chem.*, 2004, 12, 423.
- (6) J. Schmutz, F. Kunzle, F. Hunziker and A. Burki, Helv. Chim. Acta, 1965, 48, 336.
- (7) H. Fuhrer, P. Sutter and C. D. Weis, J. Heterocyclic Chem., 1979, 16, 1121.
- (8) M. P. Olmsted, P. N. Craig, J. J. Lafferty, A. M. Pavloff and C. L. Zirkle, J. Org. Chem., 1961, 26, 1901.
- (9) H. McCombie, W. G. MacMillan and H. A. Scarborough, J. Chem. Soc., 1930, 1202.
- (10) E. E. Turner and A. B. Sheppard, J. Chem. Soc., Trans., 1925, 127, 544.
- (11) V. G. Noskov., L. N. Kalinina, M. N. Noskova, Yu. L. Kruglyak, O. G. Strukov, A. P. Bezrukov and V. K. Kurochkin, *Pharm. Chem. J.*, 1997, **31**, 431.
- (12) F. Hunziker, F. Kunzle, O. Schindler and J. Schmutz, Helv. Chim. Acta, 1964, 47, 1163.
- (13) O. Miyata, T. Ishikawa, M. Ueda and T. Naito, Synlett, 2006, 2219.

8. Copy of NMR, HRMS and HPLC for Racemic and Chiral Compounds

13C NMR (KG-3-65 in CDC13)

10-

ppm 200 180 160 140 120 100 80 60 40 20

1

S18

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None Monoisotopic Mass, Even Electron lons 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: Elements Used. C: 0-60 H: 0-80 N: 1-1 O: 3-3 Na: 1-1 KG-4-708 10052604 4 (0.097) AM (Cen,6, 80.00, Ar,5000, 0,429,20,0.70,LS 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (1:8) 100-280,0948 1: TOF MS ES+ 5.44e3 100-% 281.1011 318.3013 331.2105 360.1424 274.2803 361.1533 381.2773 437.1970 226.9609 ידי **m/z** ٥ 340 360 380 400 440 420 220 260 280 300 320 240 -10.0 100.0 Minimum: Maximum: 5.0 50.0 DBE i-FIT Formula PPM Calc. Mass mDa Mass C15 H15 N O3 Na 280.0948 280.0950 -0.2 -0.7 8.5 83.9

13C NMR (KG-4-69 in CDC13)

13C NMR (GK-8-7 in CDC13)

No. 2 Contraction of the second

13C NMR (KG-4-50B in CDC13)

4

Page 1 **Elemental Composition Report** Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 N: 1-1 O: 2-2 Na: 1-1 KG-4-72B 10052605 1 (0.041) AM (Cen,6, 80.00, Ar,5000.0,429.20,0.70,LS 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (1:4) 400-292,1317 1: TOF MS ES+ 626 % 293.1348 280.0922 360.1526 0-4 280.0 290.0 300.0 310.0 320.0 330.0 340.0 350.0 360.0 ~10.0 100.0 Minimum: Maximum: 50.0 5.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 2773077.0 C17 H19 N O2 Na 292.1313 0.4 1.4 8.5 292.1317

Elemental Composition Report

304.1347 304.1338

Page 1

Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None

0.9

Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 N: 1-1 O: 2-2

 00.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050
 11.050

~ %-					32	26.117	70									607.	2642	629.24	131						
0	228	250	275	30	L.,	32	7.123	8 360.1 375	473	425	450	74.661	500	525	550	604.7	7377 600	625	30.248 632.29	986 675	700	725	750	778.28	98 m/z
Mini Maxi	i.mur i.mur	m: m:	215	50	Ū	525		5.0	400	50.	0	-1 10	0.0	525		5/5	000	020	000	0/0	,	725	/30	110	
Mass	5		Ca	lc.	M	ass		mDa		PPM		DB	Е	i	-FIT		Fo	rmula	a						

95.7

C20 H18 N O2

12.5

3.0

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-90 H: 0-120 N: 1-1 O: 2-2 1: TOF MS ES+ 638 % 613.2669 304.1345 326.1225 614.2776 224.1168 274.2756 342.1024 629.2225 0 340 240 260 280 300 320 360 380 400 420 440 460 480 500 520 540 560 580 600 620 Minimum: Maximum: -10.0 5.0 50.0 PPM Mass Calc. Mass mDa DBE i-FIT Formula 304.1345 304.1338 0.7 2.3 12.5 2773019.8 C20 H18 N O2 Ph NHAc 7f HRMS

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 N: 1-1 O: 2-2 F: 1-1 1: TOF MS ES+ 4.33e3 100-1 % 247.0991 319.1479 330.1470 387.6152 491.1787 510.1555 365.1479 429.6368 453.1800 575.1208 0-320 360 400 540 300 460 480 500 260 280 340 380 440 520 560 420 -10.0 100.0 Minimum: 5.0 Maximum: 5.0 PPM DBE i-FIT Formula mDa Mass Calc. Mass C14 H13 N O2 F 246.0924 246.0930 -0.6 -2.4 8.5 58.2

 \cap F NHAc

7h HRMS

Mar y

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: Elements Used: C: 0-90 H: 0-120 N: 1-1 O: 2-2 KG-3-93 10070610 8 (0.214) AM (Cen,6, 80.00, Ar,5000.0,429.20,0.70,LS 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (1:16) 304.1344 1: TOF MS ES+ 7.99e3 613.2722 % 310.1442 286.1239 607.2601 614.2739 342.0907 383.1995 630.2487 185.1233 230.1047 474.6722491.2332533.2218 715.1445 m/z 0-200 650 150 250 300 350 400 450 500 550 600 700 Minimum: Maximum: -10.0 100.0 5.0 50.0 PPM DBE Mass Calc. Mass mDa i-FIT Formula 304.1344 304.1338 0.6 2.0 12.5 70.9 C20 H18 N O2

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

S48

8b HRMS

8c HRMS

Element	tal Composition	Report			Page 1
Single M Tolerand Selected	lass Analysis ce = 5.0 PPM / I filters: None	DBE: min = -10.0), max = 100.0		
Monoisoto 5 formula(Elements C: 0-60 KG-4-74B 10052909 2: 100	ppic Mass, Even Elec e) evaluated with 1 r Used: H: 0-80 N: 1-1 O 5 (0.654) AM (Cen,6, 80.0 1394	ctron lons results within limits (al): 1-1 00, Ar,5000.0,429.20,0.70,	ll results (up to 1000) fr LS 10); Sm (SG, 2x3.00); S	or each mass) b (1,40.00); Cm (22:30)	1: TOF MS ES+ 3.14e3
% 253.1 254	442 .1543 336.1980 38	55.0849		565.1985 L 607.27	15 665.0848 ₂
260	280 300 320 340	360 380 400 420	440 460 480 500	520 540 560 580 600	620 640 660
Minimum: Maximum:		5.0 5.0	-10.0 100.0		
Mass	Calc. Mass	mDa PPM	DBE 1-FIT	Formula	
252.1394	252.1388	0.6 2.4	9.5 45.9	C17 H18 N O	
			i-Pr N Me		

8d HRMS

Elemental	Composi	tion I	Report					*	£			Page 1
Single Mas Tolerance = Selected filt	s Analys 50.0 PPl ters: None	is M /	DBÉ: r	nin = -10.(), max :	= 100.0		<i>y</i>				
Monoisotopic 5 formula(e) e Elements Use C: 0-90 H: 0	Mass, Even evaluated wi ed: I-120 N: 1	Electi th 1 re	ron lons sults with : 1-1	in limits (all	results (u	up to 1000)) for ea	ach ma	ass)			
KG-4-78A 10061211 37 (0.) 100 286.12	960) AM (Cen, 36	6, 80.00), Ar,5000.0	,429.20,0.70,L	S 10); Sm ((SG, 2x3.00);	Sb (1,4	10.00); [,]	Cm (9:4	16)		1: TOF MS ES+ 8.48e3
%- 287.129 288.132	9 ¹⁶ 364.1421	403	.1857	504.1876			67	8.2805				869.3813
300	350	400	450	500	550	600	650	70	0	750	800	850
Minimum: Maximum:			5.0	50.0	-10.0 100.0							
Mass	Calc. Mass		mDa	PPM	DBE	i-FIT		Form	ıla			
286.1236	286.1232		0.4	1.4	13.5	35.8		C20	H16	N O		

		•					5			Page 1
Single Ma Tolerance Selected f	ass Analysi e = 50.0 PPN filters: None	i s MI/DBE:r	nin = -10).0, max =	= 100.0					
Monoisotop 5 formula(e) Elements U C: 0-90 H C: 0-90 H	ic Mass, Even) evaluated wit sed: : 0-120 N: 1-	Electron lons h 1 results with 1 O: 1-1	nin limits (a	ill results (u	ip to 1000)) for eac	h mass)			
10061212 37 (100 286.1) %- 287.1;	0.961) AM (Cen,6 235	5, 80.00, Ar,5000.0	,429.20,0.70	,LS 10); Sm (SG, 2x3.00);	Sb (1,40.	.00); Cm (2	7:37)	1	: TOF MS ES+ 3.28e3
1 200	1420									
0 288.	204 1429 	210 220			250	364.1	389	200	200	403.1433
288. 0 290 Minimum: Maximum:	204 1429 300	310 320 5.0	330 50.0	340 -10.0 100.0	350	364.1; 360	389 370	380	390	403.1433 +
288. 290 Minimum: Maximum: Mass	204 1429 300 Calc. Mass	310 320 5.0 mDa	330 50.0 PPM	340 -10.0 100.0 DBE	350 i-fit	364.1: 360 F	389 370	380	390	403.1433 +
Aass 286.1235	204 1429 300 Calc. Mass 286.1232	310 320 5.0 mDa 0.3	330 50.0 PPM 1.0	340 -10.0 100.0 DBE 13.5	350 i-FIT 38.6	364.1: 360 F C	389 370 ormula 20 H16	380 N O	390	403.1433 400 400

13C NMR (KG-4-68 in CDC13)

è

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-80 N: 1-1 O: 1-1 10052602 8 (0.212) AM (Cen,6, 80.00, Ar,5000.0,429.20,0.70,LS 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (8:9) 100 - 224.1081 1: TOF MS ES+ 639 % 225.1163 459.1522 m/z 0 τT 320 340 420 440 240 260 280 300 360 380 400 Minimum: -10.0 100.0 50.0 5.0 Maximum: DBE Mass Calc. Mass mDa PPM i-FIT Formula 2773058.0 C15 H14 N O 2.7 9.5 224.1081 224.1075 0.6

8g HRMS

8h HRMS

Me

.4

224.1085

224.1075

1.0

4.5

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-80 H: 0-80 N: 1-1 O: 1-1 KG4-338 10052600 43 (1.113) AM (Cen,6, 80.00, Ar,5000.0,429.20,0.70,LS 10); Sm (SG, 2x3.00); Sb (1.40.00); Cm (35:51) 100 224.1085 1: TOF MS ES+ 7.40e3 %-225.1169 340.2818 384.3105 443.1721 509.1324 537.1616 591.1585 638.0565 656.0582 306.1146 744.1058 0 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 -10.0100.0 Minimum: Maximum: 50.0 5.0 PPM DBE i-FIT Formula Calc. Mass mDa Mass C15 H14 N O 190.3

9.5

Elemental Composition Report

286.1234 286.1232

Page 1

Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None

0.2

0.7

 Monoisotopic Mass, Even Electron Ions

 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

 Elements Used:

 C: 0-90
 H: 0-120

 N: 1-1
 O: 1-1

 KG-3-94

 10070608 9 (0.231) AM (Cen,6, 80.00, Ar,5000.0,429.20,0.70,LS 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (1:23)

 100-1
 286.1234
1: TOF MS ES+ 1.17e4 % 287.1287 0 121.1292
 121.1292
 285.7567
 288.1331
 324.0971
 376.1930
 448.1993
 473.2024
 609.1780
 633.1553

 125
 150
 175
 200
 225
 250
 275
 300
 325
 350
 375
 400
 425
 450
 475
 500
 525
 550
 600
 625
 650
609.1780 633.1553 m/z -10.0 100.0 Minimum: Maximum: 5.0 50.0 PPM DBE Mass Calc. Mass mDa i-FIT Formula

13.5

101.6

C20 H16 N O

13C NMR (KG-3-85C in CDC13)

a.

Elementa	l Composit	ion Report						-			Page 1
Single Ma Tolerance Selected f	ss Analysi = 50.0 PPN ilters: None	s 1 / DBE:	min = -1	0.0, max =	100.0						
Monoisotopi 5 formula(e) Elements Us C: 0-90 H: KG-4-66B 10061220 75 (* 100 226.12	c Mass, Even evaluated witi sed: 0-120 N: 1- 1.917) AM (Cen,6 32	Electron Ions 1 results wit 1 O: 1-1 , 80.00, Ar,5000	hin limits (0,429.20,0.7	all results (u 0,LS 10); Sm (i	p to 1000) SG, 2x3.00);	for e	ach mas: 40.00); Cn	S) n (74:78))	1:	TOF MS ES+ 2.88e3
227.130)8 302 260.1432						451	2447			529.2311
0 1 <u>220.</u> 1. 240	260 280) 300 3:	20 340	360 38) 400	420	440	460	480	500	520 m/z
Minimum: Maximum:		5.0	50.0	-10.0 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT		Formul	a			
226.1232	226.1232	0.0	0.0	8.5	30.4		С15 Н	16 N	0		

Elementa	Compositio	n Report					•	•			Page 1
Single Ma Tolerance Selected fi	ss Analysis = 50.0 PPM ilters: None	/ DBE: r	nin = -10).0, max = ⁻	100.0						
Monoisotopie 5 formula(e) Elements Us	c Mass, Even Ele evaluated with 1 sed:	ectron lons I results with	nin limits (a	all results (up	to 1000)	for ea	ich ma	SS)			
C: 0-90 H: KG-4-66A 10061221 17 (0 226.12	0-120 N: 1-1 0.421) AM (Cen,6, 80 38	O: 1-1 0.00, Ar,5000.0	0,429.20,0.7(0,LS 10); Sm (SC	3, 2x3.00);	Sb (1,4	0.00); (Cm (15:17)		1:	TOF MS ES+ 972
-											
227.131	18	304.1362					4	51.2402	49	4.2511	529.2473
227.131 228.1 240	18 327 0 260 280	304.1362 ,,	0 340	360 380	400	420	440	51.2402 460	49	4.2511 500	529.2473 Troop m/z 520
227.131 228.1 240 Minimum: Maximum:	18 327) 260 280	304.1362 300 32 5.0	0 340 50.0	360 380 -10.0 100.0	400	420	4 440	51.2402 460	49 480	4.2511 500	529.2473 1711 m/z 520
227.131 228.1 240 Minimum: Maximum: Mass	18 327 260 280 Calc. Mass	304.1362 300 32 5.0 mDa	0 340 50.0 PPM	360 380 -10.0 100.0 DBE	400 i-fit	420	440 Formu	51.2402 460	49 480	4.2511 500	529.2473
227.131 228.1 240 Minimum: Maximum: Mass 226.1238	18 327 260 280 Calc. Mass 226.1232	304.1362 300 32 5.0 mDa 0.6	0 340 50.0 PPM 2.7	360 380 -10.0 100.0 DBE 8.5	400 i-FIT 3.4	420	40 440 Formu C15	51.2402 460 11a H16 N	480 480	4.2511 500	529.2473 mz 520
227.13 228.1 240 Minimum: Maximum: Mass 226.1238	18 327 260 280 Calc. Mass 226.1232	304.1362 300 32 5.0 mDa 0.6	0 340 50.0 РРМ 2.7	360 380 -10.0 100.0 DBE 8.5 Me	400 i-FIT 3.4	420	40 440 Formu C15	51.2402 460 11a H16 N	49 480	4.2511 500	529.2473

9c HRMS

Elementa	I Composition	Report				5 ° ° °	Page 1
Single Ma Tolerance Selected	ass Analysis = 50.0 PPM / filters: None	DBE: m	in = -10.	.0, max	= 100.0		
Monoisotop 5 formula(e Elements U C: 0-90 H KG-4-81A	ic Mass, Even Elec) evaluated with 1 r sed: : 0-120 N: 1-1 (tron lons esults withi): 1-1	n limits (al	l results (up to 1000) for	each mass)	
10061223 25 (100- 254	(0.651) AM (Cen,6, 80.0 1541 	0, Ar,5000.0,	429.20,0.70,	LS 10); Sm	(SG, 2x3.00); Sb ((1,40.00); Cm (21:25)	1: TOF MS ES+ 2.49e3
% -	255 1604						
1	256.1777 332	.1711			479.2763	507.3094 557.2798 593.0125	668.3607
240	260 280 300 320	340 360	380 400	420 440	460 480 500	520 540 560 580 600 6	20 640 660
Minimum: Maximum:		5.0	50.0	-10.0 100.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula	
254.1541	254.1545	-0.4	-1.6	8.5	28.6	C17 H20 N O	
					<i>i</i> -Pr		

13C NMR (KG-4-81B in CDC13)

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0, max = 100.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-90 H: 0-120 N: 1-1 O: 1-1 KG-4-81B 10070613 14 (0.365) AM (Cen,6, 80.00, Ar,5000.0,429.20,0.70,LS 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (11:17) 100-1: TOF MS ES+ 3.81e3 % 286.1253 289.1414 166.5972 575.2661 290.1539 566.2747 577.2763 m/z 525 550 575 600 625 361.1937 175 200 225 300 325 350 375 400 425 450 475 500 250 275 -10.0 100.0 Minimum: Maximum: 5.0 50.0 PPM DBE i-FIT Mass Calc. Mass mDa Formula 288.1385 288.1388 -0.3 -1.0 12.5 26.7 C20 H18 N O \cap Ph

ром 200 180 160 140 120 100 80 60 40 20

Elemental	Composit	ion Rep	ort							Page 1
Single Ma Tolerance Selected fi	ss Analysi = 50.0 PPN Iters: None	s Ai/DB	E: min = -10	.0, max =	100.0					
Monoisotopio 5 formula(e) Elements Us C: 0-90 H: KG-4-81E 10070612 6 (0.	c Mass, Even evaluated wit ed: 0-120 N: 1- 135) AM (Cen,6,	Electron k h 1 results 1 O: 1-1 80.00, Ar,50 288.	ons 5 within limits (a 100.0,429.19,0.70,L 1378	ll results (u S 10); Sm (Si	p to 1000) G, 2x3.00); S	for each n b (1,40.00);	1ass) Cm (1:9)		1:	TOF MS ES+ 5.27e3
121.1351	185.1202 ²⁴	6.0705	289.1443 290.1506 _{326.179} 4	3 91.113	6432.2441		566 284	13 591.2791		702 3187
0- ⁽	200	250	300 350	400	450	500	550	600	650	700
Minimum: Maximum:		5.0	50.0	-10.0 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	For	nula			
288.1378	288.1388	-1.0	0 -3.5	12.5	48.1	C20	H18	N O		
				Ph	-					

	Comp	ositi	on ł	Repo	ort								•						Pa	ge 1
Single Ma Tolerance Selected f	ass Ana = 50.0 filters: N	l ysis PPM lone	; /	DBI	E: m	in =	-10.	0, m	ax =	100).0									
Monoisotopi 5 formula(e) Elements Us C: 0-90 H:	ic Mass, I) evaluate sed: : 0-120	Even E ed with N: 1-1	Electr 1 re 0:	ron lo sults : 1-1	ons withii	n limi	ts (al	l resu	lts (u	p to 1	000)	for e	ach r	nass))					
10061222 23 ((100 100 226.123	0.577) AM 28	(Cen,6,	80.00	, Ar,50	000.0,4	129.20	,0.70,I	_S 10);	Sm (\$	6G, 2x	3.00);	Sb (1,	40.00); Cm ((23:29))		1:	TOF M	S ES+ 5.12e3
%-																				
11																				
227.131	4	304.14	.04						451.	2380	163.21	84	529.	2385	563.33	351			656	.2847
227.131 0 228.13 240	4 341 260 280	304.14 300	04 320	340	360	380	400	420	451. 440	2380 460	163.21 480	84 500	529. 520	2385	<u>563.33</u> 560	580	600	620	656 640	.2847 # M/z
227.131 0 228.13 240 Minimum: Maximum:	4 341 260 280	304.14 	04 320	340 5.0	360	380	400	420 -10 100	451 440 0.0	2380 460	163.21 480	84 500	529. 520	2385 540	563.33 560	551 580	600	620	656 640	.2847 # m/z
227.131 228.13 240 Minimum: Maximum: Mass	4 341 260 280 Calc.	304.14 	04 320	340 5.0 mDa	360	380 50.	400	420 –10 100 DBE	451 440 0.0 0.0	2380 460 i-	480 FIT	84 500	529. 520	2385 540	563.33 560	580	600	620	656 640	.2847 # m/z
227.131 228.13 240 Minimum: Maximum: Mass 226.1228	4 260 280 Calc. 1 226.12	304.14 300 Mass 32	04 320	340 5.0 mDa -0.4	360	380 50. PPM -1.	400	420 -10 100 DBE 8.5	451 440 0.0 0.0	2380 460 i-	480 FIT	84 500	529. 520 Form	2385 540 nula	563.33 560	580	600	620	656 640	.2847 # m/z
227.131 0 228.13 240 Minimum: Maximum: Mass 226.1228	4 341 260 280 Calc. 1 226.12	304.14 300 Mass 32	04	340 5.0 mDa -0.4	360	380 50. PPM -1.	¹ 400 0 3 Me _	420 -10 DBE 8.5	451. 440 0.0 0.0	2380 460 i- 61	480 FIT .3	84 500	529 . 520 Forr C15	2385 540 nula H10	563.33 560	5 51 580	600	620	656 640	.2847 # m/z

	-							
Single M Tolerance Selected	ass Analysis e = 50.0 PPM filters: None	/ DBE: r	nin = -10	.0, max =	100.0			
Monoisotop 5 formula(e Elements L C: 0-90 F	ic Mass, Even E) evaluated with lsed: l: 0-120 N: 1-1	lectron lons 1 results with O: 1-1 F:	in limits (a 1-1	ll results (up	o to 1000) for e	each mass)		
NG-4-01A	(1.072) AM (Cen 6. (30.00. Ar.5000.0	,429.19,0.70	LS 10); Sm (S	G, 2x3.00); Sb (1	40.00); Cm (77:78)		1: TOF MS ES+ 1.15e3
10061219 78 100 230.0	(1.97 <i>2) A</i> ivi (Cell,0, (986							
1006121978 100 % 231.10	42	308.1100						522 2429
1006121978 100 % 230.0 231.10 0 231.10 0 240	142 260 280	308.1100 300 320	340	360 380	400 420	440 460	480 500	533.2128
1006121978 100 230.0 % 231.10 0 231.10 0 240 Minimum: Maximum:	142 260 280	308.1100 300 320 5.0	340	360 380 -10.0 100.0	400 420	440 460	480 500	533.2128 520
1006121978 100 230.0 231.10 0 240 Minimum: Maximum: Mass	442 260 280 Calc. Mass	308.1100 300 320 5.0 mDa	340 50.0 PPM	360 380 -10.0 100.0 DBE	400 420 i-fit	440 460 Formula	480 500	533.2128

ppm 200 180 160 140 120 100 80 60 40 20

Elemental Composition Report		Page 1
Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -10.0 Selected filters: None), max = 100.0	
Monoisotopic Mass, Even Electron Ions 5 formula(e) evaluated with 1 results within limits (all Elements Used: C: 0-90 H: 0-120 N: 1-1 O: 1-1 Cl: 1-1	results (up to 1000) for each mass)	
10070611 12 (0.287) AM (Cen,6, 80.00, Ar,5000.0,429.19,0.70,L8 1007 100 100 100 100 100 100 10	S 10); Sm (SG, 2x3.00); Sb (1,40.00); Cm (1:33)	1: TOF MS ES+ 1.75 e4
%- 248.0690		
121.1349 185.1216 244.0587 249.0734 319.1233 0 319.1233	376.1960391.1104 491.1158 524.2303 583.223	610.2283
125 150 175 200 225 250 275 300 325 350 Minimum:	0 375 400 425 450 475 500 525 550 575 6 -10.0 100.0	600 625 650
Mass Calc. Mass mDa PPM	DBE i-FIT Formula	
246.0691 246.0686 0.5 2.0	8.5 166.0 C14 H13 N O C1	
	Cl	

Elemental Compositio	n Report			Page 1
Single Mass Analysis Tolerance = 50.0 PPM Selected filters: None	/ DBE: min = -10	.0, max = 100.0		
Monoisotopic Mass, Even Ele 5 formula(e) evaluated with 1 Elements Used: C: 0-90 H: 0-120 N: 1-1	ectron lons results within limits (a O: 1-1 Br: 1-1	ll results (up to 1000) fo	or each mass)	
10071806 5 (0.116) AM (Cen,6, 80. 292.017	00, Ar,5000.0,429.20,0.70,L 5	.S 10); Sm (SG, 2x3.00); Sb	(1,40.00); Cm (1:15) 1	: TOF MS ES+ 8.44e3
% 212.1155 279.1668 29 220 240 260 280 30	3.0222 94.0233 370.0353 0 320 340 360 380	393.2002) 400 420 440 460	568.1709 490.2830 563.3203 571.17 480 500 520 540 560 580	749 621.1334 600 620
Minimum: Maximum:	5.0 50.0	-10.0 100.0		
Mass Calc. Mass	mDa PPM	DBE i-FIT	Formula	
290.0184 290.0181	0.3 1.0	8.5 96.9	C14 H13 N O Br	

Elemental Composition	l Report		γ₫ Č ·	Page 1
Single Mass Analysis Tolerance = 50.0 PPM Selected filters: None	/ DBE: min = -10	.0, max = 100.0		
Monoisotopic Mass, Even Ele 5 formula(e) evaluated with 1 Elements Used: C: 0-90H: 0-120N: 1-1	ctron lons results within limits (al O: 1-1	ll results (up to 1000) f	or each mass)	
KG-4-80B 10061224 16 (0.403) AM (Cen,6, 80. 100 240.1389	00, Ar,5000.0,429.20,0.70,	LS 10); Sm (SG, 2x3.00); S	b (1,40.00); Cm (7:18)	1: TOF MS ES+ 6.03e3
%- 241.1452 242.1496 301.1207	318.1541		479.2722 518.2900.54	3 2729 577 2679
0 100 100 100 100 100 100 100 100 100 1) 320 340 360	380 400 420 440	460 480 500 520 5	40 560
Minimum: Maximum:	5.0 50.0	-10.0 100.0		
Mass Calc. Mass	mDa PPM	DBE 1-FIT	Formula	
240.1389 240.1388	0.1 0.4	8.5 59.8	C16 H18 N O	
	[O N H 9I HRMS		

Elemental Composition	Report				Page 1
Single Mass Analysis Tolerance = 50.0 PPM / Selected filters: None	DBE: min =	-10.0, max =	100.0		
Monoisotopic Mass, Even Elec 5 formula(e) evaluated with 1 r Elements Used: C: 0-90 H: 0-120 N: 1-1 (KG-4-44B	ctron lons results within limit D: 1-1	its (all results (up	to 1000) for ea	ach mass)	
10070609 8 (0.213) AM (Cen,6, 80.00	0, Ar,5000.0,429.20,0 288.1388	,0.70,LS 10); Sm (SG	i, 2x3.00); Sb (1,4	0.00); Cm (1:17)	1: TOF MS ES+ 7.36e3
%-					
-121 1318	289.14 286.1243 290.15	436 527			
125 150 175 200 225	250 275 300	361.1848 325 350 375	400 425 450	0 475 500 525 550	575.2682 625.2752 m/z 575 600 625
Minimum: Maximum:	5.0 50.0	-10.0 0 100.0			
Mass Calc. Mass	mDa PPM	1 DBE	i-FIT	Formula	
288.1388 288.1388	0.0 0.0	12.5	67.9	C20 H18 N O	
	~	~ .0_/	\		
		Y L	1		

H Bn

9m HRMS

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

μρm 200 180 160 140 120 100 B0 60 40 20

Element	al Compositio	n Repoi	rt					Page 1
Single M Tolerance Selected	lass Analysis e = 50.0 PPM filters: None	/ DBE	í min = -10	.0, max =	100.0			
Monoisotor 5 formula(e Elements L C: 0-90	bic Mass, Even Ele e) evaluated with 1 Jsed: 1: 0-120 N: 1-1	ectron Ion results w O: 2-2	s ithin limits (a Br: 1-1	ll results (u	p to 1000) fo	r each mass)		
KG-5-16 10072304 37 100	(0.965) AM (Cen,6, 80	0.00, Ar,5000	0.0,429.20,0.70 396.04	LS 10); Sm (: 23	6G, 2x3.00); Sb	(1,40.00); Cm (3	3:41)	1: TOF MS ES+ 3.21e3
%-	228.0901 209.0837 274	9.1748 307.	1815	418.0317	2 545.08	392 610. <u>5</u> 422		795.0939 791.0458
150	200 250	300	350 400	450	500 55	0 600	650 700	750 800
Minimum: Maximum:		5.0	50.0	-10.0 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
394.0438	394.0443	-0.5	-1.3	13.5	26.3	C21 H17	N O2 Br	
				Br				

19

10 HRMS

	0/20, 0.7 mL/min, 30 oC	, 254 mm		AD-H, H/i-PrOH =80/20, 0.7 mL/min, 30 oC, 254 nm	
Injection Date : Sample Name : Acg. Operator : Acg. Method : Last changed : Last changed :	4/24/2010 2:05:27 PM KG-3-62 C:\HPCHEN\1\METHODS\SW 4/24/2010 1:56:11 PM (modified after loadin C:\HPCHEN\1\METHODS\SW (modified after loadin (modified after loadin	Location : Vial 1 I.M I.M ZX ZX IGJ		Infection Date : 4/24/2010 1:29:57 FM Sample Name : KC-4-63A Location : Vial . Acg. Operator : Acg. Method : C:\HPCHEM\1\METHODS\SW.M Last changed : 4/24/2010 1:05:12 FM (modified after loading) Analvsis Method : C:\HPCHEM\1\METHODS\SW.M Last changed : 7/9/2010 2:19:36 FM by ZX (modified after loading)	1
VWD1 A, Wave	elength=254 nm (ZHOU-10\YZ008612.1	D)		VW/D1 A, Wavelength=264 nm (ZHOU-10\YZ008610.D)	
80 80 60 40	→ 0 → Me (+/-)-9a		9 120 9 120	140 120 100 80 60 (-)- 9a	
20 -				40 - 20 - 0	
		4 6			
		4 6	i mir	40 20 0 2 2 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7	
		4 6		40 20 0 2 4 2 4 5 4 6 	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				40 20 0 0 2 4 0 2 4 6 	
Sorted By Multiplier Dilution Signal 1: VWD1 A,	Area Percent Re : Signal : 1.0000 : 1.0000 Wavelength=254 nm	4 6		40 20 0 2 	
20- 0 0 	Area Percent Re : Signal : 1.0000 : 1.0000 Wavelength=254 nm Width Area H [min] mAU *s [mA]	iport		40 20 0 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 6 7 6 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 </td <td></td>	
20 0 0 0 0 0 0 0 0 0 0 0 0 0	Area Percent Re : Signal : 1.0000 : 1.0000 Wavelength=254 nm Width Area H [min] mAU *s [mAA 	leight Area 		40 20 	
20 0 0 0 0 0 0 0 0 0 0 0 0 0	Area Percent Re : Signal : 1.0000 : 1.0000 Wavelength=254 nm Width Area H [min1 mAU *s [mAA 	leicht Area U 1 5 1.19021 51.1625 55.24200 48.8375 56.43221		40 20 0 0 2 4 0 2 4 0 2 4 0 2 4 0 2 4 6 1 </td <td></td>	

Instrument 1 7/9/2010 2:19:43 PM ZX

Data File C:\HPCHEM\1\DATA\2H0U-10\Y2008711.D AD-H, H/i-PrOH =80/20, 0.7 mL/min, 30 oC, 254 nm	Sample Name: KG-4-65B	Data File C:\HPCHEM\1\DATA\ZHOU-10\YZ008702.D AD-H, H/i-PrOH =80/20, 0.7 mL/min, 30 oC, 254 nm	Sample Name: KG-4-66B
Injection Date : 4/29/2010 10:47:07 AM Sample Name : KG-4-65E Location : Vial 1 Acg. Operator : Acg. Method : C:\HPCHEM\1\METHODS\DEF_LC1.M Last changed : 4/29/2010 10:42:44 AM (modified after loading) Analvsis Method : C:\HFCHEM\1\METHODS\SW.M Last changed : 7/9/2010 2:36:14 PM by ZX (modified after loading)		Injection Date : 4/29/2010 8:08:59 AM Sample Name : KG-4-66B Location : Vial 1 Acc. Operator : Acq. Method : C:\HPCHEM\1METHODS\DEF_LC1.M Last changed : 4/29/2010 8:01:22 AM (modified after loading) Analvsis Method : C:\HFCHEM\1METHODS\SW.M Last changed : 7/9/2010 2:37:33 PM by ZX (modified after loading)	
WUD1 A, Wavelength=264 nm (2H0U-101/2008711.D) WUD1 A, Wavelength=264 nm (2H	200 min	VWD1 A, Wavelength=264 nm (2H0U-101/V2008702.D) mAU 100 90 40 40 40 0 20 0 2 4 0 2 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1	40000000000000000000000000000000000000
Area Percent Report		Area Percent Report	
Sorted Bv : Signal Multiplier : 1.0000 Dilution : 1.0000		Sorted Bv : Signal Multiplier : 1.0000 Dilution : 1.0000	
Signal 1: VWD1 A, Wavelength=254 nm		Signal 1: VWD1 A, Wavelength=254 nm	
Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 		Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 	
Totals: 1825.66522 170.83770		Totals: 1118.70860 110.78106	
Results obtained with enhanced integrator! *** End of Report ***		Results obtained with enhanced integrator! *** End of Report ***	

Instrument 1 7/9/2010 2:37:36 PM ZX

Data File C:\HPCHEM\1\DATA\ZHOU-10\YZ008708.D AD-H, H/i-PrOH =80/20, 0.5 mL/min, 30 oC, 254 nm	Sample Name: KG-4-65A	Data File C:\HPCHEM\1\DATA\ZHOU-10\YZ008706.D AD-H, H/i-PrOH =80/20, 0.5 mL/min, 30 oC, 254 nm	Sample Name: KG-4-66A
Injection Date : 4/29/2010 10:04:03 AM Sample Name : KG-4-65A Location : Vial 1 Acc. Operator : Acc. Method : C:\HPCHEM\1\METHODS\DEF_LC1.M Last changed : 4/29/2010 9:59:09 AM (modified after loading) Analvsis Method : C:\HPCHEM\1\METHODS\SW.M Last changed : 7/9/2010 2:35:02 PM by ZX (modified after loading)		Infection Date : 4/29/2010 9:24:41 AM Sample Name : KG-4-66A Location : Vial 1 Acc. Operator : Acq. Method : C:\HPCHEM.\\METHODS\DEF_LC1.M Last changed : 4/29/2010 9:20:05 AM (modified after loading) Analvsis Method : C:\HPCHEM.\\METHODS\SW.M Last changed : 7/9/2010 2:34:59 Mt by ZX (modified after loading)	
$\left(+/-\right)-9c$	12 CT	$\left[\begin{array}{c} WD1 A \ Wavelength=254 nm (2H0U-10)(Y2008708.D) \\ \\ Me \\ 100 \\ 100 \\ \\ 100 \\ \\ 0 \\ 0 \\ 0 \\ \\ 0 \\ 0 \\ \\ 0 $	
Area Percent Report		Area Percent Report	
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000		Sorted Bv : Signal Multiplier : 1.0000 Dilution : 1.0000	
Signal 1: WWD1 A, Wavelength=254 nm		Signal 1: VWD1 A, Wavelength=254 nm	
Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] * 		Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 	
Totals: 1522.91235 129.67514		Totals: 2751.27804 245.26526	
Results obtained with enhanced integrator! *** End of Report ***		Results obtained with enhanced integrator! *** End of Report ***	

Instrument 1 7/9/2010 2:35:02 PM ZX

Instrument 1 7/9/2010 2:46:45 PM ZX

Data File C:\CHEM32\1\DATA\ZHOU-10\YZN000717.D

Sample Name: KG-4-81B

	Page 1 of 1		Domo 1 of 1
*** End of Report ***		*** End of Report ***	
Totals : 1895.18439 62.54412		Totals : 6563.20258 208.45587	
1 24.324 BV 0.4525 928.41504 31.62052 48.9881 2 25.516 VB 0.4710 966.76935 30.92361 51.0119		1 24.535 BV 0.4504 460.78754 15.62304 7.0208 2 25.800 VB 0.4879 6102.41504 192.83282 92.9792	
?eak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 		Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] ÷ 	
ignal 1: VWD1 &, Wavelength=254 nm		Signal 1: VWD1 A, Wavelength=254 nm	
uttppler: : 1.0000 ilution: : 1.0000 'se Multiplier & Dilution Factor with ISTDs		multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs	
orted By : Signal		Sorted By : Signal	
Area Percent Report		Area Percent Report	
	Y \ 		
5		25	>24.535
(+/-)- 9e		75 (-)- 9e	
²⁰ 45		125 100 100	
VWD1A, W avelength=254 nm (2H0U-10X/2N000717.D)		VW/D1A, W/avelength=264 nm(ZH0U-10V/2N000715.D)	
(modified after loading) ample Info : AD-H, H/i-PrOH =90/10, 0.7 mL/min, 30 oC, 254 NM		(modified after loading) Sample Info : AD-H, H/i-PrOH =90/10, 0.7 mL/min, 30 oC, 254 NM	
nalysis Method : C:\CHEM32\1\METHODS\SW.M ast changed : 7/9/2010 3:11:29 PM		Analysis Method : C:\CHEM32\\\METHODS\SW.M Last changed : 7/9/2010 3:11:29 PM	
ast changed : 7/5/2010 9:34:57 PM (modified after loading)		Last changed : 7/5/2010 8:08:56 PM (modified after loading)	
Injection Date : 7/5/2010 9:39:22 PM Acq. Method : C:\CHEM32\1\METHODS\SW.M		Injection Date : 7/5/2010 8:30:16 PM Acq. Method : C:\CHEM32\1\METHODS\SW.M	
cq. Instrument : Instrument l Location : Vial 1		Acq. Instrument : Instrument 1 Location : Vial 1	
Acq. Instrument : Instrument 1 Location : Vial 1 Injection Date : 7/5/2010 9:39:22 PM Acg. Method : C://HEM321/METHODS/SM.M		Acq. Instrument : Instrument l Location : Vial l Injection Date : 7/5/2010 8:30:16 PM Acq. Method : C:\CHENQ2\L\METHODS\SU.M	

Data File C:\CHEM32\1\DATA\ZHOU-10\YZN000715.D Sample Name: KG-5-8E

Instrument 1 7/9/2010 2:49:45 PM ZX

Instrument 1 7/9/2010 2:53:01 PM ZX

Instrument 1 7/9/2010 2:56:13 PM ZX

Data File C:\HPCHEM\1\DATA\ZHOU-10\YZ008715.D OD-H, H/i-PrOH =95/5, 0.7 mL/min, 30 oC, 254 nm	Sample Name: KG-4-65C	Data File C:\HPCHEM\1\DATA\ZHOU-10\YZ008718.D OD-H, H/i-PrOH =95/5, 0.7 mL/min, 30 oC, 254 nm	Sample Name: KG
Injection Date : 4/29/2010 12:55:00 PM Sample Name : KG-4-55C Location : Vial 1 Acc. Oberator : Acc. Method : C:\HPCHEM\1\METHODS\DEF_LC1.N Last changed : 4/29/2010 12:52:30 PM (modified after loading) Analysis Method : C:\HPCHEM\1\METHODS\SU.M Last changed : 7/9/2010 2:40:57 PM by ZX (modified after loading)		Injection Date : 4/29/2010 2:07:10 PM Sample Name : KG-4-67C Location : Vial 1 Acc. Oberator : Acq. Method : C:\HPCHEM.\\METHODS\DEF_LC1.M Last changed : 4/29/2010 1:59:43 PM (modified after loading) Analvsis Method : C:\HPCHEM.\\METHODS\SW.M Last changed : 7/9/2010 2:40:49 PM by ZX (modified after loading)	
VW/D1 A, Wavelength=254 nm (ZH0U-101/YZ008715.D)	> 12.868	VW01 A, Wavelength=264 nm (2H0U-10\YZD08718.D) mAU - Cl	89
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \begin{array}{c} \end{array} \\		$ \begin{array}{c} $	
Area Percent Report		Area Percent Report	
Sorted Bv : Signal Multiplier : 1.0000 Dilution : 1.0000		Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000	
Signal 1: VWD1 A, Wavelength=254 nm		Signal 1: VWD1 A, Wavelength=254 nm	
Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 		Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 	
Totals: 1358.23077 59.54488		Totals: 1346.46692 61.28427	
Results obtained with enhanced integrator!		Results obtained with enhanced integrator!	
*** End of Report. ***		*** End of Report ***	

Instrument 1 7/9/2010 2:40:57 PM ZX

Instrument 1 7/24/2010 4:14:52 PM ZX

AD-H, H/i-PrOH =80/20, 0.5 mL/min, 30 oC, 254 nm	Sample Name: KG-4-40A	Data File C:\HPCHEM\1\DATA\ZHOU-10\YZ008622.D AD-H, H/i-PrOH =80/20, 0.5 mL/min, 30 oC, 254 nm	Sample Name: Kü
Infection Date : 3/24/2010 10:59:28 PM Sample Name : KC-4-40A Location : Vial 1 Acc. Operator : Acc. Method : C:\HPCHEN\1\METHODS\SW.M Last changed : 3/24/2010 11:02:50 PM (modified after loading) Analvsis Method : C:\HPCHEN\1\METHODS\SW.M Last changed : 7/9/2010 2:30:45 PM by ZX (modified after loading)		Infection Date : 4/25/2010 12:01:24 PM Sample Name : KG-4-63B Location : Vial 1 Acg. Operator : Acg. Method : C:\HPCHEN\1\METHODS\SW.M Last changed : 4/25/2010 11:45:11 AaM (modified after loading) Analvsis Method : C:\HPCHEM\1\METHODS\SW.M Last changed : 7/9/2010 2:30:51 PM by ZX (modified after loading)	
VWD1 A, Wavelength=264 nm (ZHOU-10\YZ008337.D)		VWD1 A, Wavelength=254 nm (ZHOU-10\YZ008622.D)	
$\begin{array}{c} \begin{array}{c} & & \\ $	12)	$\begin{array}{c} m \neq U \\ 160 \\ 140 \\ 120 \\ 100 \\ 30 \\ 60 \\ 40 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 12 \\ 100 $	
Area Percent Report		Area Percent Report	
Sorted Bv : Signal Multiplier : 1.0000 Dilution : 1.0000		Sorted Bv : Simal Multiplier : 1.0000 Dilution : 1.0000	
Sorted Bv : Sional Multiplier : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm		Sorted Bv : Siamal Multiplier : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm	
Sorted Bv : Sional Multiplier : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # fmin f fmin mAU *s fmAU 1 %		Sorted Bv : Signal Multiplier : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] %	
Sorted Bv : Signal Multiplier : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] ak *s [mAU] % 		Sorted Bv : Simal Multiplier : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 	
Sorted Bv : Signal Multiplier : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # fmin1 fmin1 Signal 1: % 1 11.13.1 VV 0.1973 2054.04468 158.98668 49.9304 2 11.970 VP 0.2126 2059.77393 148.67378 50.0696 Totals : 4113.81860 307.66046 40.9304		Sorted Bv : Simal Multiplier : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area <i>f</i> [min] [min] mAU *s [mAU] & 	
Sorted Bv : Signal Multiplier : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area # [min] [min] [min] *		Sorted Bv : Signal Multiplier : 1.0000 Dilution : 1.0000 Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area # [min] mAU * [min] mAU * [min] NAU * [min] NAU * [min] 207.71213 1 10.987 VV 0.9058 2 11.844 VB 0.2058 Totals : 2297.71213 184.30280 Results obtained with enhanced integrator!	

Instrument 1 7/9/2010 2:31:28 PM ZX

Page 1 of 1

Instrument 1 7/9/2010 2:59:47 PM ZX

Page 1 of 1

Data File C:\CHEM32\1\DATA\ZHOU-10\YZN000710.D Sample Name: KG-4-45

Acq. Operator	:	
Acq. Instrument	:	Instrument 1 Location : Vial 1
Injection Date	:	7/5/2010 6:28:13 PM
Acq. Method	:	C:\CHEM32\1\METHODS\SW.M
Last changed	:	7/5/2010 6:23:14 PM
Analysis Method	:	C:\CHEM32\1\METHODS\SW.M
Last changed	:	7/9/2010 3:15:34 PM
		(modified after loading)
Sample Info	:	AD-H, H/i-PrOH =80/20, 0.7 mL/min, 30 oC, 254 NM

.....

Area Percent Report

 Sorted By
 Signal

 Multiplier:
 :
 1.0000

 Dilution:
 :
 1.0000

 Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Totals: 1038.27704 82.31266

**** End of Report ***

Data File C:\CHEM32\1\DATA\ZHOU-10\YZN000709.D Sample Name: KG-5-9G

Acq. Operator	:	
Acq. Instrument	:	Instrument l Location : Vial 1
Injection Date	:	7/5/2010 6:09:02 PM
Acq. Method	:	C:\CHEM32\1\METHODS\SW.M
Last changed	:	7/5/2010 6:04:40 PM
Analysis Method	:	C:\CHEM32\1\METHODS\SW.M
Last changed	:	7/9/2010 3:15:34 PM
		(modified after loading)
Sample Info	:	AD-H, H/i-PrOH =80/20, 0.7 mL/min, 30 oC, 254 NM

Area Percent Report

.....

Sorted By	:	Sign	al
Multiplier:		:	1.0000
Dilution:		:	1.0000
Use Multiplier &	Dilution	Factor	with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Totals: 2655.72534 226.70354

*** End of Report ***

Instrument 1 7/9/2010 3:16:15 PM

Page 1 of 1

Instrument 1 7/9/2010 3:15:39 PM

Page 1 of 1

Data File C:\CHEM32\1\DATA\ZHOU-10\YZN000714.D Sample Name: KG-3-73

Acq. Operator :		
Acq. Instrument :	Instrument 1	Location : Vial 1
Injection Date :	7/5/2010 7:49:46 PM	
Acq. Method :	C:\CHEM32\1\METHODS\SW.M	
Last changed :	7/5/2010 7:48:49 PM	
	(modified after loading)	
Analysis Method :	C:\CHEM32\1\METHODS\SW.M	
Last changed :	7/9/2010 3:18:33 PM	
	(modified after loading)	
Sample Info :	AD-H, H/i-PrOH =70/30, 0.7 mL/	min, 30 oC, 254 NM

.....

Sorted By : Signal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm

Signal 1. (wol A) wavelengal-box mm

Instrument 1 7/9/2010 3:18:59 PM

Peak	RetTime Ty	pe Width	Area	Height	Area
#	[min]	[min]	mAU *s	[mAU]	\$
1	9.199 VB	0.1799	3307.077	15 280.24417	50.1566
2	12.404 VB	0.2481	3286.426	76 201.91351	49.8434
Total	s :		6593.503	91 482.15768	1

*** End of Report ***

Page 1 of 1

Instrument 1 7/9/2010 3:18:36 PM

Sorted By

Multiplier:

Dilution:

Totals :

Page 1 of 1

Data File C:\CHEM32\1\DATA\ZHOU-10\YZN000713.D Sample Name: KG-5-9H

Acq. Operator	:	
Acq. Instrument	:	Instrument 1 Location : Vial 1
Injection Date	:	7/5/2010 7:35:02 PM
Acq. Method	:	C:\CHEM32\1\METHODS\SW.M
Last changed	:	7/5/2010 7:29:54 PM
		(modified after loading)
Analysis Method	:	C:\CHEM32\1\METHODS\SW.M
Last changed	:	7/9/2010 3:18:33 PM
		(modified after loading)
Sample Info	:	AD-H, H/i-PrOH =70/30, 0.7 mL/min, 30 oC, 254 NM

Height

1016.66534 84.17845

*** End of Report ***

Area

*

: Signal

Use Multiplier & Dilution Factor with ISTDs

[min] [min] mAU *s [mAU]

Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area

: 1.0000 : 1.0000

Data File C:	\CHEM32\1\DATA\ZHOU-10\YZN000790.D
Sample Name:	KG-5-16

Acq. Operator	:	
Acq. Instrument	:	Instrument 1 Location : Vial 1
Injection Date	:	8/23/2010 10:24:49 PM
Acq. Method	:	C:\CHEM32\1\METHODS\SW.M
Last changed	:	8/23/2010 10:20:06 PM
		(modified after loading)
Analysis Method	:	D:\DY-3-78B.M
Last changed	:	2/21/2011 12:40:26 PM
		(modified after loading)
Sample Info	:	OD-H, H/i-PrOH =90/10, 0.7 mL/min, 30 oC, 254NM

.....

Data File C:\CHEM32\1\DATA\ZHOU-10\YZN000788.D Sample Name: KG-5-22C

			-
Acq. Operator	:		
Acq. Instrument	:	Instrument 1 Location : Vial 1	
Injection Date	:	8/23/2010 9:39:54 PM	
Acq. Method	:	C:\CHEM32\1\METHODS\SW.M	
Last changed	:	8/23/2010 9:35:13 PM	
		(modified after loading)	
Analysis Method	:	D:\DY-3-78B.M	
Last changed	:	2/21/2011 12:40:26 PM	
		(modified after loading)	
Sample Info	:	OD-H, H/i-PrOH =90/10, 0.7 mL/min, 30 oC, 254NM	

_____ Area Percent Report _____

Sorted By	:	Sigr	hal
Multiplier:		:	1.0000
Dilution:		:	1.0000
Use Multiplier	& Dilution	Factor	with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	*
		-				
1	9.038	BB	0.1946	1.80908	1.13537e-1	0.1093
2	11.171	VB	0.3458	1652.82617	73.37356	99.8907

*** End of Report ***

Totals : 1654.63525 73.48709

_____ *** End of Report ***

Height

873.61951 45.51659

[min] mAU *s [mAU]

1 9.007 BB 0.2634 436.59869 25.09956 49.9758 2 11.120 BB 0.3305 437.02081 20.41703 50.0242

Area

÷

Instrument 1 2/21/2011 12:42:42 PM

Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak RetTime Type Width Area

Multiplier: Dilution:

[min]

Totals :

Page 1 of 1

Instrument 1 2/21/2011 12:40:31 PM

Page 1 of 1