Electronic Supplementary Information (ESI)

1. Experimental procedures

Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} (CZB) solid solution was prepared by mixing aqueous solutions of 1.0 mol dm⁻³ Ce(NO₃)₃, 0.1 mol dm⁻³ ZrO(NO₃)₂, and 0.5 mol dm⁻³ Bi(NO₃)₃ in a stoichiometric ratio. Polyvinylpyrrolidone K25 (PVP; mean molecular weight: 35,000; mean degree of polymerization: 315) was also dissolved into the mixture as a dispersant. After stirring using an agitator with a heater at 80 °C for 6 h, the solvent was removed at 180 °C. The resulting powder was dried at 80 °C for 6 h and then heated at 500 °C for 1 h in an ambient atmosphere. Supported platinum catalysts (Pt/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90}; Pt/CZB) were prepared by impregnating the CZB support with a platinum colloid stabilized with PVP. After impregnation, the catalysts were dried at 80 °C for 6 h and then range 5–12 wt%.

The catalysts were characterized by X-ray fluorescence analysis, XRD, transmission electron microscopy (TEM), XPS, and BET specific surface area measurements. The CO oxidation activity was tested in a conventional fixed-bed flow reactor by feeding a gas mixture of CO (1 vol%) and air (balance) at a rate of 66.7 cm³ min⁻¹ over 0.2 g of catalyst; the space velocity (S.V.) over the catalyst was 20,000 cm³ h⁻¹ g⁻¹. Prior to the measurements, the catalysts were heated at 200 °C for 2 h in a flow of argon, hydrogen, or air. The in situ FT-IR spectroscopy experiments were performed in diffuse reflectance (DRIFT) mode with a PerkinElmer Spectrum One spectrometer in flowing CO(1 vol%)/air or CO(1 vol%)/H₂O(0.6 vol%)/air at 25 °C at a rate of 50 cm³ min⁻¹. Prior to the measurement the sample was pre-heated at 200 °C for 2 h in N₂ and then cooled in N₂ to 25 °C where a background spectrum was collected. Temperature programmed reduction (TPR) and metal dispersion are measured with a BELCAT-B apparatus (BEL Japan). Reduction behavior was examined under a flow of 5%H₂–Ar (50 cm³ min⁻¹) at a heating rate of 5 °C min⁻¹, and the metal dispersion analysis was carried out by a pulse method at –50 °C using 10%CO–He (0.03 cm³).

2. X-ray diffraction patterns (XRD)

Fig. S1 a) XRD patterns of Pt(5–12 wt%)/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} catalysts prepared at 500 °C; b) Those of Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} catalysts prepared at 300, 400, 500, and 600 °C.

3. BET specific surface area

Catalyst	Preparation	BET surface	
	temperature (°C)	area (m ² g ^{-1})	
$5 \text{ wt%Pt/Ce}_{0.64} \text{Zr}_{0.16} \text{Bi}_{0.20} \text{O}_{1.90}$	500	69	
7 wt%Pt/Ce _{0.64} Zr _{0.16} Bi _{0.20} O _{1.90}	500	68	
10 wt%Pt/Ce _{0.64} Zr _{0.16} Bi _{0.20} O _{1.90}	500	64	
12 wt%Pt/Ce _{0.64} Zr _{0.16} Bi _{0.20} O _{1.90}	500	62	
10 wt%Pt/Ce _{0.64} Zr _{0.16} Bi _{0.20} O _{1.90}	300	80	
10 wt%Pt/Ce _{0.64} Zr _{0.16} Bi _{0.20} O _{1.90}	400	79	
10 wt%Pt/Ce _{0.64} Zr _{0.16} Bi _{0.20} O _{1.90}	600	43	

Table S1 BET specific surface area of Pt(5-12 wt%)Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} catalysts

4. Transmission electron microscopic image

Fig. S2 Transmission electron micrograph of the $Pt(10 \text{ wt\%})/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90}$ catalyst prepared at 400 °C.

5. X-ray photoelectron spectroscopy (XPS)

Fig. S3 XPS of a) Ce 3d core level and b) Pt 4f core level of Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} catalyst prepared at 400 °C. Solid and broken lines in b) correspond to the Pt(4f_{5/2}) and Pt(4f_{7/2}) peaks, respectively.

6. Pretreatment dependencies of CO oxidation on Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} calcined at 400°C

Fig. S4 Pretreatment dependencies of CO oxidation on $Pt(10 \text{ wt\%})/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90}$ calcined at 400°C.

Fig. S5 Pretreatment dependencies of XPS of Pt4f core level on Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} catalyst prepared at 400 °C. Solid and broken lines correspond to the Pt(4f_{5/2}) and Pt(4f_{7/2}) peaks, respectively.

Table S2 Relative peak intensities of platinum species in $Pt(10 \text{ wt\%})/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90}$ prepared at 400°C.

Pretreatment condition	Relative peak intensity			
	Pt^0	Pt^{2+}	Pt ⁴⁺	
Ar 200°C 2h	9%	63%	28%	
H ₂ 200°C 2h	82%	18%	0%	
Air 200°C 2h	0%	69%	31%	

7. Support effect on CO oxidation

Table S3 Characterization of Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} (Pt/CZB), Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Y_{0.20}O_{1.90} (Pt/CZY), and Pt(10 wt%)/Ce_{0.80}Zr_{0.20}O_{2.0} (Pt/CZ) prepared at 400°C.

Catalyst	BET surface	Pt dispersion	Reduction peak	Activation	TOF (a^{-1})
	area (m ² g ^{-1})	(%)	temperature (°C)	energy (eV)	10r (s)
Pt/CZB	79	2.6	-34	42	0.52 (15 °C)
Pt/CZY	107	13.3	0	117	0.19 (50 °C)
Pt/CZ	99	10.5	-11	120	0.16 (50 °C)

Fig. S6 Temperature dependencies of CO oxidation on Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} (Pt/CZB, 79 m² g⁻¹), Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Y_{0.20}O_{1.90} (Pt/CZY, 107 m² g⁻¹), and Pt(10 wt%)/Ce_{0.80}Zr_{0.20}O_{2.0} (Pt/CZ, 99 m² g⁻¹) prepared at 400°C. It was confirmed by thermogravimetric analysis that polyvinylpyrrolidone K25 (PVP) is thermally decomposed completely by calcination at 400 °C.

Fig. S7 Temperature programmed reduction profiles for $Pt(10 \text{ wt\%})/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90}$ (Pt/CZB), $Pt(10 \text{ wt\%})/Ce_{0.64}Zr_{0.16}Y_{0.20}O_{1.90}$ (Pt/CZY), and $Pt(10 \text{ wt\%})/Ce_{0.80}Zr_{0.20}O_{2.0}$ (Pt/CZ) prepared at 400°C.

Fig. S8 XPS of Pt4f core level of Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} (Pt/CZB), Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Y_{0.20}O_{1.90} (Pt/CZY), and Pt(10 wt%)/Ce_{0.80}Zr_{0.20}O_{2.0} (Pt/CZ) prepared at 400°C. Solid and broken lines correspond to the Pt(4f_{5/2}) and Pt(4f_{7/2}) peaks, respectively.

Table S4 Relative peak intensities of platinum species in $Pt(10 \text{ wt\%})/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90}$ (Pt/CZB), $Pt(10 \text{ wt\%})/Ce_{0.64}Zr_{0.16}Y_{0.20}O_{1.90}$ (Pt/CZY), and $Pt(10 \text{ wt\%})/Ce_{0.80}Zr_{0.20}O_{2.0}$ (Pt/CZ) prepared at 400°C.

Catalyst	Relative peak intensity		
	Pt^0	Pt^{2+}	Pt^{4+}
Pt/CZ	17%	66%	17%
Pt/CZB	9%	63%	28%
Pt/CZY	18%	67%	18%

8. DRIFT-IR spectra

Fig. S9 DRIFT-IR spectra of the Pt(10 wt%)/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90} catalyst in a flow of CO(1 vol%)/air (black) and CO(1 vol%)/H₂O(0.6 vol%)/air (red) at 25 °C.

9. Brief comparison with Au/CeO₂-ZrO₂

Table S5 Comparison of CO oxidation activity over Pt/CeO_2 - ZrO_2 - Bi_2O_3 and Au/CeO_2 - ZrO_2 catalysts.

Catalyst	$(\mathbf{m}^2 \mathbf{g}^{-1})$	Metal loading (wt%)	Metal particle size (nm)	Complete CO oxidation temperature (°C)*	Reaction conditions; catalyst weight	Ref.
$Pt/Ce_{0.64}Zr_{0.16}Bi_{0.20}O_{1.90}$	79	10	2-5	20	1% CO, air balance, 66.7 cm ³ min ⁻¹ ; 200 mg	-
Au/Ce _{0.8} Zr _{0.2} O ₂	n.r.	2.0	n.r.	140	$\begin{array}{c} 0.5 \ \mathrm{cm^3 \ min^{-1} \ CO} \\ 33.3 \ \mathrm{cm^3 \ min^{-1} \ air; \ 50 \ mg} \end{array}$	S1
Au/Ce _{0.75} Zr _{0.25} O ₂	48	3.31	4.4	45	1.6% CO, 3.3%O ₂ , He balance, 50 cm ³ min ⁻¹ ; 200 mg	S2
Au/Ce _{0.5} Zr _{0.5} O ₂	65	0.86	n.r.	17	0.49% CO, air balance, 55 cm ³ min ⁻¹ ; 50 mg	S3

n.r. Not reported; *, data obtained in dry condition.

- S1. S.-P. Wang, T.-Y. Zhang, X.-Y. Wang, S.-M. Zhang, S.-R. Wang, W.-P. Huang and S.-H.Wu, J. Mol. Catal. A, 2007, 272, 45.
- S2. I. Dobrosz-Gómez, I. Kocemba and J. M. Rynkowski, Appl. Catal. B: Environ., 2008, 83, 240.
- S3. F. Moreau, G. C. Bond, B. van der Linden, B. A. A. Silberova and M. Makkee, *Appl. Catal. A: General*, 2008, **347**, 208.