Supporting Information for

Manganese(III)-mediated phosphinoyl radical reaction for stereoselective synthesis of phosphinoylated tetrahydronaphathalenes

Xiang-Qiang Pan, ^a Lu Wang, ^a Jian-Ping Zou*^a and Wei Zhang*^b

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University, 199 Renai Street, Suzhou, Jiangsu 215123, China

^b Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA

E-mail: jpzou@suda.edu.cn (J. P. Zou); E-mail: wei2.zhang@umb.edu (W. Zhang)

Table of contents

- S-1 General information
- S-2 Experimental procedures and compound characterizations
- S-9 NMR Spectra
- S-30 X-Ray crystal structures

General information

All reactions were carried out under air. Solvents were dried by the standard procedures. ¹H and ¹³C NMR spectra were determined in CDCl₃ on a Varian-Inova 300MHz or 400 MHz spectrometer and chemical shifts were reported in ppm from internal TMS(δ). High resolution mass spectra were recorded on a MicroMass-TOF machine (EI). Column chromatography was performed with 200-300 mesh silica gel using flash column techniques. All of the reagents were used directly as obtained commercially unless otherwise noted.

Manganese triacetate, 1 (*E*)-5-aryl-2-pentenoic acid methyl ester 2 and 2-arylethyl styrene 3 were prepared according to the reported procedures.

^{1.} W. J. De Klein, in Organic Syntheses by oxidation with metal compounds, Eds. W. J. Mijs and C. R. H. I. De. Jonge. **1986**, Plenum Press, New York.

a) R. F. Nystrom, W. G. Brown, J. Am. Chem. Soc., 1947, 69, 2548; b) J. Kang, G. J. Lim, S. K. Yoon, M. Y. Kim, J. Org. Chem., 1995, 60, 564; c) Q. W. Zhang, R. M. Mohan, L. Cook, S. Kazanis, D. Peisach. J. Org. Chem., 1993, 58, 7640.

a) H. Saumen, M. Biswajit, S. Debarshi, B. Sukanta, *Tetrahedron Lett.*, 2008, 49, 4057; b) X. Zhang, S. Sarkar,
R. C. Larock J. Org. Chem. 2006, 71, 236.

Preparation of 3-aryl-propan-1-ols

R= H, p-CH₃, p-OCH₃, p-Br, o-Br

Typical procedure for the preparation of 3-phenyl-propan-1-ol

To a rapidly stirred suspension of LiAlH₄ (2.9g, 75 mmol, 3 equiv) in 20 mL of THF was added over 30 min a solution of cinnamate acid (3.7g, 25mmol) in 10 mL of THF at 0°C. After addition was complete, refluxing was continued for an additional 2 h, and then the mixture was cooled to room temperature, poured into ice water which was then poured into a solution of 5% HCl over ice and extracted once with ethyl ether (20 mL) and twice with 20 mL portions of EtOAc. The combined organic extract was washed with a saturated solution of NaHCO₃ (30 mL) and brine (30 mL) and dried over anhydrous MgSO₄. Evaporation followed by flash column chromatographic purification afforded pure 3-phenyl-propan-1-ol (2.0 g, 60%) as an oil.

Other 3-aryl-propan-1-ols could be prepared from the substituted cinnamate acids, which were derived from their corresponding substituted benzaldehydes and malonic acid by standard procedure.

Preparation of ethyl trans-5-aryl-2-pentenoates

Typical procedure for the preparation of ethyl trans-5-phenyl-2-pentenoate

Pyridinium chlorochromate (2.85 g, 13.2 mmol) was added to 3-phenylpropan-1-ol (1.2 g, 8.8 mmol) in dichloromethane (25 mL). The mixture was well stirred for 2 h. When the oxidation was complete, the reaction mixture was diluted with diethyl ether and filtered through Florisil. Removal of the solvent gave the pure 3-phenylpropanal (0.968 g, 82%) as a colorless oil. Ethyl (triphenylphosphorany1idene) acetate (2.96 g, 8.5 mmol) was added to 3-phenylpropanal (0.950 g, 7.1 mmol) in dichloromethane (20 mL) at room temperature. The mixture was stirred for 1 h at the same temperature, diluted with H₂O and extracted with ethyl acetate. The combined extracts were washed with water and brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluted with 1:3 ethyl ether/hexane to give ethyl *trans*-5-phenyl-2-pentenoate(1.29 g, 89%) as a colorless oil.

Preparation of 1,4-diaryl-l-butenes

Typical procedure for the preparation of 1,4-diphenyl-l-butene

A suspension of benzyl triphenylphosphonium bromide (4.8 g, 11 mmol) in 10 mL of THF was added *n*-BuLi (5 mL, 2.5 M hexane solution) under nitrogen at -78°C. The resulting solution was stirred at 0°C for 20 min and then 3-phenyl-propionaldehyde (1.34g, 10 mmol) in 5 mL of THF was slowly added. After the mixture was stirred at 0°C for 30 min, the temperature was slowly raised to room temperature, Reaction was monitored by TLC. After completion, it was quenched with aqueous NH₄Cl solution (10 mL) and extracted with ether (3×20mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, concentrated and purified by flash

column chromatography over silica-gel eluted with petroleum ether/acetic acetate(10/1) to afford E/Z mixture of 1,4-diphenyl-l-butene (1.5g, 70%).

Other 1,4-diaryl-l-butenes could be prepared from the substituted benzyl triphenylphosphonium bromides, which were derived from their corresponding substituted benzyl bromides and Ph₃P by standard procedure.

Preparation of cis-1,4-diphenyl-l-butene

To a solution of 1,4-diphenyl-1-butyne (0.5 g, 2.42 mmol) in absolute ethanol (30 ml) was added Lindlar catalyst (0.05 g), the flask was evacuated, purged with hydrogen three times, and the mixture was stirred under hydrogen atmosphere for 12 h. The reaction was filtered over celite, washed with DCM twice (2×10mL). Evaporation followed by flash column chromatograph on silica gel eluted with 10:1 petroleum ether/acetic acetate to afford *cis*-1,4-diphenyl-1-butene (0.42 g, 85%) as an oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.32-7.19 (m, 10H), 6.47 (d, *J* = 12.3Hz, 1H), 5.78-5.71 (m, 1H), 2.85-2.79 (m, 2H), 2.73-2.67 (m, 2H).

Methyl 2-(diphenylphosphoryl)-1,2,3,4-tetrahydronaphthalene-1-carboxylate (8a)

¹H NMR (400 MHz, CDCl₃): δ 7.82-7.92 (m, 4H), 7.49-7.52 (m, 6H), 7.06-7.23 (m, 4H), 4.27 (dd, *J* = 8.5, 15.3 Hz, 1H), 3.38-3.51 (m, 1H), 3.27(s, 3H), 2.75-2.90 (m, 2H), 2.01-2.10(m, 1H), 1.75-1.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 174.9, 137.8, 132.6, 132.2(d, *J* = 9.3 Hz), 131.7(d, *J* = 8.6 Hz), 129.6, 129.4(d, *J* = 11.3 Hz), 129.2, 129.1, 127.7, 127.2, 52.8, 44.1, 37.0(d, *J* = 72.1 Hz), 29.7(d, *J* = 13.2 Hz), 22.4; ³¹P NMR(122 MHz, CDCl₃): δ 34.5. HRMS (M⁺): *m/z* (%), calcd for C₂₄H₂₃O₃P 390.1385, found 390.1380(M⁺, 19.42).

Ethyl 2-(diphenylphosphoryl)-1-methyl-1,2,3,4-tetrahydronaphthalene-1-carboxylate (8b)

¹H NMR (400 MHz, CDCl₃): δ 7.72-7.78 (m, 2H), 7.63-7.68 (m, 2H), 7.36-7.48 (m, 6H), 7.17-7.23 (m, 3H), 6.91 (d, *J* = 6.6Hz, 1H), 3.82-3.90 (m, 2H), 2.93-2.99 (m, 1H), 2.70-2.77 (m, 1H), 2.50 (td, *J* = 8.3, 13.6Hz, 1H), 1.90-1.99 (m, 2H), 1.27 (d, *J* = 7.0 Hz, 3H), 1.16 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.0 (d, *J* = 6.8 Hz), 141.3, 134.1 (d, *J* = 61.1 Hz), 133.2 (d, *J* = 63.4 Hz), 132.5, 132.0, 131.6 (d, *J* = 9.1Hz), 131.3 (d, *J* = 8.3 Hz), 129.1, 128.9 (d, *J* = 21.7Hz), 126.6, 61.2, 39.4, 39.2 (d, *J* = 70.3 Hz), 34.0 (d, *J* = 8.5Hz), 29.8, 15.5, 14.5. HRMS (M⁺): *m/z* (%), calcd for C₂₆H₂₇O₃P 418.1698, found 420.1853(M⁺+2H, 3.04).

Methyl 7-tert-butyl-2-(diphenylphosphoryl)-3-methyl-1,2,3,4-tetrahydronaphthalene-1-carboxylate (8d)

¹H NMR (400 MHz, CDCl₃): δ 7.88-8.02 (m, 4H), 7.46-7.54 (m, 6H), 7.23(s, 1H), 7.16 (d, J = 7.8 Hz, 1H), 6.97 (d, J = 7.9 Hz, 1H), 4.45 (dd, J = 9.6, 14.4 Hz, 1H), 3.44-3.48 (m, 1H), 3.10 (s, 3H), 3.02-3.06 (m, 1H), 2.50-2.56 (m, 2H), 1.24 (s, 9H), 0.94 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.1, 149.8, 132.5 (d, J = 1.7 Hz), 132.2 (d, J = 15.4 Hz), 132.2, 131.5 (d, J = 8.8 Hz), 130.1, 129.5 (d, J = 11.3Hz), 128.9 (d, J = 11.4Hz), 125.5, 124.8, 52.5 (d, J = 1.6 Hz), 41.1 (d, J = 70.9 Hz), 38.1 (d, J = 13.7 Hz), 34.9, 31.9, 28.2, 21.8, 16.2; ³¹P NMR (122 MHz, CDCl₃): δ 32.2, HRMS (M⁺): m/z (%), calcd. for C₂₉H₃₃O₃P 460.2167, found 460.2171(M⁺, 6.65).

Methyl 2-(diphenylphosphoryl)-4-methyl-1,2,3,4-tetrahydronaphthalene-1-carboxylate (8e)

¹H NMR (400 MHz, CDCl₃): δ 7.70-7.80 (m. 4H), 7.39-7.44 (m, 6H), 7.01-7.19 (m, 4H), 4.16-4.22 (m. 1H), 3.54-3.56 (m, 1H), 3.17 (s, 1.2H), 3.13 (s, 1.8H), 2.85-2.95 (m, 1H), 1.84-1.97 (m, 1H), 1.49-1.73 (m, 1H), 1.30(d, J = 6.8 Hz, 1.8H), 1.18 (d, J = 6.8 Hz, 1.2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.8, 174.7, 142.4, 142.3, 132.4, 132.4, 132.3, 132.2, 132.1, 131.6, 131.6, 131.5, 131.5, 129.3 (d, J = 17.9 Hz), 129.3, 129.0, 128.9(d, J = 21.0 Hz), 128.7, 127.7 (d, J = 15.5 Hz), 127.0 (d, J = 11.5 Hz), 125.9, 52.7, 52.6 (d, J = 1.26 Hz), 44.6, 43.4, 32.9, 32.8, 32.7 (d, J = 2.2Hz), 31.5, 31.3, 30.0 (d, J = 41.1 Hz), 28.1, 22.8, 20.0. HRMS (M⁺): m/z (%), calcd. for C₂₅H₂₅O₃P 404.1541, found 404.1536(M⁺, 11.13).

Methyl 2-(diphenylphosphoryl)-7-methyl-1,2,3,4-tetrahydronaphthalene-1-carboxylate (8f)

¹H NMR (400 MHz, CDCl₃): δ 7.85-7.87 (m, 4H), 7.47-7.52 (m, 6H), 7.02(s, 1H), 6.94 (t, J = 8.2 Hz, 2H), 4.23 (dd, J = 8.6, 15.2Hz, 1H), 3.46-3.37 (m, 1H), 3.28(s, 3H), 2.72-2.84 (m, 2H), 2.23 (s, 3H), 2.01-2.08 (m, 1H), 1.74-1.80 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 174.6, 136.2, 134.3, 132.1 (d, J = 4.4 Hz), 132.0(d, J = 4.0 Hz), 131.9 (d, J = 2.7Hz), 131.8 (d, J = 4.4 Hz), 131.4 (d, J = 8.5 Hz), 129.1 (d, J = 1.9Hz), 128.8 (d, J = 10.6 Hz), 128.4 (d, J = 35.2 Hz), 52.4, 43.7, 36.7 (d, J = 72.5 Hz), 29.0 (d, J = 12.4 Hz), 22.2, 21.3. HRMS (M⁺): m/z (%), calcd for C₂₅H₂₅O₃P 404.1541, found 404.1543(M⁺, 8.84).

Methyl 2-(diphenylphosphoryl)-7-methoxy-1,2,3,4-tetrahydronaphthalene-1-carboxylate (8g)

¹H NMR (400 MHz, CDCl₃): δ 7.82-7.91 (m, 4H), 7.46-7.51(m, 6H), 6.97 (d, J = 8.3Hz, 1H), 6.77 (s, 1H), 6.69 (d, J = 8.3Hz, 1H), 4.24 (dd, J = 8.6, 15.2Hz, 1H), 3.70 (s, 3H), 3.37-3.42 (m, 1H), 3.27 (s, 3H), 2.74-2.77 (m, 2H), 2.00-2.06 (m, 1H), 1.76-1.80 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): 174.7 (d, J = 2.9 Hz), 158.6, 133.4 (d, J = 8.1 Hz), 132.5 (d, J = 2.5 Hz), 132.4 (d, J = 2.5 Hz), 132.2 (d, J = 9.1 Hz), 131.7 (d, J = 9.6 Hz), 131.3 (d, J = 6.7 Hz), 130.4, 131.0 (d, J = 244.5 Hz), 129.9, 129.4 (d, J = 11.4 Hz), 129.0 (d, J = 11.4 Hz), 113.8 (d, J = 4.0 Hz), 55.8, 52.8, 44.2, 37.0 (d, J = 72.1 Hz), 29.0 (d, J = 12.7 Hz), 22.6. HRMS (M⁺): m/z (%), calcd for C₂₅H₂₅O₄P 420.1490,

found 420.1489(M⁺, 3.04).

Methyl 7-bromo-2-(diphenylphosphoryl)-1,2,3,4-tetrahydronaphthalene-1-carboxylate (8h)

¹H NMR (400 MHz, CDCl₃): δ 7.92-7.83 (m, 4H), 7.48-7.54 (m, 6H), 7.22 (d, J = 6.7Hz, 1H), 7.11 (t, J = 6.1Hz, 1H), 7.06 (d, J = 6.8Hz, 1H), 4.28 (dd, J = 8.1, 15.4Hz, 1H), 3.42-3.47 (m, 1H), 3.28(s, 3H), 2.77-2.90 (m, 2H), 2.03-2.11 (m, 1H), 1.79-1.85 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 175.0(d, J = 3.3Hz), 137.9, 132.7, 132.6, 132.5 (d, J = 2.4 Hz), 132.3 (d, J = 9.2 Hz), 131.8 (d, J = 8.6Hz), 129.5 (d, J = 11.3 Hz), 129.4 (d, J = 40.5 Hz), 129.1 (d, J = 11.5 Hz), 127.4 (d, J = 37.7 Hz), 52.9, 44.1, 37.1 (d, J = 72.0 Hz), 29.8 (d, J = 11.5 Hz), 22.5. HRMS (M⁺): m/z (%), calcd for C₂₄H₂₂BrO₃P 468.0490, found 390.1397(M⁺-Br⁻, 11.54).

1-Phenyl-2-(diphenylphosphoryl)-1,2,3,4-tetrahydronaphthalene (15a)

¹H NMR (400 MHz, CDCl₃): δ 7.74-7.79 (m, 2H), 7.56-7.60 (m, 2H), 7.40-7.44 (m, 3H), 7.29-7.33 (m, 1H), 7.21-7.23 (m, 2H), 7.00-7.05 (m, 2H), 6.92-6.95 (m, 4H), 6.78-6.80 (m, 2H), 6.71 (d, *J* = 7.7Hz, 1H), 4.59 (dd, *J* = 6.7, 14.5Hz, 1H), 2.81-3.01 (m, 3H), 2.00 (dt, *J* = 6.0, 12.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 147.2 (d, *J* = 4.7 Hz), 138.9 (d, *J* = 5.5 Hz), 137.1, 134.0 (d, *J* = 19.2 Hz), 131.9 (d, *J* = 29.0Hz), 131.5 (d, *J* = 5.4 Hz), 131.1, 129.6, 129.3 (d, *J* = 10.9 Hz), 129.0 (d, *J* = 14.1Hz), 128.9, 128.8, 126.8 (d, *J* = 4.9 Hz), 126.5, 44.1, 42.3 (d, *J* = 70.0 Hz), 29.4 (d, *J* = 8.6 Hz), 22.2; ³¹P NMR (122 MHz, CDCl₃): δ 34.5. HRMS (M⁺): *m/z* (%), calcd for C₂₈H₂₅OP 408.1643, found 408.1640(M⁺, 5.25).

2-(Diphenylphosphoryl)-1,4-diphenylbutyl acetate (16a)

¹H NMR (400 MHz, CDCl₃): δ 7.85-7.90 (m, 2H), 7.66-7.79 (m, 3H), 7.37-7.49 (m, 5H), 7.19-7.39 (m, 5H), 7.05-7.08 (m, 3H), 6.54-6.57 (m, 2H), 6.27 (dd, *J* = 3.1, 9.0 Hz, 1H), 2.93-3.00 (m, 1H), 2.04-2.12 (m, 4H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.8, 141.4, 140.1 (d, *J* = 10.4Hz), 132.2, 131.7 (d, *J* = 8.4Hz), 131.5 (d, *J* = 8.7Hz), 129.3 (d, *J* = 2.6 Hz), 129.1 (d, *J* = 2.8 Hz), 129.0, 128.8 (d, *J* = 3.6 Hz), 128.4 (d, *J* = 62.2 Hz), 126.5, 126.3, 72.6, 44.7 (d, *J* = 67.3 Hz), 35.5 (d, *J* = 7.2 Hz), 26.1, 21.4. HRMS(ESI): *m/z*, calcd for C₃₀H₃₀O₃P 469.1927, found 469.1928 (M+H⁺).

1-(4-MethylPhenyl)-2-(diphenylphosphoryl)-1,2,3,4-tetrahydronaphthalene (15b)

¹H NMR (400 MHz, CDCl₃): δ 7.78-7.82 (m, 2H), 7.58-7.62 (m, 2H), 7.42-7.48 (m, 3H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.22-7.26 (m, 2H), 7.04-7.07 (m, 2H), 6.96-6.99 (m, 1H), 6.78 (d, *J* = 7.6 Hz, 2H), 6.76-6.77 (m, 1H), 6.72 (d, *J* = 7.9 Hz, 2H), 4.60 (dd, *J* = 6.9, 14.0 Hz, 1H), 2.85-3.05 (m, 3H), 2.19 (s, 3H), 2.00-2.07 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 139.1 (d, *J* = 6.7Hz), 137.1, 136.2 (d, *J* = 1.6Hz), 132.0 (d, *J* = 4.1Hz), 131.6, 131.5, 131.4, 131.2, 131.0, 129.5, 129.1 (d, *J* = 12.0 Hz), 128.7 (d, *J* = 6.7 Hz), 126.6 (d, *J* = 33.1 Hz), 43.9, 42.6 (d, *J* = 69.4 Hz), 29.5 (d, *J* = 9.5 Hz), 22.4, 21.5. HRMS (M⁺): *m/z* (%), calcd for C₂₉H₂₇OP 422.1800, found 422.1804 (M⁺, 6.83).

2-(Diphenylphosphoryl)-4-phenyl-1-p-tolylbutyl acetate (16b)

¹H NMR (400 MHz, CDCl₃): δ 7.78-7.83 (m, 2H), 7.69-7.74 (m, 2H), 7.39-7.49 (m, 7H), 7.15 (d, J = 8.1 Hz, 2H), 7.11-7.13 (m, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.65-6.67 (m, 2H), 6.32 (dd, J = 3.3, 8.7 Hz, 1H), 2.77-2.81 (m, 1H), 2.34 (s, 3H), 2.10-2.23 (m, 4H), 1.96 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 169.8, 141.6, 138.1, 132.2 (d, J = 2.7Hz), 132.0 (d, J = 2.7 Hz), 131.7 (d, J = 8.5 Hz), 131.5 (d, J = 8.8 Hz), 129.7, 129.3 (d, J = 73.0 Hz), 129.2 (d, J = 3.2 Hz), 129.1 (d, J = 3.2 Hz), 128.9 (d, J = 6.0 Hz), 126.4 (d, J = 2.9 Hz), 72.8, 44.7 (d, J = 67.5 Hz), 35.5 (d, J = 7.2 Hz), 26.4, 21.7, 21.5; ³¹P NMR (122 MHz, CDCl₃): δ 33.6. HRMS (M⁺): m/z (%), calcd for C₃₁H₃₁O₃P 482.2011, found 482.2010 (M⁺, 4.9).

1-(4--Chlorophenyl)-2-(diphenylphosphoryl)-1,2,3,4-tetrahydronaphthalene (15c)

¹H NMR (400 MHz, CDCl₃): δ 7.79-7.83 (m, 2H), 7.53-7.58 (m, 2H), 7.36-7.46 (m, 4H), 7.22-7.27 (m, 2H), 6.96-7.08 (m, 3H), 6.89 (d, *J* = 8.3 Hz, 2H), 6.78 (d, *J* = 8.3 Hz, 2H), 6.70 (d, *J* = 7.7 Hz, 1H), 4.66 (dd, *J* = 8.1, 13.5 Hz, 1H), 2.86-3.01 (m, 3H), 1.98-2.04 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 144.8 (d, *J* = 4.1Hz), 138.4 (d, *J* = 7.8 Hz), 136.5, 133.5 (d, *J* = 12.3 Hz), 132.3 (d, *J* = 11.5 Hz), 131.7 (d, *J* = 2.4 Hz), 131.1 (d, *J* = 2.6 Hz), 131.0 (d, *J* = 1.8 Hz), 130.8 (d, *J* = 2.2 Hz), 130.8, 129.8 (d, *J* = 110.6 Hz), 128.8 (d, *J* = 5.7 Hz), 128.5 (d, *J* = 11.4 Hz), 126.4 (d, *J* = 16.0 Hz), 43.6, 42.3 (d. *J* = 71.2 Hz), 29.3 (d, *J* = 10.9 Hz), 22.5. HRMS (M⁺): *m/z* (%), calcd for C₂₈H₂₄CIOP 442.1253, found 442.1250 (M⁺, 3.87).

1-(4-Chlorophenyl)-2-(diphenylphosphoryl)-4-phenylbutyl acetate(16c)

¹H NMR (400 MHz, CDCl₃): δ 7.78-7.84 (m, 2H), 7.62-7.72 (m, 2H), 7.30-7.54 (m, 8H), 7.14-7.18 (m, 5H), 6.63-6.70 (m, 2H), 6.26-6.43 (m, 1H), 2.74-2.84 (m, 1H), 2.64-2.80 (m, 2H), 2.04-2.12 (m, 2H), 1.96 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 169.8, 141.2, 134.3, 132.6, 132.3 (d, *J* = 17.9 Hz), 131.6 (d, *J* = 25.1 Hz), 129.5, 129.3 (d, *J* = 29.6 Hz), 129.0 (d, *J* = 15.1 Hz), 128.8, 128.2, 126.6, 72.6, 35.2, 30.9 (d, *J* = 94.7 Hz), 26.6, 21.4. HRMS(ESI): *m/z*, calcd for C₃₀H₂₉ClO₃P 503.1537, found 503.1545 (M+H⁺).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

1-Phenyl-1-methyl-2-(diphenylphosphoryl)-1,2,3,4-tetrahydronaphthalene (15d)

¹H NMR (400 MHz, CDCl₃): δ 7.55-7.70 (m, 4H), 7.39-7.48 (m, 4H), 7.25-7.34 (m, 5H), 7.14-7.18 (m, 2H), 6.96-7.01 (m, 2H), 6.72-6.80 (m, 2H), 3.46 (t, *J* = 8.6 Hz, 1H), 2.82-2.85 (m, 1H), 2.53-2.57 (m, 1H), 2.14-2.33 (m, 2H), 1.26(s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 158.5(d, *J* = 6.5Hz), 140.4, 132.2, 131.9, 131.5 (d, *J* = 9.1 Hz), 131.3, 131.2, 131.1(d, *J* = 8.5 Hz), 130.9, 129.1 (d, *J* = 11.5 Hz), 128.7(d, *J* = 21 Hz), 128.4, 127.8, 126.6, 48.2, 33.7 (d, *J* = 13.9Hz), 32.6, 29.9.

3-(Diphenylphosphoryl)-2,5-diphenylpentan-2-yl acetate (16d)

¹H NMR (400 MHz, CDCl₃): δ 7.85-7.89 (m, 2H), 7.48-7.52 (m, 6H), 7.23-7.33 (m, 4H), 7.07-7.16 (m, 6H), 6.60 (d, *J* = 6.5 Hz, 2H), 2.85 (d, *J* = 11.0Hz, 1H), 2.33 (s, 3H), 1.96-2.17 (m, 4H), 1.80(s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 168.9, 141.4, 131.8 (d, *J* = 7.5 Hz), 131.0 (d, *J* = 4.7 Hz), 130.7, 128.6, 128.5, 128.4, 128.3, 128.2, 127.0 (d, *J* = 150.4 Hz), 125.9, 69.5, 37.6, 29.1, 22.2, 21.7.

1-Phenyl-2-(diphenylphosphoryl)-3-methyl-7-tert-butyl-1,2,3,4-tetrahydronaphthalene (15f)

¹H NMR (400 MHz, CDCl₃): δ 7.84-7.88 (m, 2H), 7.44-7.46 (m, 5H), 7.11-7.20 (m, 4H), 6.84-7.02 (m, 6H), 6.70 (s, 1H), 4.71 (t, *J* = 10.6 Hz, 1H), 3.03-3.11 (m, 2H), 2.71-2.75 (m, 1H), 2.33-2.35 (m, 1H), 1.10 (s, 9H), 1.08 (d, *J* = 7.4Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 148.8, 145.6, 134.3 (d, *J* = 96.1 Hz), 132.1, 131.3 (d, *J* = 2.3 Hz), 130.9 (d, *J* = 8.4 Hz), 130.5 (d, *J* = 8.4 Hz), 129.9, 128.7 (d, *J* = 11.3 Hz), 128.4 (d, *J* = 88.9 Hz), 128.1, 127.7 (d, *J* = 52.6 Hz), 126.9 (d, *J* = 109.4 Hz), 123.2, 46.1 (d, *J* = 70.4 Hz), 42.7, 37.6 (d, *J* = 11.5 Hz), 34.4, 31.4, 28.5, 16.5. HRMS (M⁺): *m/z* (%), calcd for C₃₃H₃₅OP 478.2426, found 478.2423 (M⁺, 7.65).

4-(4-tert-Butylphenyl)-2-(diphenylphosphoryl)-3-methyl-1-phenylbutyl acetate (16f)

¹H NMR (300 MHz, CDCl₃): δ 7.36-7.49 (m, 8H), 7.10-7.22 (m, 5H), 6.92-7.07 (m, 6H), 6.37 (dd, J = 5.8, 9.2 Hz, 1H), 3.04 (t, J = 9.7 Hz, 1H), 2.90 (dd, $J_1 = 9.4$, 12.9 Hz, 1H), 2.62 (dd, $J_1 = 6.7$, 13.2 Hz, 1H), 2.24-2.30 (m, 1H), 2.11 (s, 3H), 1.40 (s, 9H), 1.20 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 149.9, 139.2, 138.5, 131.9, 131.4 (d, J = 8.2 Hz), 131.0, 130.7 (d, J = 8.3 Hz), 130.2, 129.1 (d, J = 11.3 Hz), 128.6 (d, J = 19.7 Hz), 128.5, 125.9, 75.3 (d, J = 5.2 Hz), 44.6 (d, J = 68.2 Hz), 43.7 (d, J = 12.0 Hz), 35.7, 32.2, 31.7, 22.3, 17.9. HRMS (ESI): *m/z*, calcd for C₃₅H₃₉O₃P 538.2637, found C₃₅H₄₀O₃P 539.2717 (M+H⁺). 1-Phenyl-2-(diphenylphosphoryl)-4-methyl-1,2,3,4-tetrahydronaphthalene (15g)

¹H NMR (300 MHz, CDCl₃): δ 7.77-7.81 (m, 2H), 7.44-7.61 (m, 5H), 7.08-7.30 (m, 5H), 6.69-6.96 (m, 7H), 4.76 (dd, *J* = 9.6, 14.9 Hz, 0.6H), 4.63 (dd, *J* = 7.7, 13.3 Hz, 0.4H), 3.13-3.16 (m, 2H), 1.79-1.90 (m, 2H), 1.42 (d, *J* = 6.9 Hz, 1.2H), 1.33 (d, *J* = 6.5 Hz, 1.8H); ¹³C NMR (100 MHz, CDCl₃): δ 146.7, 146.4 (d, *J* = 4.5 Hz), 141.8, 141.3, 140.0 (d, *J* = 9.5 Hz), 138.3 (d, *J* = 7.7 Hz), 134.1 (d, *J* = 12.6 Hz), 133.7 (d, *J* = 33.6 Hz), 133.1 (d, *J* = 12.8 Hz), 132.7 (d, *J* = 33.8 Hz), 131.9, 131.3, 131.2, 131.1, 131.0, 130.9, 129.8, 129.6, 129.2 (d, *J* = 3.8 Hz), 129.1 (d, *J* = 3.9 Hz), 128.7, 128.6, 128.3 (d, *J* = 27.9 Hz), 126.6 (d, *J* = 8.8 Hz), 126.5, 126.4, 125.7, 44.7 (d, *J* = 81.0 Hz), 42.3 (d, *J* = 71.5 Hz), 38.5, 37.8, 33.6 (d, *J* = 13.4 Hz), 33.0, 31.9 (d, *J* = 9.1 Hz), 29.2, 23.4, 21.0. HRMS (ESI): *m/z*, calcd for C₂₉H₂₇OP 422.1800, found 423.1872 (M+H⁺). HPLC: 55:45.

NMR Spectra

¹³C NMR for 8b

- 0

ppm (t1)

S15

| 100

Т

Ι

150

200 ppm (t1) 50

0

Т

³¹P-decoupled proton NMR for 15a

X-ray crystal structures 8a

 $C_{24}H_{25}O_4P$, M = 408.41, triclinic, a = 8.735(3) Å, b = 11.975(4) Å, c = 12.478(5) Å, $\alpha = 61.480(5)$ °, $\beta = 69.536(3)$ °, $\gamma = 80.201(7)$ °, U = 1074.5(6) Å³, T = 223(2) K, space group P -1, Z = 2, Dc = 1.262 g/cm⁻³, Rigaku Saturn CCD diffractometer, $\mu(Mo-K\alpha) = 0.155 \text{ mm}^{-1}$, 9895 independent reflections (4850 observed), 270 parameters, $R_{int} = 0.0379$, R = 0.0465, wR(F2) = 0.0866, thermal ellipsoids probability level is 20%. CCDC 816923.

<mark>8d</mark>

 $C_{29}H_{33}O_3P$, *M* = 460.52, monoclinic, *a* = 12.3944(14) Å, *b* = 15.6919(19) Å, *c* = 13.1793(16) Å, *α* = 90°, *β* = 94.749(3)°, γ = 90°, *U* = 2554.5(5) Å³, *T* = 223(2) K, space group P 21/n, *Z* = 4, Dc = 1.197 g/cm⁻³, Rigaku Saturn CCD diffractometer, μ (Mo-K α) = 0.135 mm⁻¹, 14357 independent reflections (5831 observed), 334 parameters, R_{int} = 0.0265, R = 0.0523, wR(F2) = 0.1312, thermal ellipsoids probability level is 25%. CCDC 824309.