More Electron Rich than Cyclopentadienyl: 1,2-Diaza-3,5-diborolyl as a Ligand in Ferrocene and Ruthenocene Analogs

Hanh V. Ly,^{\dagger} Heikki M. Tuononen,^{\sharp} Masood Parvez,^{\dagger} and Roland Roesler*^{\dagger}

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4

Canada and Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä,

Finland

roesler@ucalgary.ca

- Supplementary Information -

Topic

Page

Synthetic procedures	2
Cyclovoltammetry data for 3 and 4	5
Crystallographic data for 3 and 4	8
¹ H, ¹³ C and ¹¹ B NMR Spectra for $1, 2, 3$, and 4	11
Computational Details for 3 and 4	19

Experimental Section

General Considerations. All operations were performed under an argon atmosphere using standard Schlenk and glove box techniques. Solvents were dried and deoxygenated prior to use. Pyrazolidine hydrochloride,¹ as well as $[Cp*RuCl]_4^2$ and $FeCl_2(thf)_2^3$ were prepared according to reported procedures. NMR spectra were recorded on Bruker Advance DRX-400 and AMX-300 spectrometers and calibrated with respect to C_6D_5H (¹H, 7.15 ppm), THF-d₇ (¹H, 3.58 ppm), C_6D_6 (¹³C, 128.39 ppm), THF-d₈ (¹³C, 67.57 ppm) and BF₃·Et₂O (¹¹B, 0 ppm). The electron impact (EI), electrospray ionization (ESI) and high-resolution mass spectrometry (HRMS) were performed by the Analytical Instrumentation Laboratory, Department of Chemistry, University of Calgary.

4-Methyl-3,5-diphenyl-1,2-pyrazo-3,5-diborolidine (1). A colorless solution of potassium bis(trimethylsilyl)amide (2.987 g, 14.97 mmol) in THF (20 mL) was slowly added to a stirred suspension of pyrazolidine hydrochloride¹ (1.086 g, 7.488 mmol) in THF (30 mL). The mixture was stirred at room temperature overnight and subsequently triethylamine (1.515 g, 14.97 mmol) was added, followed by a solution of 1,1-bis(chlorophenylboryl)ethane (2.058 g, 7.488 mmol) in hexane (20 mL). The yellow suspension was stirred at room temperature for 5 h and the resulting white precipitate was filtered off. Volatiles were removed under full vacuum and the pale yellow residue was washed a few times with pentane (25 mL), yielding 1 as a colorless solid (1.605 g, 71 %). ¹H NMR (400 MHz, C₆D₆, 25 °C): $\delta = 1.44$ (d, 3H, ${}^{3}J_{HH} = 8.4$ Hz, HCCH₃), 1.55 (m, 2H, NCH₂CH₂), 1.73 (q, 1H, ${}^{3}J_{HH} = 8.4$ Hz, *H*CCH₃), 3.21 (m, 4H, NCH₂CH₂), 7.31 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz, *p*-C₆H₅), 7.40 (t, 4H, ${}^{3}J_{HH} = 7.5$ Hz, *m*- C_6H_5), 7.77 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz, $o-C_6H_5$); ${}^{13}C$ NMR (100 MHz, C_6D_6 , 25 °C): $\delta = 11.7$ (s, HCCH₃), 22.5 (s, br, HCCH₃), 30.9 (s, NCH₂CH₂), 44.2 (s, NCH₂CH₂), 128.6 (s, m-C₆H₅), 129.3 (s, p-C₆H₅), 134.9 (s, $o-C_6H_5$), 137.6 (s, br, $i-C_6H_5$); ¹¹B NMR (128 MHz, THF-d₈, 25 °C): $\delta = 39.3$ (s, br); EI⁺-MS (70 eV): m/z(%): 274(45) $[M]^+$; HRMS for $H_{20}C_{17}N_2^{11}B_2$ calcd. 274.18126, found 274.18256; Anal. Calcd for H₂₀C₁₇N₂B₂: C, 74.53; H, 7.36; N, 10.22. Found: C, 74.02; H, 7.55; N, 10.13.

4-Methyl-3,5-diphenyl-1,2-pyrazo-3,5-diborolyllithium (2). A yellow solution of lithium 2,2,6,6-tetramethylpiperidide was formed by mixing the 1.6 M *n*BuLi in hexane (2.52 mL, 4.03 mmol) with tetramethylpiperidine (570 mg, 4.03 mmol) in THF (3 mL). This solution was cooled to -35 °C and added to a pre-cooled solution of **1** (1.10 g, 4.03 mmol) in THF (10 mL). The orange mixture was kept at low temperature for 1 h and then stirred at room temperature for 2 h. The solvent was removed in vacuum leaving behind a pale yellow residue, which was washed with hexane (30 mL) and dried under vacuum. The product was obtained as a colorless powder (1.02 g, 91 %). ¹H NMR (400 MHz, THF-d₈, 25 °C): δ = 2.18 (quint, 2H, ³*J*_{HH} = 6.4 Hz, NCH₂C*H*₂), 2.23 (s, 3H, CC*H*₃), 3.63 (t, 4H, ³*J*_{HH} = 5.9 Hz, NCH₂CH₂), 6.99 (t, 2H, ³*J*_{HH} = 7.1 Hz, *p*-C₆*H*₅), 7.13 (t, 4H, ³*J*_{HH} = 7.3 Hz, *m*-C₆*H*₅), 7.58 (d, 4H, ³*J*_{HH} = 7.3 Hz, *o*-C₆*H*₅); ¹³C NMR (100 MHz, THF-d₈, 25 °C): δ = 15.7 (s, CCH₃), 31.5 (s, NCH₂CH₂), 46.0 (s, NCH₂CH₂), 91.6 (s, br, B₂CCH₃), 125.1 (s, *p*-C₆*H*₅), 127.4 (s, *m*-C₆*H*₅), 134.7 (s, *o*-C₆*H*₅), 145.5 (s, br, *i*-C₆*H*₅); ¹¹B NMR (128 MHz, THF-d₈, 25 °C): δ = 31.5 (s, br); ⁷Li NMR (155 MHz, THF-d₈, 25 °C): δ = -2.16 (s); EI⁺-MS (70 eV): m/z(%): 312(5) [M - Li + K]⁺, 274(8) [M - Li + H]⁺; HRMS for H₂₀C₁₇N₂¹¹B₂ calcd. 274.18126, found 274.18037.

4-Methyl-3,5-diphenyl-1,2-pyrazo-3,5-diborolyl-pentamethylcyclopentadienylruthenium (**3**). A solution of **2** (0.10 g, 0.36 mmol) and [Cp*RuCl]₄ (0.093 g, 0.089 mmol) in THF (20 mL) was stirred at -78 °C for 1 h, slowly warmed to ambient temperature and stirred for an additional 30 min. Volatiles were removed under vacuum and the dark brown solid was extracted with pentane (20 mL). LiCl was filtered off and the volatiles were removed, leaving behind the product as a light yellow solid (0.15 g, 80 %). Yellow crystals of **3** were obtained by slow evaporation of a hexane solution at ambient temperature. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 1.34 (m, 1H, NCH₂CH₂), 1.51 (s, 15H, C₅(CH₃)₅), 1.91 (m, 1H, NCH₂CH₂), 2.36 (s, 3H, CCH₃), 2.55 (m, 2H, NCH₂CH₂), 3.20 (m, 2H, NCH₂CH₂), 7.29 (t, 2H, *p*-C₆H₅), 7.43 (t, 4H, *m*-C₆H₅), 7.78 (d, 4H, *o*-C₆H₅); ¹³C{¹H} NMR (100 MHz, C₆D₆, 25 °C): δ = 11.0 (s, C₅(CH₃)₅), 15.9 (s, CCH₃), 26.5 (s, NCH₂CH₂), 47.0 (s, NCH₂CH₂), 80.0 (s, br, B₂CCH₃), 81.6 (s, *C*₅(CH₃)₅), 127.6 (s, *p*-C₆H₅), 128.1 (s, *m*-C₆H₅), 134.7 (s, *o*-C₆H₅), 139.1 (s, br, *i*-C₆H₅); ¹¹B{¹H} NMR (128 MHz, C₆D₆, 25 °C): δ = 14.7 (s, br); MS (EI⁺, 70 eV): m/z(%): 509(100)

[Cp*RuL]⁺, 495(62) [Cp*RuL - Me]⁺; HRMS for H₃₄C₂₇N₂Ru¹¹B₂ calcd. 510.19516, found 510.19853; Anal. Calcd for H₃₄C₂₇N₂RuB₂: C, 63.68; H, 6.73; N, 5.50. Found: C, 63.81; H, 6.80; N, 5.50.

Bis(4-methyl-3,5-diphenyl-1,2-pyrazo-3,5-diborolyl)iron (4). THF (15 mL) was added to a mixture of **2** (0.10 g, 0.36 mmol) and FeCl₂(thf)₂ (0.048 g, 0.18 mmol) at -78 °C. The red mixture was slowly warmed to ambient temperature and stirred for 2 h. Volatiles were removed under full vacuum yielded dark brown residue, which was extracted with a mixture of hexane (15 mL) and THF (5 mL). The LiCl was filtered off and the sovent was removed in vacuum, leaving behind the product as a reddish-brown solid (0.095 g, 89 %). Thin red crystals of **4** were obtained by slow evaporation of a hexane solution at ambient temperature. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ = 1.55 (s, 3H, CCH₃), 2.20 (m, 1H, NCH₂CH₂), 2.36 (m, 1H, NCH₂CH₂), 2.94 (q, br, 2H, NCH₂CH₂), 3.75 (t, br, 2H, NCH₂CH₂), 7.33 – 7.37 (m, 6H, *m*- + *p*-C₆H₅), 7.68 (d, br, 4H, *o*-C₆H₅); ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, 25 °C): δ = 15.5 (s, CCH₃), 27.7 (s, NCH₂CH₂), 46.2 (s, NCH₂CH₂), 65.5 (s, br, B₂CCH₃), 128.0 (s, *m*- + *p*-C₆H₅), 134.9 (s, *o*-C₆H₅); 1¹¹B{¹H} NMR (128 MHz, CD₂Cl₂, 25 °C): δ = 13.6 (s, br, LW_{1/2} = 5647 Hz); MS (EI⁺,70 eV): m/z(%): 602(28) [FeL₂]⁺, 328(10) [FeL]⁺, 274(100) [L]⁺; HRMS for H₃₈C₃₄N₄¹¹B₄Fe calcd. 602.28181, found 602.28500; Anal. Calcd for H₃₈C₃₄N₄FeB₄: C, 67.86; H, 6.36; N, 9.31. Found: C, 67.48; H, 6.48; N, 9.26.

(1) Boros, E. E.; Bouvier, F.; Randhawa, S.; Rabinowitz, M. H. J. Heterocyclic Chem. 2001, 38, 613.

(2) Fagan, P. J.; Ward, M. D.; Calabrese, J. C. J. Am. Chem. Soc. 1989, 111, 1698.

(3) Ittel, S. D.; English, A. D.; Tolman, C. A.; Jesson, J. P. Inorg. Chim. Acta. 1979, 33, 101.

Cyclic voltammetry of 3 and 4

Measurements were performed in the absence in oxygen, in anhydrous dichloromethane at an analyte concentration of 1 mM, using 0.1 M [nBu_4N]PF₆ as a supporting electrolyte. A PARstat 2273 potentiostat was used at scan rates between 50 to 500 mVs⁻¹. The cell had a platinum disk working electrode, a platinum wire auxiliary electrode and a silver wire pseudo-reference electrode. [Cp₂Co]^{0/+1} with E = -1.34 V vs. ferrocene and -0.88 V vs. SCE in CH₂Cl₂ and E = -1.36 V vs. ferrocene and -0.80 V vs. SCE in THF was used as an internal standard.

Compound	Reversible oxidation vs. ferrocene (V)	Reversible oxidation vs. SCE (V)
3 in THF	0.035	0.595
3 in $CH_2Cl_2^a$	-0.010	0.450
4 in THF	-0.530	-0.030
4 in CH ₂ Cl ₂	-0.495	-0.035

^a Irreversible oxidation was observed at a peak potential of 1.090 V vs. Fc and 1.550 V vs. SCE.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Cyclic voltammetry of **3** in the presence of $[Cp_2Co][PF_6]$ standard in THF at 50 mV/s

Cyclic voltammetry of 3 in the presence of [Cp2Co][PF6] standard in CH2Cl2 at 50 mV/s

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

7

Crystallographic details for 3 and 4

Figure 1. Molecular structure of **3** (left) and **4** (right) with 50 % probability level thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Crystal structure determinations. Data were collected at a temperature of 173(2) K using the ω and φ scans on a Nonius Kappa CCD diffractometer with graphite monochromated Mo_{K α} radiation with $\lambda = 0.71073$ Å (Table 1), and corrected for Lorentz and polarization effects and for absorption using the multi-scan method.¹ The structures were solved by the direct methods² and expanded using Fourier techniques.³ Non-hydrogen atoms were refined anisotropically using SHELXL97.⁴ Hydrogen atoms were included at geometrically calculated positions during the refinement using the riding model.

- (1) Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307-326.
- (2) Altomare, A.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1993, 26, 343-350.
- (3) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits,

J. M. M. The *DIRDIF-94* program system, Technical Report of the Crystallography Laboratory, 1994, University of Nijmegen, The Netherlands.

(4) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

	3	4
Empirical formula	$C_{27}H_{34}B_2N_2Ru$	$C_{34}H_{38}B_4FeN_4$
Formula weight	509.25	601.77
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$
a (Å)	12.180(3)	11.770(5)
b (Å)	8.6670(11)	15.036(3)
c (Å)	24.155(6)	17.927(7)
β (deg)	101.776(11)	105.487(14)
V (Å ³)	2496.2(9)	3057.4(19)
Ζ	4	4
d_{calc} (g cm ⁻³)	1.355	1.307
$2\theta_{\rm max}$ (deg)	54.96	54.92
μ (Mo K α)(mm ⁻¹)	0.645	0.525
Independent reflections	5685 ($R_{int} = 0.0322$)	$6954 (R_{int} = 0.0437)$
Data/restraints/parameters	5685 / 0 / 294	6954 / 0 / 390
GOF on F^2	1.039	1.031
$R_1(F) [I > 2\sigma(I)]$	0.0342	0.0477
wR ₂ (F^2) [all data]	0.0884	0.1176

Table 1. Selected Data and Structure Refinement Details for 3 and 4.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

	3 (M = Ru)	4 (M = Fe)
B-C _{intra} ^a	1.511(4), 1.522(4)	1.510(4) - 1.521(4)
N-B	1.479(3), 1.487(3)	1.472(3) – 1.489(4)
N-N	1.431(3)	1.436(3), 1.439(3)
C _{extra} -C _{intra}	1.516(3)	1.513(3), 1.520(3)
B-C _{extra}	1.573(4), 1.58(4)	1.568(4) - 1.572(4)
N-C _{extra}	1.468(3), 1.469(3)	1.469(3) – 1.478(3)
M-C _{intra}	2.296(2)	2.177(2), 2.192(2)
M-B	2.322(3), 2.323(3)	2.198(3) - 2.217(3)
M-N	2.1260(19), 2.1274(19)	1.971(2) - 1.9965(19)
B-C _{intra} -B	109.2(2)	109.5(2), 109.6(2)
B-C _{intra} -C _{extra}	125.1(2), 125.5(2)	122.9(2) - 127.5(2)
N-B-C _{intra}	104.5(2), 104.5(2)	103.8(2) - 104.6(2)
Cintra-B-Cextra	133.6(2), 133.8(2)	132.6(2) - 133.9(2)
N-B-C _{extra}	121.6(2), 121.9(2)	121.6(2) - 122.8(2)
B-N-N	110.45(17), 110.67(18)	110.00(19) - 110.95(19)
B-N-C _{extra}	138.9(2), 139.2(2)	137.0(2) - 138.9(2)
N-N-C _{extra}	108.94(18), 109.03(18)	108.66(18) - 109.68(18)
$\Sigma_{ m pentagon \ angles}$	539.3	538.8, 539.4

Table 2. Selected Bond Lengths (Å) and Angles (deg) for metallocenes 3 and 4

^a C_{intra} and C_{extra} indicate carbon atoms that are part of the ring (intraannular) and directly connected to the ring (extraannular), respectively.

¹H NMR Spectrum of the 1,2-Pyrazo-3,5-diborolidine (1) in C_6D_6

 13 C and 11 B NMR Spectra of the 1,2-Pyrazo-3,5-diborolidine (1) in C₆D₆

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

¹H and ⁷Li NMR Spectra of the 1,2-Pyrazo-3,5-diborolyllithium (2) in THF-d₈

 13 C and 11 B NMR Spectra of the 1,2-Pyrazo-3,5-diborolyllithium (2) in THF-d₈

¹H NMR Spectrum of pentamethylcyclopentadienyl(1,2-pyrazo-3,5-diborolyl)ruthenocene (3) in C_6D_6

 13 C and 11 B NMR Spectra of pentamethylcyclopentadienyl(1,2-pyrazo-3,5-diborolyl)ruthenocene (3) in C₆D₆

Electronic Supplementary Material (ESI) for Chemical Communications This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

¹H NMR Spectrum of the Bis(1,2-pyrazo-3,5-diborolyl)ferrocene (4) in CH₂Cl₂

17

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2011

 13 C and 11 B NMR Spectra of the Bis(1,2-pyrazo-3,5-diborolyl)ferrocene (4) in CH₂Cl₂

Computational details for 3 and 4

Molecular structures of various Fe and Ru sandwich complexes were optimized using density functional theory. The PBE1PBE hybrid functional¹ was used in together with the def2-TZVP basis sets.² Vertical ionization energies were calculated using the same method-basis set combination and employing the optimized geometries of the neutral complexes. All calculations were performed with the Turbomole 5.10 program package.³

- (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.* 1996, **77**, 3865. (b) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.* 1997, **78**, 1396. (c) Perdew, J. P.; Ernzerhof, M.; Burke, K. *J. Chem. Phys.* 1996, **105**, 9982. (d) Adamo C.; Barone, V. *J. Chem. Phys.* 1999, **110**, 6158.
- 2. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
- (a) TURBOMOLE, Program Package for *ab initio* Electronic Structure Calculations, Version 5.10; TURBOMOLE GmbH: Karlsruhe, Germany, 2008. (b) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.

M \ L	Me Me Me Me Me	Me Me N Me Me Me	Me Me N N N N N	Me Me Me Me Me
Fe	532	542	531	532
Ru	620	604	596	609

Table S1. Calculated Vertical Ionization Energies of L_2M (kJ mol⁻¹)