Supporting information

Total Synthesis of (±)-Chamobtusin A

Hikaru Suzuki and Sakae Aoyagi*

School of Pharmacy, Tokyo University of Pharmacy & Life Sciences

Horinouchi, Hachioji, Tokyo 192-0392, Japan

aoyagis@toyaku.ac.jp

General Methods. Reported melting points are uncorrected. Unless otherwise stated ¹H and ¹³C NMR spectra were recorded in CDCl₃ or CD₃OD, on a 400 MHz instrument. Proton chemical shifts are given in δ (ppm) relative to internal CHCl₃ (7.26 ppm) or CD₃OH (4.78 ppm). Carbon chemical shifts are given relative to CDCl₃ (77.05 ppm) or CD₃OD (49.3 ppm). Analytical TLC was carried out with precoated silica gel 60F₂₅₄ plates (Merck). Flash column chromatography was performed on Silica gel 60N (spherical, neutral, 40-50 mm, Kanto Chemical Co., Inc.).

Methyl (1'S*,4a'S*,8a'S*)-5',5',8a'-Trimethyloctahydro-1'H-spiro[[1,3]dioxolane-2,2'-naphthalene]-1'-carboxylate. Ethylene glycol (1.1 mL, 19.6 mmol) and trimethylsilyl chloride (2.1 mL, 15.7 mmol) were added to a solution of 4 (990 mg, 3.92 mmol)) in dry CH_2Cl_2 (8.0 mL) at room temperature. The mixture was heated at reflux for 23 h. After cooling, the reaction was quenched with saturated aqueous NaHCO₃ (8.0 mL) at 0 °C, and the resulting mixture was extracted with Et_2O (3 x 8.0 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 10:1) to give the title compound (1.14 g, 98%) as white crystals. mp 78-79 °C (from hexane); IR (KBr) 1735 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.66 (3H, s), 0.82 (3H, s), 0.99-1.02 (1H, m), 1.14 (3H, s), 1.02-1.09 (1H, m), 1.34-1.41 (3H, m), 1.47 (1H, td, J = 13.6, 4.0 Hz), 1.57-1.73 (3H, m), 2.13 (1H, dd, J = 12.5, 2.38 Hz), 2.25 (1H, td, J = 13.8, 5.78 Hz), 2.44 (1H, d, J = 1.78

Hz), 3.66 (3H, s), 3.86-3.99 (4H, m); 13 C NMR (100.6 MHz, CDCl₃) δ 18.5 (CH₂), 19.7 (CH₂), 21.4 (CH₃), 21.9 (CH₃), 33.1 (C), 33.4 (CH₂), 33.5 (CH₃), 38.2 (C), 38.5 (CH₂), 41.8 (CH₂), 45.3 (CH), 51.1 (CH), 62.6 (CH₃), 63.9 (CH₂), 64.5 (CH₂), 109.1 (C) 172.6 (C); HRMS (ESI) calcd for $C_{17}H_{29}O_4[M+H]^+$ 297.2066, found 297.2063. Anal. Calcd for $C_{17}H_{28}O_4$: C, 68.89; H, 9.52. Found: C, 68.92; H, 9.54.

2-((1'R*,4a'S*,8a'S*)-5',5',8a'-Trimethyloctahydro-1'H-spiro[[1,3]dioxolane-2,2'-

naphthalene]-1'-yl)methanol (**5**). A solution of the above ester (9.20 g, 31.0 mmol) in dry Et₂O (30 mL) was added to a stirred suspension of lithium aluminium hydride (3.53 g, 93.0 mmol) in dry Et₂O (280 mL) at 0 °C under argon, and stirring was continued for 19 h at room temperature. The reaction was quenched with successive addition of water (3.5 mL), 4M aqueous sodium hydroxide (3.5 mL), and water (7.0 mL). The suspension was filtrated through a Celite pad and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/AcOEt 2:1) to give **5** (8.20 g, 99%) as white crystals. mp 77-79 °C (from hexane); IR (KBr) 3330 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.81 (3H, s), 0.85 (3H, s), 0.94 (1H, dd, J = 12.3, 3.11 Hz), 1.08-1.16 (1H, m), 1.16 (3H, s), 1.22-1.27 (1H, m), 1.37-1.77 (9H, m), 3.29 (1H, dd, J = 10.0, 2.41 Hz), 3.76-4.01 (6H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.7 (CH₂), 20.4 (CH₂), 22.1 (CH₃), 22.6 (CH₃), 33.1 (CH₂), 33.4 (C), 33.5 (CH₃), 37.3 (CH₂), 38.5 (C), 42.4 (CH₂), 48.2 (CH), 57.2 (CH), 61.2 (CH₂), 63.5 (CH₂), 64.2 (CH₂), 113.1 (C); HRMS (ESI) calcd for C₁₆H₂₉O₃[M+H]⁺ 269.2117, found 269.2113. Anal. Calcd for C₁₆H₂₈O₃: C, 71.60; H, 10.52. Found: C, 71.50; H, 10.49.

2-((1'S*,4a'S*,8a'S*)-5',5',8a'-Trimethyloctahydro-1'H-spiro[[1,3]dioxolane-2,2'-

naphthalene]-1'-vl)acetonitrile (6). p-Toluenesulfonyl chloride (12.3 g, 61.2 mmol) was added to a solution of 5 (8.20 g, 30.6 mmol) in pyridine (31.0 mL) at 0 °C under argon. After stirring for 2 h at 0 °C, the reaction was quenched with a saturated aqueous solution of copper (II) sulfate penta hydrate (30 mL), and the resulting mixture was extracted with Et₂O (3 x 50 mL). The combined extracts were washed with brine, then dried over MgSO₄ and concentrated under reduced pressure to afford a yellow oil, which was used in the next step without further purification. KCN (4.98 g, 76.5 mmol) and 18-crown-6 (5.65 g, 30.6 mmol) were added to a solution of the above residue in MeCN (61.0 mL) at room temperature. The mixture was heated at reflux for 4 h. After cooling, the reaction was diluted with a saturated aqueous solution of NaHCO₃ (30 mL) at 0 °C, and the resulting mixture was extracted with Et₂O (3 x 60 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 4:1) to give 6 (6.44 g, 76% from 5) as a yellow oil. IR (neat) 2242 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.83 (3H, s), 0.89 (3H, s), 0.89-1.18 (1H, m), 1.20 (3H, s), 1.38-1.56 (8H, m), 1.68-1.71 (3H, m), 1.37-1.58 (8H, m), 1.68-1.71 (3H, m), 2.64 (1H, dd, J = 17.3, 7.3 Hz), 2.65 (1H, dd, J = 17.3, 3.69 Hz), 3.87-4.03 (4H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 15.1 (CH₂), 18.5 (CH₂), 19.8 (CH₂), 21.8 (CH₃), 22.3 (CH₃), 33.1 (C), 33.2 (CH₂), 33.5 (CH₃), 37.8 (CH₂), 38.6 (C), 42.2 (CH₂), 46.3 (CH), 52.9 (CH), 63.6 (CH₂), 64.9 (CH₂), 109.9 (C), 121.5 (C); HRMS (ESI) calcd for C₁₇H₂₈NO₂[M+H]⁺ 278.2120, found 278.2125. Anal. Calcd for C₁₇H₂₇NO₂: C, 73.61; H, 9.81; N, 5.05. Found: C, 73.46; H, 9.72; N, 5.16.

2-((1'S*,4a'S*,8a'S*)-5',5',8a'-Trimethyloctahydro-1'H-spiro[[1,3]dioxolane-2,2'-

naphthalene]-1'-yl)ethanamine. A solution of **6** (6.44 g, 23.2 mmol) in dry Et₂O (10 mL) was added to a stirred suspension of lithium aluminium hydride (2.64 g, 69.6 mmol) in dry Et₂O (220 mL) at 0 °C under argon, and stirring was continued for 2 h at 0 °C. The reaction was quenched with successive addition of water (2.5 mL), 4M aqueous sodium hydroxide (2.5 mL), and water (5.0 mL). The suspension was filtrated through a Celite pad and the

filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl₃/MeOH/NH₄OH 100:9:1) to give the title compound (6.26 g, 96%) as a colorless oil. IR (neat) 3372 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.80 (3H, s), 1.02-1.06 (3H, m), 1.13 (3H, s), 1.35-1.38 (4H, m), 1.38-1.62 (9H, m), 2.59-2.64 (2H, m), 3.78-4.11 (4H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.5 (CH₂), 20.2 (CH₂), 21.6 (CH₃), 22.8 (CH₃), 32.7 (C), 32.9 (CH₂), 33.3 (CH₂), 33.4 (CH₃), 36.4 (CH₂), 38.8 (C), 42.3 (CH₂), 44.7 (CH₂), 46.3 (CH), 52.9 (CH), 63.3 (CH₂), 64.5 (CH₂). 112.3 (C); HRMS (ESI) calcd for C₁₇H₃₂NO₂ [M+H]⁺ 282.2433, found 282.2435. Anal. Calcd for C₁₇H₃₁NO₂: C, 72.55; H, 11.10; N, 4.98. Found: C, 72.33; H, 10.84; N, 5.02.

2-Nitro-*N*-(2-((1'S*,4a'S*,8a'S*)-5',5',8a'-trimethyloctahydro-1'*H*-spiro[[1,3]-dioxolane-2,2'-naphthalene]-1'-yl)ethyl)benzenesulfonamide (7). Triethylamine (1.66 mL, 11.9 mmol) and o-NsCl (791mg, 3.57 mmol) were added to a stirred solution of the above amine in dry CH₂Cl₂ (24 mL) at 0 °C under argon. After 5 min, the reaction was quenched with a saturated aqueous solution of NaHCO₃ (30 mL) at 0 °C, and the resulting mixture was extracted with Et₂O (3 x 40 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 2:1) to give 7 (1.11 g, 100%) as an amorphous solid. IR (KBr) 3334, 1541 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.79 (3H, s), 0.83 (3H, s), 0.88-0.90 (1H, m), 0.98-1.09 (2H, m), 1.10 (3H, s), 1.14-1.15 (1H, m), 1.22-1.48 (7H, m), 1.59-1.67 (3H, m), 2.96-3.04 (1H, m), 3.10-3.16 (1H, m), 3.83-3.98 (4H, m), 5.74 (1H, t, J = 4.75 Hz, 7.71-7.74 (2H, m), 7.84-7.86 (1H, m), 8.10-8.13 (1H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.4 (CH₂), 20.0 (CH₂), 21.5 (CH₃), 22.6 (CH₃), 27.0 (CH₂), 32.90 (C), 32.91 (CH₃), 33.4 (CH₂), 36.0 (CH₂), 38.9 (C), 42.3 (CH₂), 45.5 (CH₂), 46.4 (CH), 53.3 (CH), 63.2 (CH₂), 64.8 (CH₂), 111.8 (C), 125.3 (CH), 131.1 (CH), 132.6 (CH), 133.3 (CH), 133.9 (C), 148.1 (C); HRMS (ESI) calcd for $C_{23}H_{35}N_2O_6S[M+H]^+$ 467.2216, found 467.2200.

$2\text{-Nitro-}N\text{-}(2\text{-}((1'S^*,4a'S^*,8a'S^*)\text{-}5',5',8a'\text{-trimethyl-}2\text{-}oxodecahydronaphtalene-}$

1-yl)ethyl)benzenesulfonamide. An aqueous 5% HCl solution (0.98 mL, 1.35 mmol) was added to a stirred solution of 7 (126 mg, 0.27 mmol) in dry THF (2.7 mL) at 0 °C under argon. After stirring for 8 h at 0 °C, the reaction was quenched with saturated aqueous NaHCO₃ (3.0 mL) at 0 °C, and the resulting mixture was extracted with Et₂O (3 x 10 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 3:1) to give the title compound (101 mg, 89%) as white crystals. mp 135-136 °C; IR (KBr) 3300, 1687, 1541 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.85 (3H, s), 0.90 (3H, s), 0.95 (3H, s), 1.01-1.05 (1H, m), 1.14-1.22 (1H, m), 1.41-1.63 (6H, m), 1.70-1.80 (2H, m), 1.90-2.01 (2H, m), 2.31-2.37 (2H, m), 2.81-2.88 (1H, m), 3.00-3.08 (1H, m), 5.56 (1H, t, J = 6.21 Hz), 7.70-7.74 (2H, m), 7.84-7.86 (1H, m), 8.07-8.10 (1H, m); ¹³C NMR (100.6 MHz, CDCl₂) δ 18.5 (CH₂), 22.0 (CH₃), 22.1 (CH₂), 23.1 (CH₂), 27.8 (CH₂), 33.3 (C), 33.4 (CH₃), 36.3 (CH₂), 38.4 (CH₂), 39.7 (C), 42.0 (CH₂), 42.2 (CH₂), 44.8 (CH), 61.9 (CH), 125.4 (CH), 131.0 (CH), 132.8 (CH), 133.6 (CH), 133.7 (C), 140.1 (C), 215.2 (C); HRMS (ESI) calcd for $C_{21}H_{31}N_2O_5S[M+H]^+$ 423.1954, found 423.1977. Anal. Calcd for $C_{21}H_{30}N_2O_5S$: C, 59.69; H, 7.16; N, 6.63. Found: C, 59.67 H, 7.04; N, 6.67.

N-Benzyl-2-nitro-N-(2-((1'S*,4a'S*,8a'S*)-5',5',8a'-trimethyl-2-oxodecahydro-

naphthalene-1-yl)ethyl)benzenesulfonamide (8). Benzyl alcohol (72.0 μ L, 0.69 mmol) and triphenyl phosphine (157 mg, 0.60 mmol) were added to a stirred solution of the above ketone (195 mg, 0.46 mmol) in dry toluene (4.6 mL) at room temperature under argon. And then, diethyl azodicarboxyrate (40 % in toluene, 0.27 mL, 0.60 mmol) was added to the above

mixture at 0 °C. After stirring for 10 min at room temperature, the mixture was directly purified by silica gel flash column chromatography (hexane/EtOAc 2:1) to give **8** (236 mg, 100%) as white crystals. mp 137-138 °C; IR (KBr) 1702, 1543 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.79 (3H, s), 0.80 (3H, s), 0.90 (3H, s), 1.05-1.30 (3H, m), 1.37-1.51 (7H, m), 1.70-1.85 (2H, m), 2.09-2.14 (2H, m), 2.93-3.06 (2H, m), 4.45 (1H, d, J = 14.9 Hz), 4.51 (1H, d, J = 14.9 Hz), 7.29-7.32 (5H, m), 7.63-7.70 (3H, m), 7.91-7.94 (1H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.5 (CH₂), 21.7 (CH₃), 22.0 (CH₃), 23.1 (CH₂), 26.7 (CH₂), 33.2 (C), 33.3 (CH₃), 36.1 (CH₂), 38.0 (CH₂), 39.8 (C), 42.1 (CH₂), 44.6 (CH), 47.0 (CH₂), 53.1 (CH₂), 62.3 (CH), 124.3 (CH), 128.3 (CH), 128.7 (CH, 2 carbons), 128.8 (CH, 2 carbons), 130.1 (CH), 131.7 (CH), 133.1 (C), 133.5 (CH), 135.9 (C), 148.2 (C), 214.8 (C); HRMS (ESI) calcd for C₂₈H₃₇N₂O₅S [M+H]⁺ 513.2423, found 513.2437. Anal. Calcd for C₂₈H₃₆N₂O₅S: C, 65.60; H, 7.08; N, 5.46. Found: C, 65.63 H, 7.00; N, 5.49.

N-Benzyl-N-(2-((1R*,4aS*,8aS*)-2-(cyanomethylene)-5',5',8a'-trimethyl-2-oxodeca-

hydronaphthalene-1-yl)ethyl)-2-nitrobenzenesulfonamide (9). n-BuLi (1.6 M solution in hexane, 12.0 mL, 19.2 mmol) was added dropwise to a stirred solution of diethyl cyanomethylphosphonate (3.89 mL, 23.0 mmol) in dry THF (60 mL) at 0 °C under argon, and stirring was continued for 1 h at room temperature. A solution of **8** (3.93 g, 7.67 mmol) in dry THF (20 mL) was added dropwise to the above mixture at 0 °C. After stirring for 24 h at room temperature, the reaction was quenched with water (30 mL) at 0 °C, and the resulting mixture was extracted with Et₂O (3 x 100 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 4:1) to give **9** (as an E/Z mixture in the ratio of 1:1) (3.78 g, 92%) as a yellow oil. IR (neat) 2214, 1545 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.74-0.85 (9H, m), 0.85-0.95 (1H, m), 1.05-1.58 (10H, m), 1.65-1.67 (3H, m), 2.00-2.11 (1H, m), 2.14-2.20 (0.5H, m), 2.65-2.75 (0.5H, m), 2.80-3.14 (2H, m), 4.40 (1H, t, J = 14.1 Hz), 4.55 (1H, d, J = 14.6 Hz), 4.86 (0.5H, d, J = 1.46 Hz), 5.07 (0.5H, d, J = 1.84 Hz), 7.27-7.34 (5H, m), 7.64-7.71 (3H, m), 7.92-8.00 (1H, m); ¹³C NMR

(100.6 MHz, CDCl₃) δ 18.7 (CH₂, 2 carbons), 21.2 (CH₃), 21.9 (CH₃, 3 carbons), 23.2 (CH₂), 23.6 (CH₂), 26.2 (CH₂), 27.4 (CH₂), 29.3 (CH₂), 32.2 (CH₂), 33.17 (C, 2 carbons), 33.23 (CH₃), 33.27 (CH₃), 36.08 (CH₂), 36.12 (CH₂), 39.20 (C), 39.29 (C), 42.1 (CH₂, 2 carbons), 45.2 (CH), 45.3 (CH), 47.0 (CH₂), 47.4 (CH₂), 52.5 (CH₂), 53.1 (CH), 53.3 (CH₂), 56.2 (CH), 94.1 (CH), 94.2 (CH), 116.5 (C), 117.0 (C), 124.2 (CH), 124.3 (CH), 128.2 (CH), 128.3 (CH), 128.66 (CH, 2 carbons), 128.79 (CH, 2 carbons), 128.83 (CH, 2 carbons), 128.86 (CH, 2 carbons), 130.7 (CH), 130.9 (CH), 131.7 (CH), 131.8 (CH), 133.0 (C), 133.1 (C), 133.5 (CH), 133.7 (CH), 135.6 (C), 136.0 (C), 148.1 (C), 148.2 (C), 168.9 (C), 169.5 (C); HRMS (ESI) calcd for C₃₀H₃₈N₃O₄S [M+H]⁺ 536.2583, found 536.2562.

2-((1R*,4aS*,8aS*)-1-(2-(Benzylamino)ethyl)-5,5,8,1-trimethyloctahydronaphthalene-

2(1*H***)-ylidene)acetonitrile (3).** Thiophenol (0.31 mL, 2.96 mmol) and 5 M aqueous KOH (0.30 mL, 1.48 mmol) were added dropwise to a stirred solution of **9** (396 mg, 0.739 mmol) in MeCN (4.0 mL) at 0 °C under argon. After stirring for 4 h at room temperature, the mixture was directly purified by silica gel flash column chromatography (CHCl₃/MeOH 20:1) to give **3** (236 mg, 91%) as a yellow oil. IR (neat) 3313, 2214 cm⁻¹; ¹H NMR (major diastereomer, 400MHz, CDCl₃) δ 0.81 (3H, s), 0.88 (3H, s), 0.95 (3H, s), 1.15-1.19 (2H, m), 1.38-1.75 (9H, m), 1.90-2.00 (1H, m), 2.26-2.30 (2H, m), 3.68 (1H, d, J = 13.0 Hz), 3.75 (1H, d, J = 12.9 Hz), 5.12 (1H, s), 7.22-7.37 (5H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.8 (CH₂), 21.5 (CH₃), 22.0 (CH₃), 23.9 (CH₂), 28.1 (CH₂), 32.5 (CH₂), 33.3 (C), 33.4 (CH₃), 36.4 (CH₂), 39.5 (C), 42.3 (CH₂), 45.4 (CH), 47.9 (CH₂), 53.5 (CH), 54.3 (CH₂), 94.0 (CH), 117.3 (C), 126.9 (CH), 128.2 (CH, 2 carbons), 128.4 (CH, 2 carbons), 140.3 (C), 170.1 (C); HRMS (ESI) calcd for C₂₄H₃₅N₂[M+H]⁺ 351.2800, found 351.2794.

2-((3aS*,5aS*,9aS*)-3-Benzyl-6,6,9a-trimethylperhydro-1H-benzo[e]indol-3a-

vI)acetonitrile (2). N,N-Diisopropylethylamine (0.36 mL, 2.18 mmol) was added to a stirred solution of 3 (153 mg, 0.436 mmol) in EtOH (4.4 mL) at room temperature under argon. The mixture was heated at reflux for 24 h. After cooling, the reaction was quenched with saturated aqueous NH₄Cl (5.0 mL) at 0 °C, and the resulting mixture was extracted with Et₂O (3 x 10 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 5:1) to give 2 (123 mg, 80%) as white crystals. mp 154-156 °C; IR (KBr) 2243 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.83 (3H,s), 0.90 (3H, s), 1.10-1.20 (3H, m), 1.23 (3H, s), 1.23-1.29 (2H, m), 1.50-1.70 (3H, m), 1.78-1.81 (2H, m), 2.14 (1H, t, J = 10.2 Hz), 2.25-2.31 (1H, m), 2.65 (1H, d, J = 17.4 Hz), 2.92-2.97 (1H, m),2.99 (1H, d, J = 17.4 Hz), 3.14 (1H, d, J = 13.2 Hz), 3.91 (1H, d, J = 13.2 Hz), 7.12-7.73 (5H, d, J = 17.4 Hz), 7.12-7.73 (m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.2 (CH₂), 19.5 (CH₂), 21.6 (CH₃), 22.7 (CH₃), 23.7 (CH₂), 26.6 (CH₂), 28.3 (CH₂), 32.9 (C), 33.4 (CH₃), 36.3 (C), 37.3 (CH₂), 42.2 (CH₂), 46.5 (CH), 48.9 (CH₂), 52.0 (CH₂), 55.6 (CH), 62.3 (C), 118.6 (C), 126.9 (CH), 128.3 (CH, 2 carbons), 128.4 (CH, 2 carbons), 139.6 (C); HRMS (ESI) calcd for C₂₄H₃₅N₂ [M+H]⁺ 351.2800, found 351.2812. Anal. Calcd for C₂₄H₃₄N₂: C, 82.23; H, 9.78; N, 7.99. Found: C, 82.08 H, 9.86; N, 7.98.

2-((3aS*,5aS*,9aS*)-6,6,9a-Trimethylperhydro-1*H***-benzo[***e***]indol-3a-yl)acetonitrile (10).** Celium(IV) ammonium nitrate (64.0 mg, 0.116 mmol) was added to a stirred solution of **2** (13.5 mg, 38.5 μmol) in (MeCN/CH₂Cl₂/H₂O 4:1:1, 0.5 mL) at 0 °C under argon. After stirring for 3.5 h at room temperature, the reaction was quenched with saturated aqueous

NaHCO₃ (1.0 mL) at 0 °C, and the resulting mixture was extracted with CHCl₃ (3 x 10 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl₃/MeOH 20:1) to give **10** (8.5 mg, 85%) as white crystals. mp 87-89 °C; IR (KBr) 3435, 2240 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.81 (3H, s), 0.88 (3H, s), 1.11 (3H, s), 1.18-1.30 (5H, m), 1.38-1.42 (2H, m), 1.74 (1H, t, J = 10.1 Hz), 1.89-1.92 (2H, m), 1.98 (1H, br s), 2.69 (1H, d, J = 16.7 Hz), 2.70 (1H, d, J = 16.7 Hz), 2.97-3.02 (2H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.3 (CH₂), 19.9 (CH₂), 21.7 (CH₃), 22.7 (CH₃), 27.8 (CH₂), 29.5 (CH₂), 32.9 (C), 33.4 (CH₃), 34.9 (CH₂), 36.0 (C) 38.2 (CH₂), 42.2 (CH, 2 carbons), 46.5 (CH), 57.0 (CH), 60.4 (C), 118.5 (C); HRMS (ESI) calcd for C₁₇H₂₉N₂ [M+H]⁺ 261.2331, found 261.2333. Anal. Calcd for C₁₇H₂₈N₂: C, 78.41; H, 10.84; N, 10.76. Found: C, 78.23 H, 10.63; N, 10.63.

2-((3aS*,5aS*,9aS*)-6,6,9a-Trimethyl-3-(2-nitrobenzenesulfonyl)perhydro-1H-

benzo[*e*]indol-3a-yl)acetonitrile (11). Triethylamine (0.28 mL, 2.00 mmol) and *o*-NsCl (221 mg, 0.988 mmol) were added to a stirred solution of 10 (104 mg, 0.399 mmol) in CH₂Cl₂ (4.0 mL) at 0 °C under argon. After stirring for 8 h at room temperature, the reaction was quenched with saturated aqueous NaHCO₃ (4.0 mL) at 0 °C, and the resulting mixture was extracted with Et₂O (3 x 15 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 2:1) to give 11 (147 mg, 83%) as white crystals. mp 221-224 °C; IR (KBr) 2246, 1545 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.80 (3H, s), 0.88 (3H, s), 1.11-1.23 (3H, m), 1.21 (3H, s), 1.30-1.33 (2H, m), 1.41-1.47 (2H, m), 1.56-1.63 (2H, m), 1.94-1.98 (2H, m), 2.01-2.15 (1H, m), 2.26 (1H, dd, *J* = 12.98, 6.35 Hz), 2.37 (1H, d, *J* = 13.9 Hz), 3.05 (1H, d, *J* = 17.8 Hz), 3.13 (1H, td, *J* = 10.7, 6.89 Hz), 3.74 (1H, d, *J* = 17.9 Hz), 3.79 (1H, t, *J* = 9.27 Hz), 7.56-7.59 (1H, m), 7.67-7.72 (2H, m), 8.11-8.13 (1H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.2 (CH₂), 20.0 (CH₂), 21.6 (CH₃), 22.4 (CH₃), 25.2 (CH₂), 27.4 (CH₂), 32.9 (C), 33.3 (CH₃), 36.4 (CH₂), 38.1 (CH₂), 41.9 (CH₂), 46.8

(CH), 47.6 (CH₂), 57.2 (CH), 69.1 (C), 118.3 (C), 124.0 (CH), 130.3 (CH), 131.8 (CH), 133.0 (C), 133.8 (CH), 148.6 (C); HRMS (ESI) calcd for $C_{23}H_{33}N_3O_4S$ [M+H]⁺ 446.2114, found 446.2118. Anal. Calcd for $C_{23}H_{32}N_3O_4S$: C, 62.00; H, 7.01; N, 9.42. Found: C, 61.93; H, 7.04; N, 9.45.

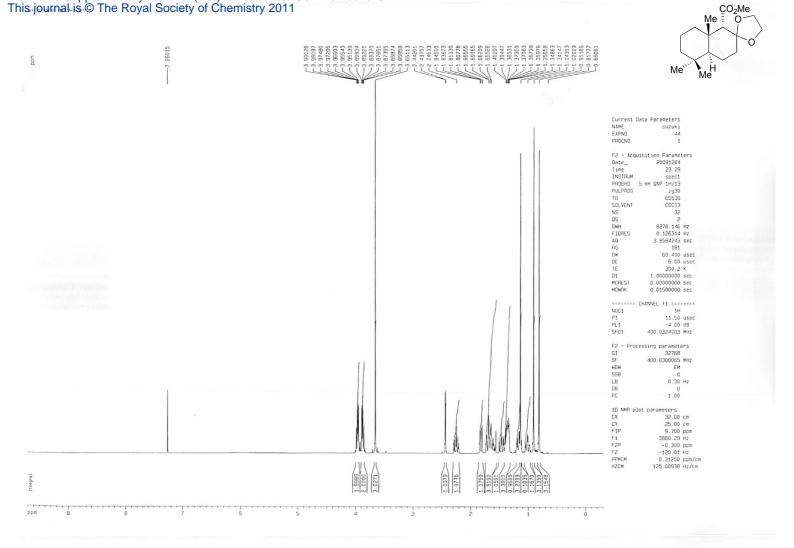
2-((3aS*,5aS*,9aS*)-6,6,9a-Trimethyl-3-(2-nitrobenzenesulfonyl)perhydro-1H-

benzo[e]indol-3a-yl)acetoaldehyde (12). DIBAL-H (1.01 M in toluene, 0.65 mL, 0.66 mmol) was added dropwise to a stirred solution of 11 (147 mg, 0.33 mmol) in CH₂Cl₂ (3.3 mL) at -78 °C under argon. After stirring for 30 min at -78 °C, 1M HCl (1.0 mL) was added to the mixture. After warming to room temperature very slowly, the reaction was quenched with saturated aqueous NaHCO₃ (4.0 mL) at 0 °C, and the resulting mixture was extracted with Et₂O (3 x 15 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 2:1) to give 12 (125 mg, 85%) as white crystals. mp 201-203 °C; IR (KBr) 1720, 1543 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.77 (3H, s), 0.86 (3H, s), 1.08 (3H, s), 1.13-1.28 (5H, m), 1.38-1.45 (2H, m), 1.52-1.68 (2H, m), 1.66 (1H, td, J = 13.1, 4.22 Hz), 1.90 (1H, dd, J = 12.1, 6.06), 1.94-2.07 (1H, m), 2.16 (1H, dd, J = 12.1, 6.06), 1.94-2.07 (113.1, 6.14), 2.21-2.25 (1H, br d, J = 13.7 Hz), 3.06 (1H, dd, J = 18.2, 3.13 Hz), 3.27 (1H, td, J = 18.2, 3.14 Hz), 3.27 (1H, td, J = 18.2, 3.15 Hz), 3.27 (1H, td, = 10.11, 6.6 Hz), 3.54 (1H, d, J = 18.2 Hz), 3.78 (1H, d, J = 9.08 Hz), 9.74 (1H, d, J = 2.96 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.3 (CH₂), 20.0 (CH₂), 21.7 (CH₃), 23.1 (CH₃), 25.3 (CH₂₎, 32.9 (C), 33.3 (CH₃), 36.9 (C), 37.7 (CH₂), 38.2 (CH₂), 42.0 (CH₂), 46.9 (CH), 48.3 (CH₂), 48.8 (CH₂), 56.5 (CH), 68.8 (C), 123.9 (CH), 130.1 (CH), 131.5 (CH), 133.6 (CH), 134.1 (CH), 148.3 (C), 201.8 (CH); HRMS (ESI) calcd for $C_{23}H_{33}N_2O_5S[M+H]^+$ 449.2110, found 449.2102. Anal. Calcd for C₂₃H₃₂N₂O₅S: C, 61.58; H, 7.19; N, 6.24. Found: C, 61.43; H, 7.23; N, 6.32.

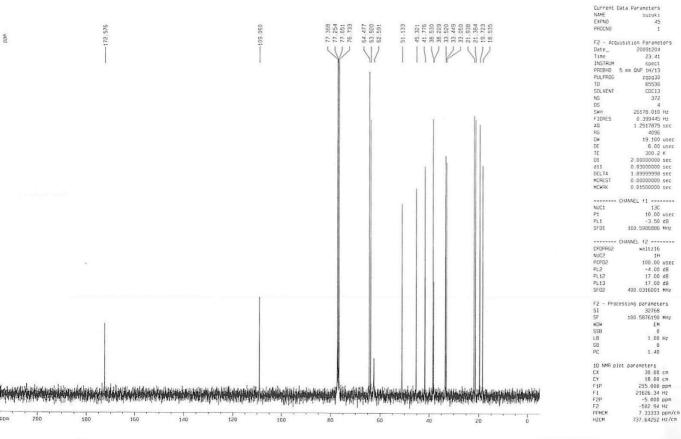
(3aS*,5aS*,9aS*)-6,6,9a-Trimethyl-3a-(3-methylbut-2-enyl)-3-(2-nitrobenzenesulfonyl)**perhydro-1***H***-benzo**[*e*]**indole**) (**13**). *n*-BuLi (1.6 M solution in hexane, 33.0 μL, 53.0 μmol) was added dropwise to a stirred suspension of isopropyltriphenylphosphonium iodide (24.0 mg, 54.4 μmol) in dry THF (300 μL) at 0 °C under argon, and stirring was continued for 30 min at the same temperature. A solution of 12 (6.10 mg, 13.6 µmol) in dry THF (300 µL) was added dropwise to the above mixture at 0 °C. After stirring for 15 h at room temperature, the reaction was quenched with saturated aqueous NH₄Cl (1.0 mL) at 0 °C, and the resulting mixture was extracted with Et₂O (3 x 10 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/EtOAc 4;1) to give 13 (4.50 mg, 70%) as yellow crystals. mp 141-143 °C; IR (KBr) 1543 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.78 (3H, s), 0.87 (3H, s), 1.00 (3H, s), 1.10-1.41 (7H, m), 1.48 (6H, s), 1.48-1.70 (2H, m), 1.80-1.95 (4H, m), 2.32 (1H, dt, J = 13.7, 3.06 Hz), 2.65-2.85 (2H, m), 3.23-3.28 (1H, m), 3.81-3.85 (1H, m), 4.79-4.81 (1H, br s), 7.48-7.50 (1H, m), 7.50-7.61 (2H, m), 7.98-8.10 (1H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.4 (CH₂), 18.4 (CH₃), 20.4 (CH₂), 21.8 (CH₃), 22.1 (CH₃), 25.1 (CH₂), 25.8 (CH₃), 32.9 (CH₃), 33.4 (C), 34.5 (CH₂), 36.6 (C), 38.4 (CH₂), 38.5 (CH₂), 42.2 (CH₂), 47.1 (CH), 48.5 (CH₂), 55.0 (CH), 71.3 (C), 120.0 (CH), 123.4 (CH), 130.7 (CH), 131.0 (CH), 132.8 (CH), 132.8 (CH), 135.1 (C), 148.4 (C); HRMS (ESI) calcd for $C_{26}H_{39}N_2O_4S[M+H]^+$ 475.2631, found 475.2652. Anal. Calcd for $C_{26}H_{38}N_2O_4S$: C, 65.79; H, 8.07; N, 5.90. Found: C, 65.69 H, 8.03; N, 5.95.

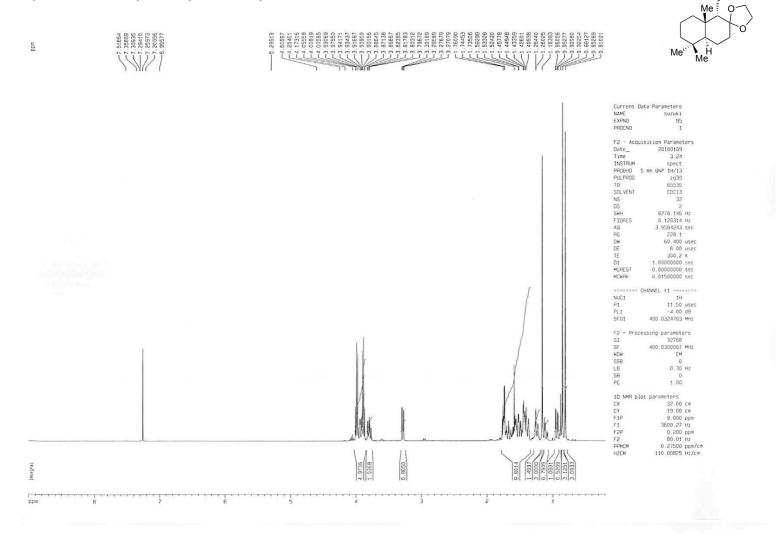
3-Hydroxy-3-methyl-1-((3aS*,5aS*,9aS*,9bS*)-6,6,9a-trimethyl-3-(2-nitrobenzene-sulfonyl)perhydro-1*H*-benzo[*e*]indol-3a-yl)butan-2-one (14). *N*-Methylmorpholine *N*-oxide (78.0 mg, 0.632 mmol) and osmium(IV) tetroxide (0.20 mL, 31.6 μmol) was added to a

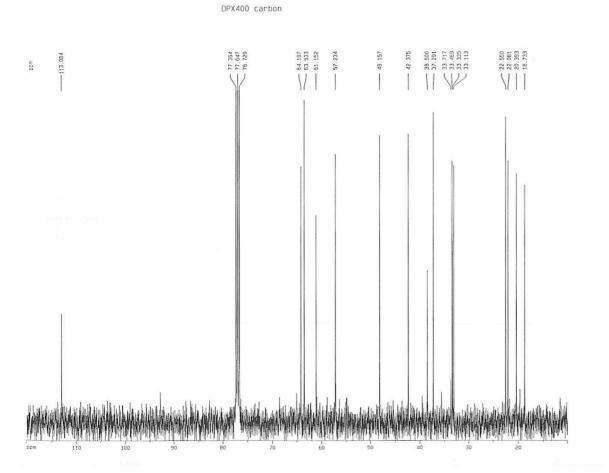
stirred solution of 13 (150 mg, 0.316 mmol) in (MeCN/H₂O 4:1, 3.2 mL) at room temperature under argon. After stirring for 17 h at room temperature, the reaction was quenched with saturated aqueous Na₂S₂O₃ (4.0 mL) at 0 °C, and the resulting mixture was extracted with Et₂O (3 x 10 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was roughly purified by silica gel frash column chromatography (hexane/EtOAc 4:1) to afford a yellow oil, which was used in the next step without further purification. N-Methylmorpholine N-oxide (57.0 mg, 0.474 mmol) and MS4A were added to a stirred solution of the above residue in MeCN (2.7 mL) at room temperature under argon. After stirring for 15 min, a solution of TPAP (5.70 mg, 15.8 umol) in MeCN (0.5 mL) was added dropwise to the above mixture. After stirring for 1 h, the solvent was removed under reduced pressure. The residue was diluted with CHCl₃ and through a Celite pad and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane/AcOEt 2:1) to give 14 (115 mg, 72% from **13**) as a yellow oil. IR (neat) 3493, 1713, 1545cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.77 (3H, s), 0.85 (3H, s), 1.02 (3H, s), 1.13-1.28 (5H, m), 1.34 (6H, s), 1.34-1.41 (2H, m), 1.55-1.77 (2H, m), 1.78 (1H, td, J = 13.6, 4.1 Hz), 1.87-2.03 (2H, m), 2.17-2.20 (1H, m)m), 2.67 (1H, dd, J = 12.9, 6.35 Hz), 3.40-3.47 (3H, m), 3.73-3.81 (1H, m) 7.51-7.53 (1H, m), 7.61-7.64 (2H, m), 7.85-7.87 (1H, m); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.3 (CH₂), 20.1 (CH₂), 21.7 (CH₂), 23.4 (CH₂), 25.7 (CH₂), 27.1 (CH₃ 2 carbons), 32.9 (C), 33.3 (CH₃), 36.5 (C), 38.2 (CH₂), 38.7 (CH₂), 41.3 (CH₂), 42.0 (CH₂), 47.1 (CH), 48.7 (CH₂), 54.5 (CH), 68.2 (C), 123.9 (CH), 130.1 (CH), 131.4 (CH), 133.2 (CH), 134.7 (C), 148.3 (C), 213.1 (C); HRMS (ESI) calcd for $C_{26}H_{39}N_2O_6S[M+H]^+$ 507.2529, found 507.2503.

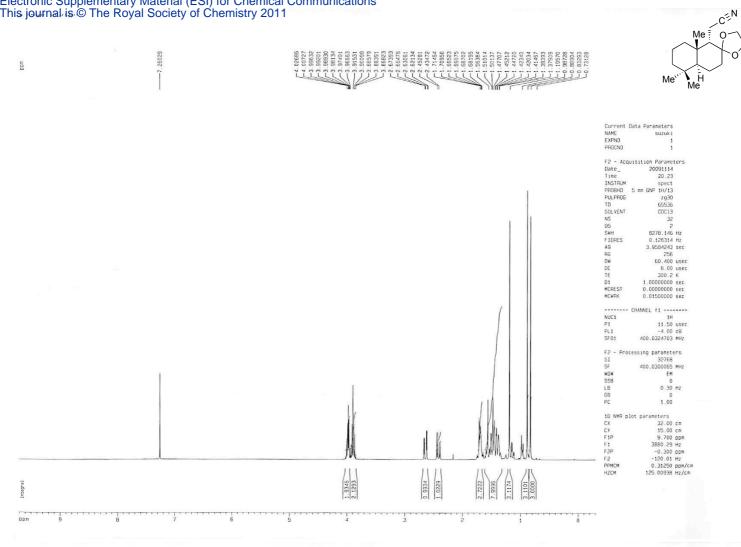

3-Hydroxy-3-methyl-1-((3aS*,5aS*,9aS*,9bS*)-6,6,9a-trimethylperhydro-1*H*-

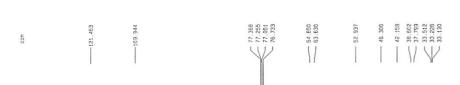
benzo[e]indol-3a-yl)butan-2-one (15). Thiophenol (56.0 μ L, 0.109 mmol) and 5 M aqueous KOH (87.0 μ L, 0.436 mmol) were added dropwise to a stirred solution of 14 (55.2 mg, 0.109 mmol) in MeCN (1.1 mL) at 0 °C under argon. After stirring for 17 h at room temperature, the mixture was directly purified by silica gel flash column chromatography


(CHCl₃/MeOH/NH₄OH 100:9:1) to give **15** (25.6 mg, 73%) as a yellow oil. IR (neat) 3314, 1702 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.81 (3H, s), 0.88 (3H, s), 1.12 (3H, s), 1.14-1.18 (2H, m), 1.23 (3H, s), 1.26 (3H, s), 1.28-1.42 (6H, m), 1.50-1.60 (1H, m), 1.60-1.76 (1H, m), 1.76-1.90 (3H, m), 1.98-2.05 (1H, m), 2.71 (1H, d, J = 11.5 Hz), 2.76-2.83 (1H, m), 3.01-3.06 (1H, m) 3.22 (1H, d, J = 11.5 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.4 (CH₂), 20.0 (CH₂), 21.8 (CH₃), 23.0 (CH₃), 26.5 (CH₃), 26.8 (CH₃), 27.8 (CH₂), 33.0 (C), 33.5 (CH₃), 36.1 (C), 37.0 (CH₂), 38.7 (CH₂), 42.2 (CH₂), 43.1 (CH₂), 46.6 (CH₂), 47.4 (CH), 59.2 (CH), 62.5 (C), 76.2 (C), 216.6 (C); HRMS (ESI) calcd for C₂₀H₃₆NO₂[M+H]⁺ 322.2746, found 322.2726.

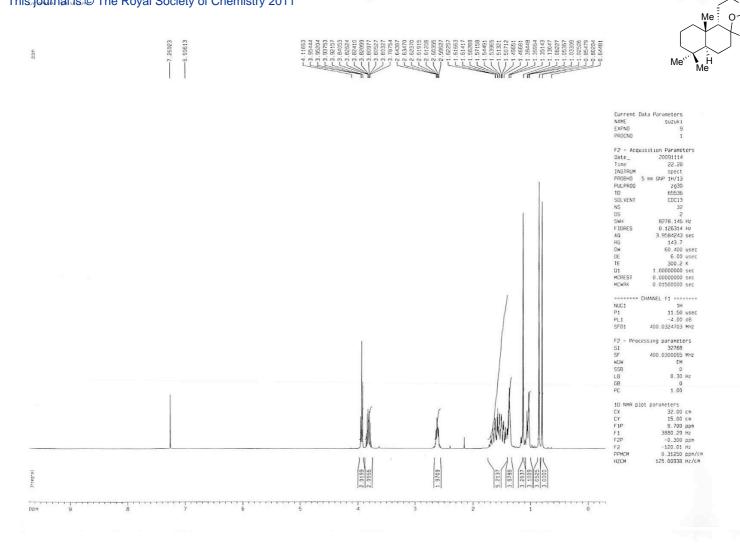

(3aS*,5aS*,9aS*,9bS*)-3a-(3-Hydroxy-3-methyl-2-oxobutyl)-6,6,9a-trimethyl-3a,4,5,5a,6, **7,8,9,9a,9b-decahydro-1***H***-benzo**[e]indole **3-oxide** (**16**). Na₂WO₄·2H₂O (14.4 mg, 43.6 μmol) was added to a stirred solution of 15 (28.0 mg, 87.1 μmol) in MeOH (870 μL) at room temperature under argon. After cooling at 0 °C, 30% H₂O₂ (30.0 µL, 0.261 mmol) was added dropwise to the mixture. The resulting mixture was gradually warmed to room temperature over 30 min. After stirring for an additional 1 h at room temperature, the reaction was extracted with CHCl₃ (3 x 10 mL). The combined extracts were washed with brine, then dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was roughly purified by silica gel frash column chromatography (CHCl₃/MeOH 40:1) to afford **16** (25.2) mg, 86%) as a yellow oil. IR (neat) 3348, 1714 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 0.84 (3H, s), 0.93 (3H, s), 1.13 (3H, s), 1.13-1.25 (2H, m), 1.27 (3H, s), 1.27-1.35 (2H, m), 1.37 (3H, s), 1.43-1.55 (2H, m), 1.63-1.70 (4H, m), 2.50-2.60 (4H, m), 3.07 (1H, d, J = 14.4 Hz), 3.24 (1H, d, J = 14.5 Hz), 5.04 (1H, s), 6.81 (1H, t, J = 2.34 Hz); ¹³C NMR (100.6 MHz, CDCl₃) δ 18.0 (CH₂), 18.2 (CH₂), 21.9 (CH₃), 23.0 (CH₃), 26.3 (CH₃), 26.5 (CH₃), 28.7 (CH₂), 32.9 (C), 33.4 (CH₃), 35.8 (C), 35.9 (CH₂), 36.9 (CH₂), 38.7 (CH₂), 42.0 (CH₂), 48.4 (CH), 53..6 (CH), 53.6 (C), 78.5 (C), 133.4 (CH), 214.2 (C); HRMS (ESI) calcd for $C_{20}H_{34}NO_3[M+H]^+$ 336.2539, found 336.2545.

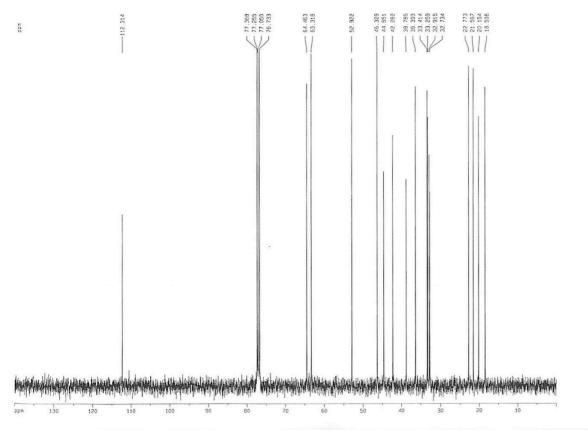

(±)-Chamobtusin A (1). Benzoyl chloride (1.71 μL, 14.7 μmol) was added to a stirred, refluxing solution of **16** (4.50 mg, 13.4 μmol) in pyridine (600 μL) under argon. After stirring for 1h at reflux, the solvent was removed under reduced pressure. The residue was purified by silica gel flash column chromatography (CHCl₃/MeOH 20:1) to give (±)-chamobtusin A (**1**) (2.30 mg, 54%) as a yellow solid. IR (neat) 3334, 2929, 1710, 1604, 1518, 1464, 1374, 1236 cm⁻¹; ¹H NMR (400MHz, CDOD₃) δ 0.61-0.70 (2H, m), 0.83 (3H, s), 0.92 (3H, s), 1.10 (3H, s), 1.15 (3H, s), 1.16 (3H, s), 1.39-1.79 (9H, m), 2.54-2.58 (1H, m), 3.32 (1H, d, J = 17.8 Hz), 3.47 (1H, d, J = 17.8 Hz), 6.03 (1H, s), 7.90 (1H, s); ¹³C NMR (100.6 MHz, CDOD₃) δ 17.6 (CH₃), 19.8 (CH₂), 20.6 (CH₂), 22.4 (CH₃), 27.1 (CH₃, 2 carbons), 34.5 (CH₃), 35.2 (C), 39.1 (CH₂), 41.8 (C), 42.4 (CH₂), 42.8 (CH₂), 43.5 (CH₂), 59.9 (CH), 78.2 (C), 81.1 (C), 118.4 (CH), 166.0 (CH), 184.8 (C), 213.9 (C); HRMS (ESI) calcd for C₂₀H₃₂NO₂[M+H]⁺ 318.2433, found 318.2447.



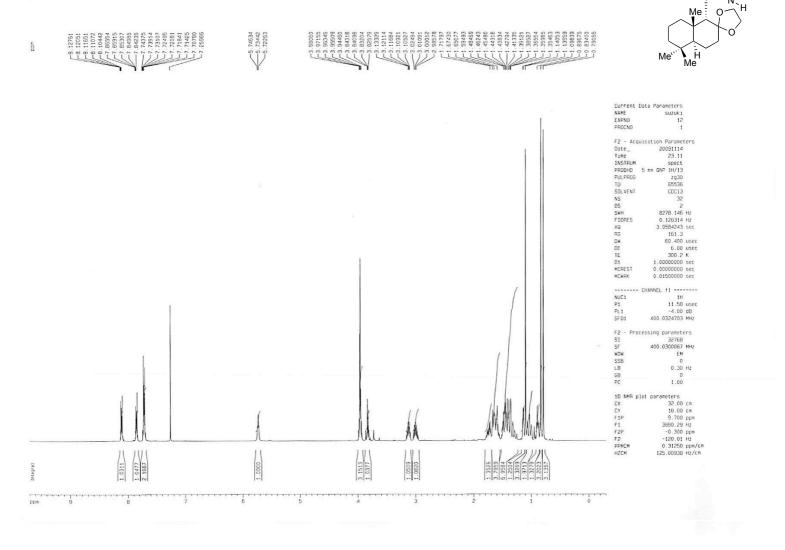


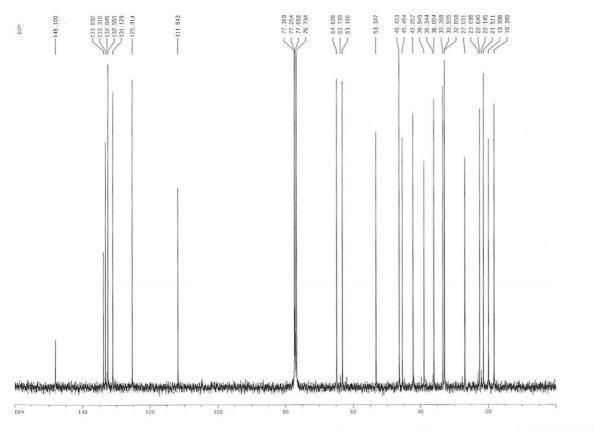
NAME	a Parameters	
	SuZuk 1	
EXPNO	67	
PROCNO	1	
F2 - Acquis	ition Parame	ters
Date_	20091219	
Time	19.04	
INSTRUM	spect	
	mm GNP 1H/13	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	556	
DS	4	
SWH	26178.010	
FIDRES	0.399445	
AG	1.2517875	
RG	8192	
DW	19.100	usec
DE	6.00	usec
TE	300.2	
D1	2.000000000	sec
011	0.03000000	
DELTA	1.89999998	
MCREST	0.00000000	
MCWRK	0.01500000	
	ANNEL f1	
NUC1	130	
P1	10.00	
PL1	-3.50	
SF01	100.5986886	MHZ
CH	ANNEL 12	
CPDPRG2	waltz16	
NUC2	1H	
PCPD2	100.00	
PL2	-4.00	σB
PL12	17.00	dB
PL13	17.00	
		σB
PL13 SF02	17.00 400.0316001	dB MHz
SF02 F2 - Proces	17.00 400.0316001 sing paramete	dB MHz
SFO2 F2 - Proces SI	17.00 400.0316001 sing paramete 32768	dB MHz ens
SF02 F2 – Proces SI SF	17.00 400.0316001 sing paramete 32768 100.5876198	dB MHz ens MHz
SF02 F2 - Proces SI SF WDW	17.00 400.0316001 sing paramete 32768 100.5876198 EM	dB MHz ers MHz
SF02 F2 - Proces S1 SF WDW SS8	17.00 400.0316001 sing paramete 32768 100.5876198 EM 0	dB MHz ers MHz
SF02 F2 - Proces SI SF WOW SSB LB	17.00 400.0316001 sing paramete 32768 100.5876198 EM 0	dB MHz ers MHz
SFO2 F2 - Proces S1 SF WOW SSB LB GB	17.00 400.0316001 sing paramet 32768 100.5876198 EM 0 1.00	dB MHz ens MHz Hz
SF02 F2 - Proces SI SF WOW SSB LB	17.00 400.0316001 sing paramete 32768 100.5876198 EM 0	dB MHz ens MHz Hz
SFO2 F2 - Proces SI SF WOW SSSB LB GB PC	17.00 400.0316001 sing parametr 32768 100.5876198 EM 0 1.00 0	dB MHz ens MHz Hz
SFO2 F2 - Proces SI SF WOW SSSB LB GB PC	17.00 400.0316001 sing parameti 32768 100.5876198 EM 0 1.00 0 1.40	dB MHz ens MHz Hz
SF02 F2 - Proces SF HOW SSB LB GB PC 10 NMR plot CX	17.00 400.0316001 sing parametr 32768 100.5876198 EM 0 1.00 1.40 parameters 30.00	dB MHz ers MHz Hz
SF02 F2 - Proces SI SF HOW SSB LB GB PC ID NMR plot CX CY	17.00 400.0316001 sing parameter 32768 100.5876198 0 1.00 0 1.40 parameters 30.00 18.00	dB MHz ers MHz Hz
SF02 F2 - Proces S1 SF NDW SSB LB GB PC 1D NMR plot CX CY F1P	17.00 400.0316001 sing paramet 32768 100.5876198 EM 0 1.00 0 1.40 parameters 30.00 18.00	dB MHz ens MHz Hz cm cm ppm
SF02 F2 - Proces SI SF HOW SSB LB GB PC 10 NMR plot CX CY F1P F1P	17.00 400.0316001 sing paramett 32768 100.5876198 EM 0 1.00 0 1.40 parameters 30.00 18.00 120.000	dB MHz ers MHz Hz
SF02 F2 - Proces SI SF SF SB LB GB PC ID NMR plot CX CY FIP F1 F2P	17.00 400.0316001 sing parametr 32768 100.5876198 EM 0 1.00 0 1.40 parameters 30.00 120.000 120.000	dB MHz ers MHz Hz cm cm ppm Hz ppm
SF02 F2 - Proces SI SF WDW SSB LB GB PC 10 NMR plot CX CY F1P F1 F2P F2P	17.00 400.0316001 sing parametr 32768 100.5876198 6M 1.00 0 1.00 parameters 30.00 18.00 120.000 12070.51	dB MHz ers MHz Hz cm cm ppm Hz Hz
SF02 F2 - Proces SI SF SF SB LB GB PC ID NMR plot CX CY FIP F1 F2P	17.00 400.0316001 sing parametr 32768 100.5876198 EM 0 1.00 0 1.40 parameters 30.00 120.000 120.000	dB MHz ers MHz Hz cm cm ppm Hz ppm Hz ppm/cn

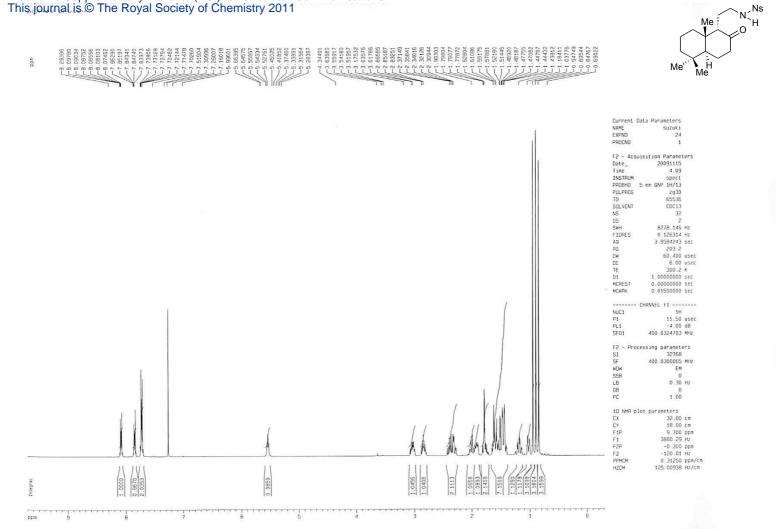

DPX400 carbon

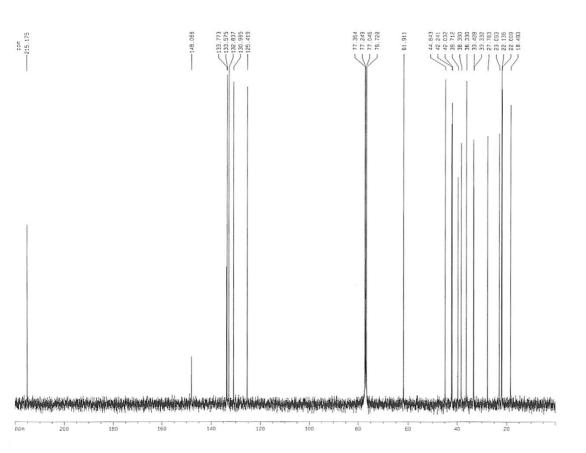

Current Data Parameters

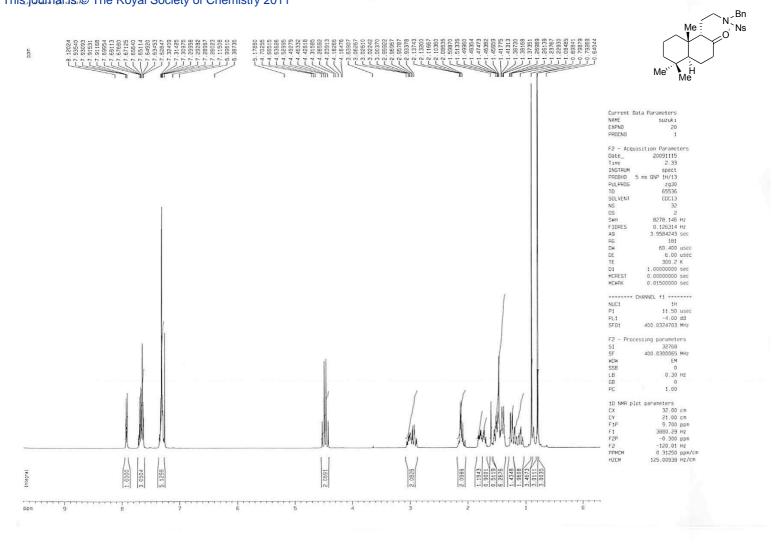
suzuki

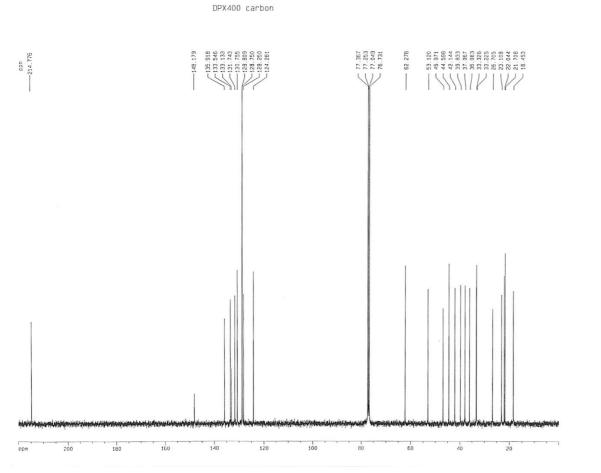

22.305 21.830 19.812 18.453

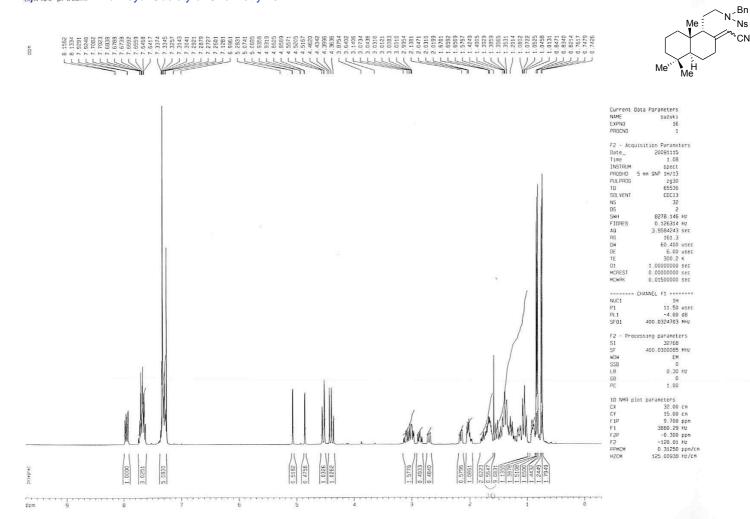



NAME	Data Parameters	
EXPNO	suzuk i	
	10	
PROCNO	1	
F2 - Acqu	isition Parame	
Date_	20091114	
Time	22.39	
INSTRUM	spect	
РЯОВНО	5 mm GNP 1H/13	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	192	
05	4	
SWH	26178.010	HZ
FIDRES	0.399445	Hz
AQ	1.2517875	
RG	2580.3	
DW	19,100	
DE		usec
TE	300.2	
Di	5.00000000	
011	0.03000000	
DELTA	1.89999998	
MCREST	0.00000000	
MCWRK	0.01500000	
	CHANNEL 11	
NUC1	130	
P1	10.00	user
PL1	-3.50	
SF01	100.5986886	
	CHANNEL 12 ***	
CPDPRG2	waltz16	
NUC2	1H	
PCPD2	100.00	usec
PL2	-4.00	CB
PL12	17.00	dB
PL13	17.00	
SF02	400.0316001	MHZ
F2 - Proc	essing paramet	ers
SI	32768	
SF	100.5875206	MH2
MDM	EM	
SSB	0	
LB	1.00	Hz
GB	0	
PC	1,40	
	ot parameters	
CX	30.00	
CY	19.00	
F1P	140,000	
F1	14082.27	
F2P	0.000	
F2	0.00	
PPHCM HZCM	4.66667	
	469.40891	MZ/CD

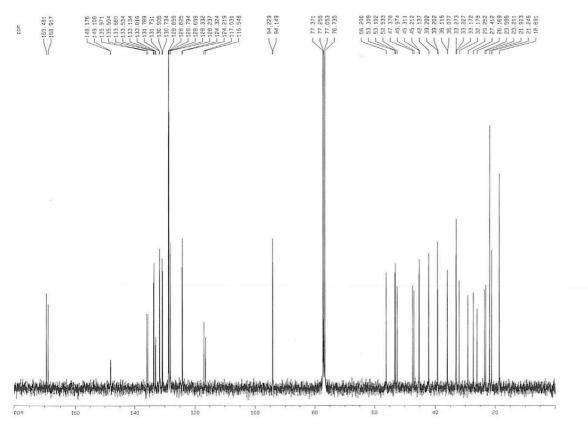



	a Parameters	
NAME	suzuk 1	
EXPNO	13	
PROCNO	1	
	ition Parame	
Date_	20091114	
Time	23.23	
INSTRUM	spect	
	mm QNP 1H/13	
PULPROG TD	zgpg30 65536	
SOLVENT	CDC13	
NS NS	1230	
ns	4	
SWH	26178.010	Hz
FIDRES	0.399445	
AG	1.2517875	sec
RG	3251 19.100	
DW		
DE		usec
TE	300.2	
D1	2.00000000	
d11	0.03000000	
DELTA MCREST	1.8999998	
MCWRK	0.01500000	
	ANNEL f1 ===	
NUC1 P1	130	
PL1	-3.50	USEC
SF01	100.5986886	
====== CH	ANNEL 12	
CPDPRG2	waltz16	
NUC2	1H	
PCPD2	100.00	
PL2	-4.00	
PL12	17.00	
PL13	17.00	
SF02	400.0316001	MHZ
	sing paramet	
51	32768	
SF	100.5876206	
MOM	EM	
SSB LB	0	
GB	1.00	
PC	1.40	
th NMR mint	parameters	
CX	30.00	cm
CY	19.00	
FIP	160.000	ppm
F1	16094.02	
F2P	0.000	
F2	0.00	
PPMCM	5.33333	
HZCM	536.46735	HZ/CM

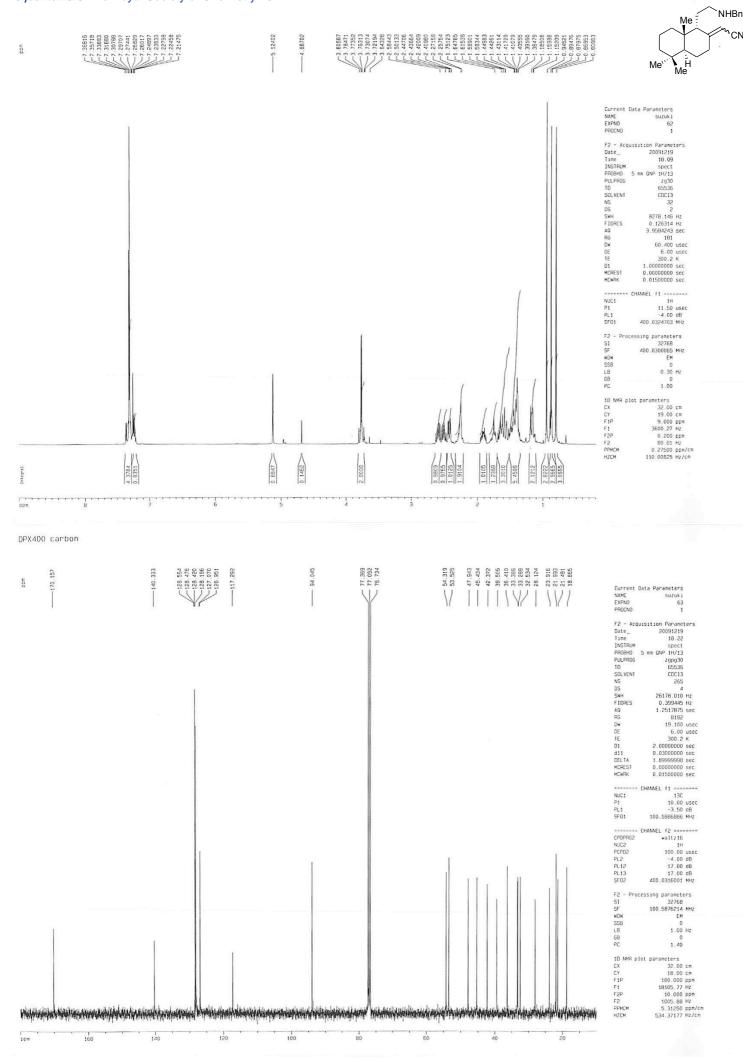


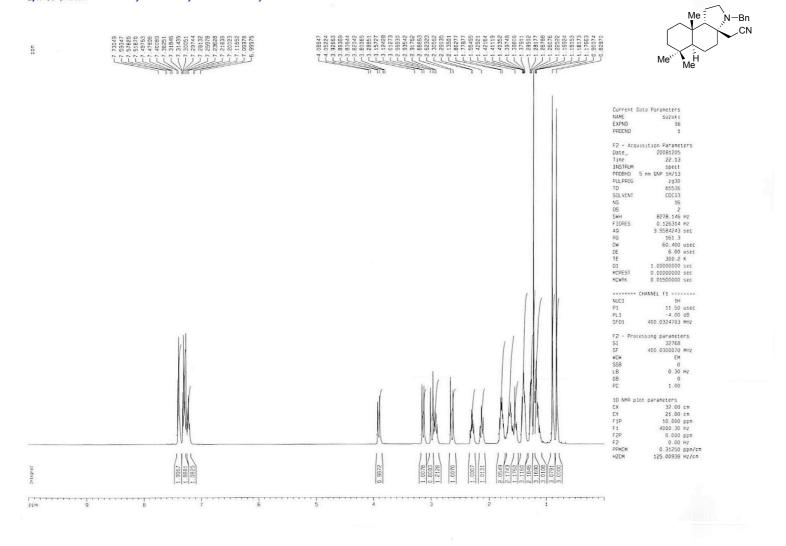

DPX400 carbon

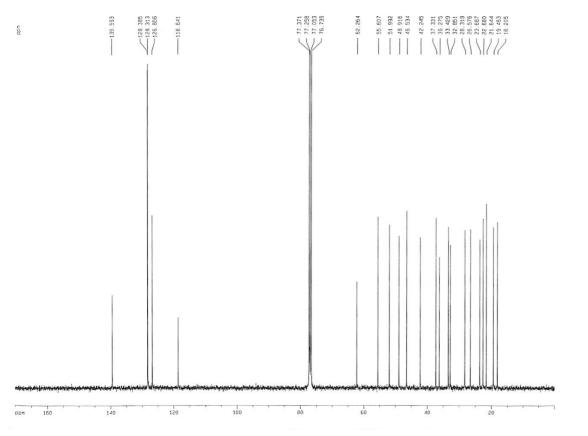
Current	Data Parameters	
NAME	suzuk 1	
EXPN0	25	
PROCNO	1	
	quisition Parame	
Date_	20091115	
Time	4.17	
INSTRUM		
	5 mm GNP 1H/13	
PULPROG	zgpg30	
TD	65536	
SOLVENT		
NS	1029	
DS	4	
SWH	26178.010	Hz
FIDRES	0.399445	Hz
AQ	1.2517875	
RG	8192	
DW	19.100	usec
DE	6.00	usec
TE	300.2	K
D1	2.000000000	
d11	0.03000000	sec
DELTA	1.89999998	sec
MCREST	0.00000000	sec
MCWRK	0.01500000	sec
	- CHANNEL f1	
NUC1	13C	
P1	10.00	
PL1	-3.50	
SF01	100.5986886	MHZ
	CHANNEL 12	
CPDPRG2		
NUC2	111	
PCPD2	100.00	
PL2	-4.00	
PL12	17.00	
PL13	17.00	
SF02	400.0316001	
SIUE	400.0316001	PINZ
F2 - Pro	cessing paramete	ers
SI	32768	
SF	100.5876214	MHz
WDW	EM	
SSB	0	
LB	1.00	
GB	0	
PC	1.40	
5123331115000		
	olot parameters	
CX	30.00	
CY	19.00	
F1P	220.000	
F1	22129.28	
F2P	0.000	
F2	0.00	
PPMCM	7.33333	
HZCM	737.64258	HZ/CM



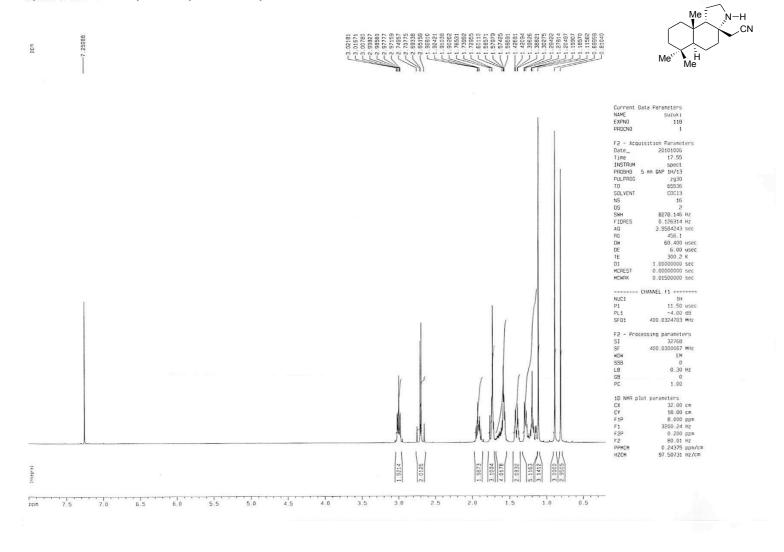
	lata Parameters	
NAME	suzuki	
EXPNO	21	
PROCNO	1	
F2 - Acqu	isition Parame	ters
Date_	20091115	
Time	2.42	
INSTRUM	spect	
PROBHD	5 mm QNP 1H/13	
PULPROG	zgpg30	
TD SOLVENT	65536 CDC13	
NS	882	
DS	4	
SWH	26178.010	HT
FIDRES	0.399445	
AQ	1.2517875	
RG	8192	
DW	19.100	
DE		usec
TE	300.2	
D1	2.00000000	
d11	0.03000000	
DELTA	1.89999998	
MCREST	0.00000000	
MCWRK	0.01500000	sec
	CHANNEL f1	
NUC1	130	
P1		usec
PL1	-3.50	dB
SF01	100.5986886	MHZ
*******	CHANNEL f2 ====	
CPOPRG2	waltz16	
NUCZ	1H	
PCP02	100.00	usec
PL2	-4.00	
PL12	17.00	dB
PL13	17.00	
SF02	400.0316001	MHZ
F2 - Proc	essing paramete	ers
SI	32768	
SF	100.5876214	
WDW	EM	
558	0	
LB	1.00	HZ
68	0	
PC	1.40	
1D NMR pl	ot parameters	
CX	30.00	cm
CY	19.00	
F1P	220.000	
F1	22129.28	HZ
F2P	0.000	
	0.00	HZ
F2		
PPMCM HZCM	7.33333 737.64258	ppm/cm

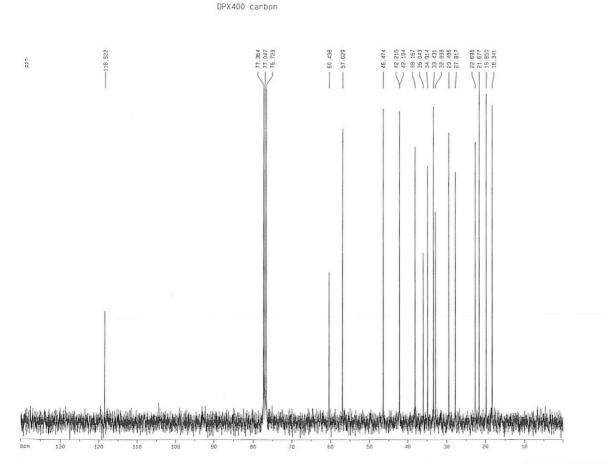


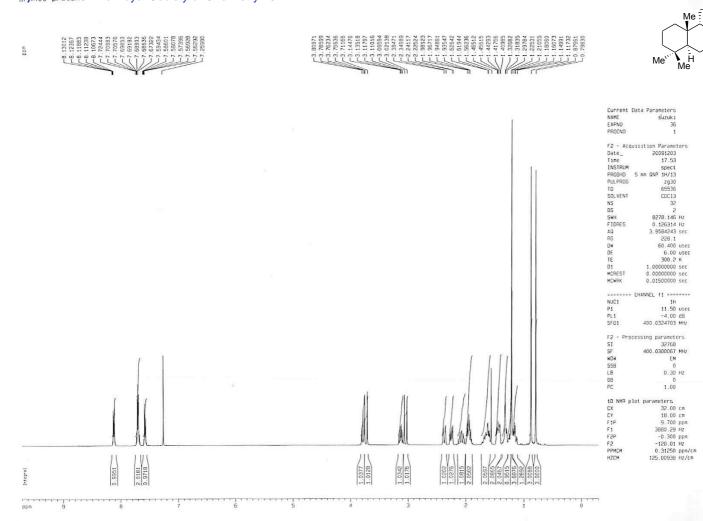


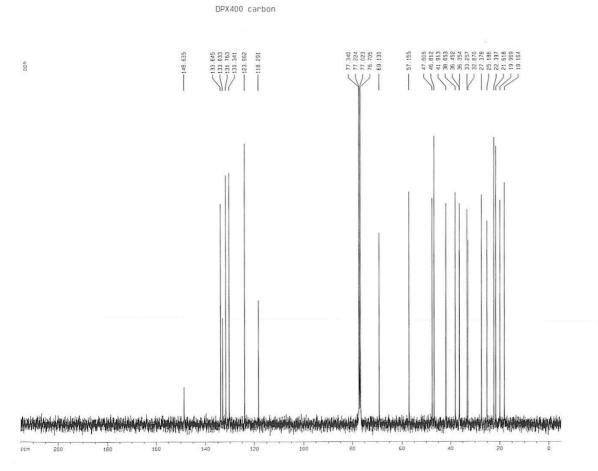

Current [ata Parameters	
NAME	suzuk i	
EXPN0	17	
PROCNO	1	
F2 - Acqu	isition Parame	ters
Date_	20091115	
Time	1.30	
INSTRUM	spect	
PROBHD	5 mm GNP 1H/13	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	392	
DS	4	
SWH	26178.010	
FIDRES	0.399445	
AU	1.2517875	sec
RG	8192	
DW	19.100	
DE		usec
1E	300.2	
D1	2.000000000	
d11	0.03000000	
DELTA	1.89999998	
MCREST	0.00000000	
MCWRK	0.01500000	SEC
	CHANNEL f1 ===	
NUC1	130	
P1	10.00	
PL1	-3.50	
SF01	100.5986886	MHZ
CPDPRG2	waltz16	
NUC5	1H	
PCPD2	100.00	
PL12	-4.00	
PL12 PL13	17.00 17.00	
SF02	400.0316001	
SFUZ	400.0316001	MHZ
	essing paramete	ers
SI	32768	
SF	100.5876222	MHZ
	EM	
SSB	0	
LB	1.00	HZ
GB	1.40	
PC	1.40	
	ot parameters	
CX	30.00	
CY	19.00	Cu
F1P	180.000	ppm
F1 F2P	18105.77	
F2P	0.000	
PPMCM F 2	0.00 6.00000	
HZCM	603.52570	
rie Gri	003.32370	

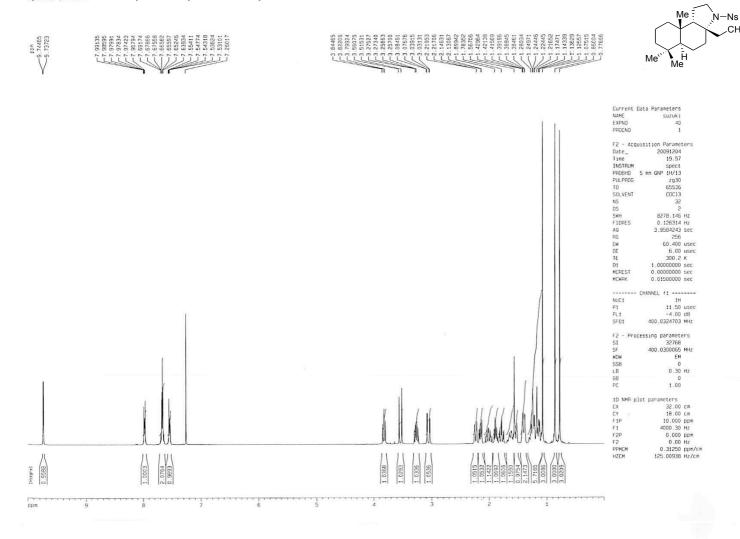
¹СN

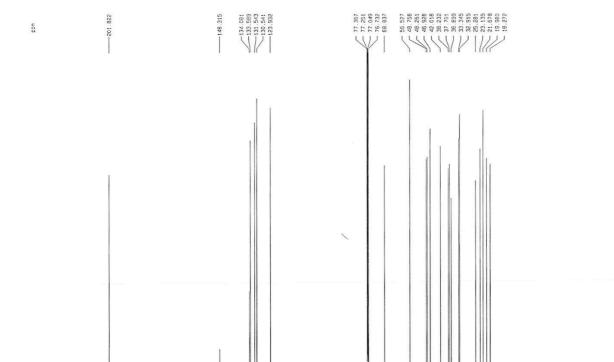







Current	Data Parameters	
NAME	suzuk i	
EXPNO	17	
PROCNO	1	
F2 - AC	quisition Parame	
Date_	20081205	
Time	22.34	
INSTRUM	spect	
PROBHO PULPROG	5 mm GNP 1H/13 zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	2366	
DS	4	
SWH	26178.010	HZ
FIDRES	0.399445	
AQ	1.2517875	sec
RG	8192	
DW	19.100	
DE		usec
TE	300.2	
D1	2.00000000	
d11	0.03000000	
DELTA MCREST	1.89999998 0.00000000	
MCWRK	0.01500000	
CHICK	0.01300000	366
	CHANNEL 11	
NUC1	130	
P1	10.00	
PL1	-3.50	
5F01	100.5986886	MHZ
	CHANNEL 12	
CPOPRG2		
NUC2	18	
PCPD2	100.00	
PL2 PL12	-4.00 17.00	
PL12	17.00	
SF02	400.0316001	
2 - Der	cessing paramete	
SI	32768	., .
SF	100.5876206	MHZ
NDW	EM	
SSB	0	
В	1.00	Hz
68	0	
PC	1.40	
D NMR (olot parameters	
CX	30.00	
CY	19.00	
1P	170.000	
1	17099.90	
2P	0.000	
5	0.00	MZ nom/o
PPMCM	5.66667 569.99652	HZ/Cm
10.00	2000.00005	

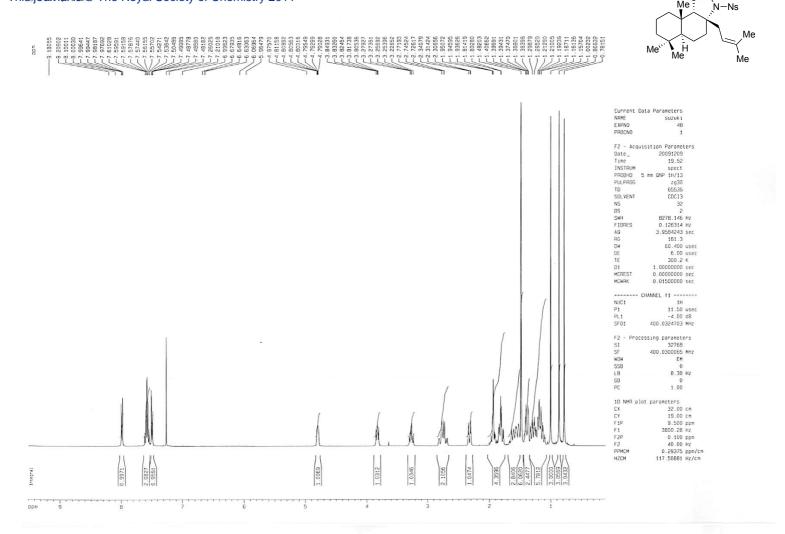

Current Da	ta Parameters	
NAME	Suzuk 1	
EXPNO	6	
PROCNO	1	
F2 - Acqui	sition Parame	ters
Date_	20091114	
Time	21.45	
INSTRUM	spect	
PROBHD 5	mm QNP 1H/13	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	193	
DS	4	
SWH	26178.010	Hz
FIDRES	0.399445	Hz
AQ	1.2517875	sec
RG	5792.6	
DW	19.100	usec
DE	5.00	
TE	300.2	K
D1	2.000000000	sec
011	0.03000000	sec
DELTA	1.89999998	sec
MCREST	0.00000000	
MCWRK	0.01500000	sec
(CHANNEL f1	
NUC1	13C	
P1	10.00	
PL1	-3.50	
SF01	100.5986886	MHZ
	CHANNEL 12	
CPDPRG2	waltz16	
NUC2	1H	
PCPD2	100.00	
PL2	-4.00	
PL12	17.00	
PL13	17.00	
SF02	400.0316001	MHZ
	ssing paramet	ers
SI	32768	1920000
SF	100.5876214	MHZ
MDM	EM	
SSB	0	HIGH.
LB GB	1.00	112
PC PC	1.40	
10 NM0 616	t parameters	
CX CX	30.00	cm
	19.00	
CY	140,000	
CY F1P	140.000	HZ
CY F1P F1	140.000 14082.27 0.000	
CY F1P F1 F2P	0.000	ppm
CY F1P		ppm Hz

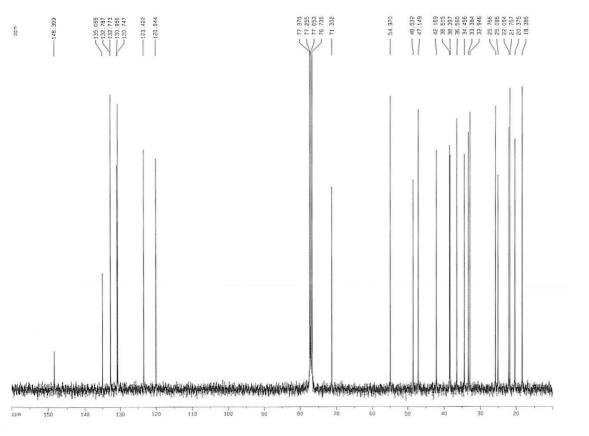


SUZUK 1	
1	
sition Parame	ters
20091203	
18.13	
spect	
mm GNP 1H/13	
zgpg30	
65536	
4	
26178.010	
	sec
300.2	
0.01500000	sec

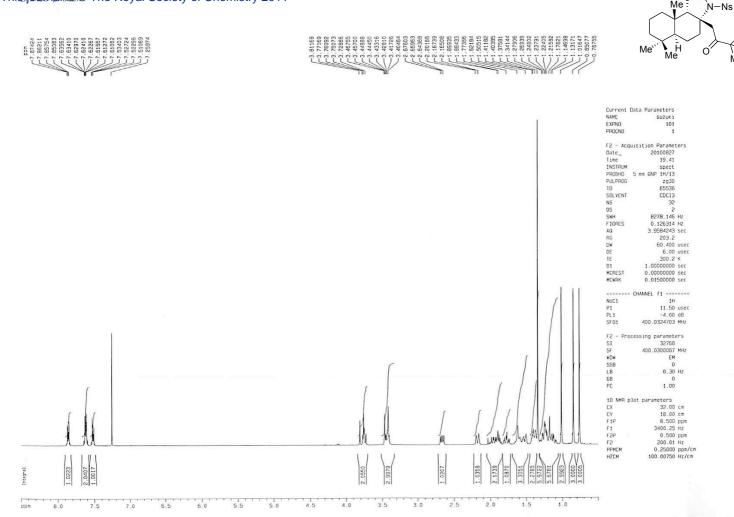
100.5986886	MHZ
1ANNEL 12	
0	
1.00	
0	
1.40	
parameters	
30.00	cm
16.00	
215.000	
21626.34	
-5.000	ppm
-502.94	HZ
JUE . 34	
7.33333 737.64258	ppm/c
	37 \$1100 Parame 20091203 \$15000 \$15000 \$15000 \$15000 \$15000 \$15000 \$15000 \$15

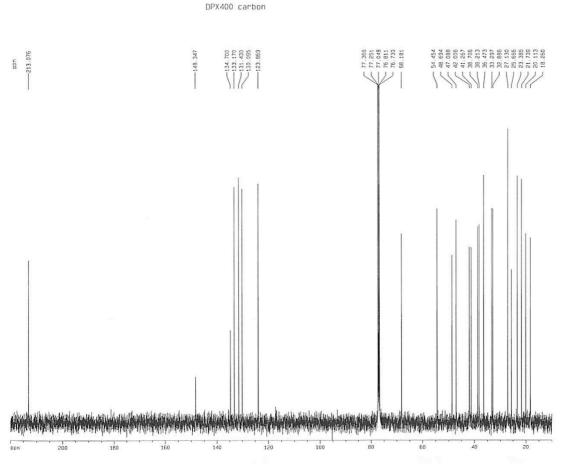
N-Ns

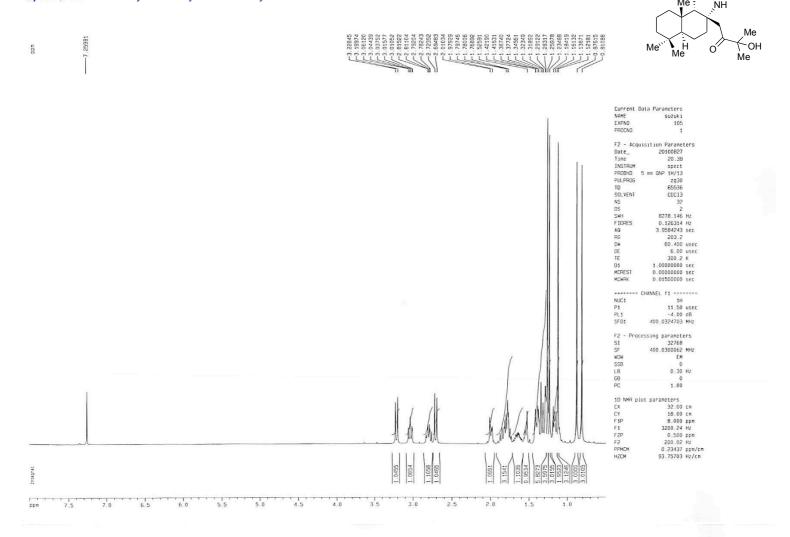


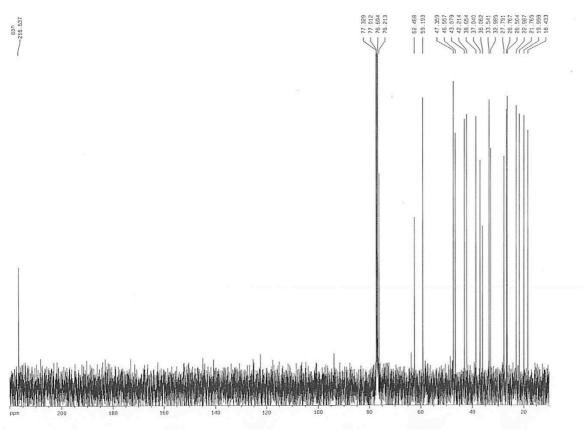

DPX400 carbon

cui i ent bat	a Lai amerei 2	
NAME	suzuki	
EXPNO	41	
PROCNO	1	
F2 - Acquis	ition Paramet	ters
Date	20091204	
Time	20.10	
INSTRUM	spect	
	mm QNP 1H/13	
PULPROG	zgpg30	
TD.	65536	
SOLVENT	CDC13	
NS	1683	
DS	4	
SWH	26178.010	
FIDRES	0.399445	
AQ	1.2517875	
RG	16384	
DW	19.100	
DE		usec
TE	300.2	
D1	2.00000000	
d11	0.03000000	
DELTA	1.89999998	
MCREST	0.00000000	
MCWRK	0.01500000	
CH	ANNEL 11	
NUC1	130	
P1	10.00	
PL1	-3.50	dB
SF01	100.5986886	MHZ
	ANNEL 12	
CPOPRG2	waltz16	
NUC2	1H	
PCP02	100.00	
PL2	-4.00	
PL12	17.00	
PL13	17.00	dB
SF02	400.0316001	MHZ
F2 - Proces	sing paramete	ers
SI	32768	
SF	100.5876206	
MDM	EM	
SSB	0	
LB	1.00	Hz
GB	0	
PC	1.40	
	parameters	
CX	30.00	
CY	17.00	
F1P	240.159	
F1	24157.07	
F2P	-20.091	
F2	-2020.94	
PPMCM HZCM	8.67503 872.60028	


Current Data Parameters

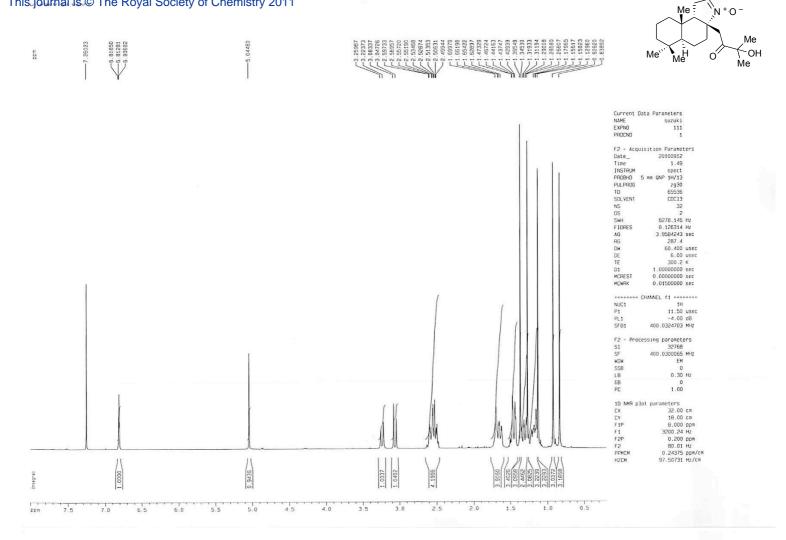


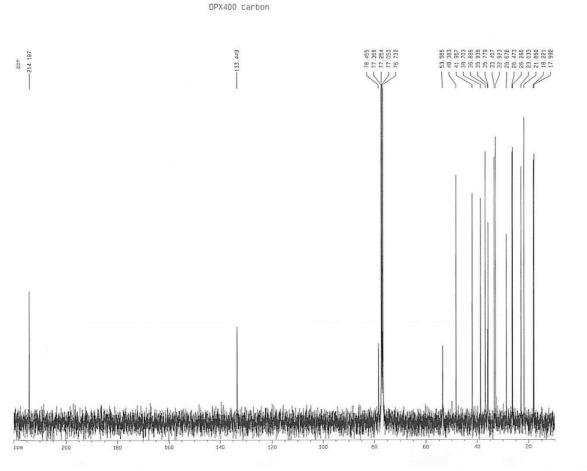

	a Parameters	
NAME	Suzuk 1	
EXPNO	49	
PROCNO	1	
F2 - Acquis	ition Parame	ters
Date_	20091209	
Time	20.01	
INSTRUM	spect	
PR08HD 5	mm GNP 1H/13	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	770	
DS	4	
SWH	26178.010	Hz
FIDRES	0.399445	HZ
AQ	1.2517875	sec
RG	8192	
DW	19.100	usec
DE	6.00	
TE	300.2	
D1	2.00000000	
d11	0.03000000	
DELTA	1.89999998	
MCREST	0.00000000	
MCWRK	0.01500000	sec
CH	ANNEL f1 ===	
NUC1	130	
P1	10.00	
PL1	-3.50	
SF01	100.5986886	MHZ
CH	ANNEL 12 ===	
CPDPRG2	waltz16	
NUC2	1H	
PCPD2	100.00	usec
PL2	-4.00	dB
PL12	17.00	
PL13	17.00	dB
SF02	400.0316001	MHZ
F2 - Proces	sing paramete	ers
51	32768	
SF	100.5876206	MHZ
HDW	EM	
SSB	0	
LB	1.00	HZ
GB	0	
PC	1.40	
1D NMR plot	parameters	
CX	30.00	cm
CY	17.00	
F1P	160.000	
F1	16094.02	
E5b	10.000	ppm
F2	1005.88	HZ
PPMCM	5.00000	ppm/c
HZCM	502.93811	Hz/cm

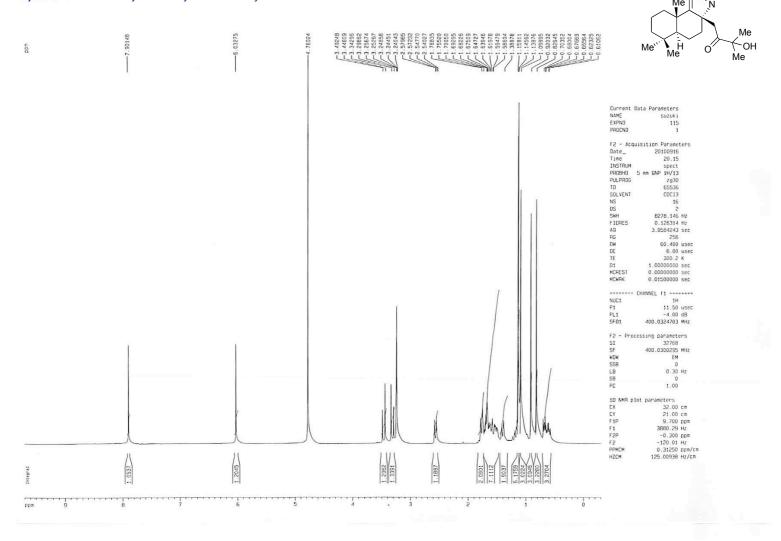


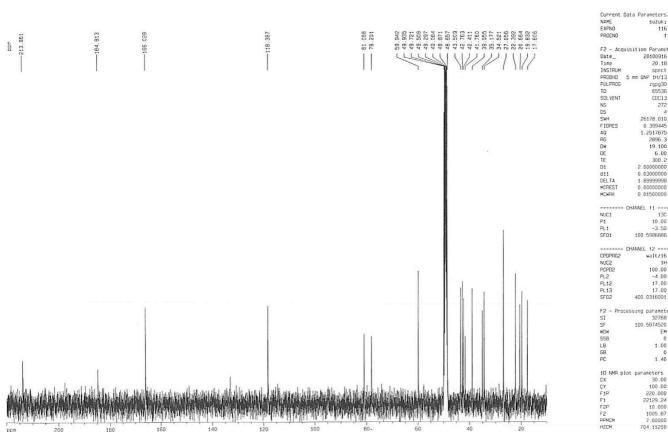
PROCNO	1	
F2 - 450	uisition Parame	e ann
Date_	20100827	LET'S
Time	19.56	
INSTRUM	spect	
PROBHO	5 mm GNP 1H/13	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	382	
DS	4	
SWH	26178.010	Hz
FIDRES	0.399445	HZ
AQ	1.2517875	
RG	5792.6	
DH	19.100	usec
DE	6.00	
TE	300.2	
01	2.00000000	
011	0.03000000	
DEL TA	1.8999998	
MCREST		
	0.00000000	
MCWRK	0.01500000	260
	CHANNEL f1 ===	
NUC1	13C	
P1	10.00	
PL1	-3.50	dB
SF01	100.5986886	MHZ
	CHANNEL f2 ===	
CPOPRG2	waltz16	
NUC2	1H	
PCPD2	100.00	
PLPUZ PL2	-4.00	
PL12	17.00	
PL13	17.00	
SF02	400.0316001	MHZ
F2 - Pro	cessing paramete	ers
SI	32768	
SF	100.5876214	MHZ
WDW	EM	1000035
SSB	0	
LB	1.00	HZ
GB	0	
PC	1.40	
	lot parameters	
CX	30.00	
	17.00	
	220.000	
F1P		
F1P	22129.28	
F1P F1	22129.28	
CY F1P F1 F2P F2		ppm
F1P F1 F2P	10.000	ppm Hz ppm/cm

Current Data Par NAME EXPNO Me OH Me






NAME	suzuk i				
EXPNO	106				
PROCNO	1				
F2 - Acqui	sition Parame	ters			
Date_	20100827				
Time	20.46				
INSTRUM	spect				
	5 mm GNP 1H/13				
PULPROG	zgpq30				
TD	65536				
SOLVENT	CDC13				
NS	147				
DS .	4				
SWH	26178.010	Ha			
FIDRES	0.399445				
AQ	1.2517875	sec			
RG	3251				
DW	19.100 usec 6.00 usec				
DE					
TE	300.2 K				
D1	2.00000000				
dii	0.03000000				
DELTA	1.89999998				
MCREST	0.00000000 sec				
MCWRK	0.01500000	sec			
	CHANNEL f1				
NUC1	130				
P1	10.00				
PL1	-3.50				
SF01	100.5986886	MHZ			
	CHANNEL 12 ===				
CPDPRG2	waltz16				
NUC2	111				
PCPD2	100.00	week			
PL2	-4.00				
PL12	17.00				
PL13	17.00				
SED2	400.0316001				
SFUZ	400.0316001	Pin2			
F2 - Proce	essing paramete	ers			
SI	32768				
SF	100.5876240	MH2			
WDW	EM				
SSB	0				
LB	1.00	Hz			
GB	0	112			
PC	1.40				
10 NMR plo	t parameters				
CX	30.00				
CY	17.00	cm			
F1P	220.000	ppm			
F1	22129.28	HZ			
F2P	10.000	ppm			
F2	1005.88	HZ			
PPMCM	7.00000 ppm/cm				
HZCM	704.11334				


Current Data Parameters

	Data Parameters		
NAME	suzuk i		
EXPNO	112		
PROCNO	1		
F2 - Ac	quisition Parame		
Date_	20100912		
Time	1.55		
INSTRUM			
PROBHD			
PULPROG			
TD	65536		
SOLVENT			
NS.	806		
DS SWH	26178.010	He	
FIDRES			
AQ	1.2517875		
RG	6502	Sec	
DW	19.100	11505	
DE		usec	
TE	3.00.2		
D1	2.00000000		
d11	0.03000000		
DELTA	1.89999998		
MCREST	0.00000000	SEC	
MCWRK	0.01500000	sec	
******	- CHANNEL f1		
NUC1	130		
P1	10.00	usec	
PL1	-3.50	dB	
SF01	100.5986886	MHZ	
	- CHANNEL 12	****	
CPDPRG2	waltz16		
NUCZ	1H		
PCPD2	100.00	usec	
PL2	-4.00	dB	
PL12	17.00		
PL13	17.00		
SF02	400.0316001	MHZ	
F2 - Pro	ocessing paramet	ers	
SI	32768		
SF	100.5876206		
WDW	EM		
558	0		
LB	1.00		
GB	0		
PC	1.40		
1D NMR (plot parameters		
CX	30.00		
CY	17.00		
FIP	220.000		
F1	22129.28		
E5b	10.000		
F2	1005.88		
PPMCM	7.00000		
HZCM	704.11334	HZ/Cm	

DPX400 carbon

suzuki 116