### Supplementary Information for

### **Control of Selectivity in the Generation and Reactions of Oxonium Ylides**

Deana M. Jaber, Ryan N. Burgin, Matthew Hepler, Peter Zavalij, and Michael P. Doyle\*

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, U. S. A.

### **Table of Contents**

| 1. | Explanation of the apparent isomerism      | S-1  |
|----|--------------------------------------------|------|
| 2. | General procedures and methods of analysis | S-2  |
| 3. | Characterization of all new compounds      | 8-5  |
| 4. | NMR spectra of new compounds               | S-16 |
| 5. | 2D spectra and NOE experiments             | S-56 |
| 6. | Crystal structure data                     | S-62 |

**Explanation of the apparent isomerism**. This may arise from two non-interconverting ylide intermediates formed from two conformational isomers (axial-equatorial and equatorial-axial for aryl and acetoacetate groups) of the metal carbene generated from 7 (Scheme 5). Accordingly, product stereochemistry (8 and 9) is determined by the two ylide intermediates (16 and 17) whose ratio is related to the ratio of conformational isomers of 7. Consistent with related structures,<sup>16</sup> conformational isomers of the reactant diazo compound 7a, whose ring is flattened from the ideal chair parameters, could not be resolved even at -95°C, but DFT calculations at the PBEPBE level with the LANL2-DZ basis set showed an energy difference of 0.7 kcal/mol favoring the conformer with the phenyl group in the equatorial position.



*Scheme 5.* Formation of non-interconverting ylide intermediates in the apparent isomerization that produces *anti-8* and *syn-8*.

#### General procedures and methods of analysis

General information. All reagents were obtained commercially unless otherwise noted. Reactions were performed using oven-dried or flame-dried glassware under an atmosphere of nitrogen. Air and moisture sensitive liquids and solutions were transferred via syringe or stainless steel cannula. Dichloromethane (DCM) was passed through a solvent column prior to use. Toluene and 1,2-dichloroethane (DCE) were distilled over CaH<sub>2</sub> prior to use. Thin-layer chromatography (TLC) was performed on EM Science silica gel 60 F254 plates, and visualization of the developed plates was accomplished by ultraviolet light (254 nm) and/or by staining with iodine, butanolic ninhydrin, *p*-anisaldehyde, and phosphomolybdic acid (PMA) solution. Chromatographic purification of products was performed using forced-flow chromatography on silica gel (230 x 400 mesh). Compounds purified by chromatography on silica gel were typically applied to the absorbent bed using the indicated solvent conditions with a minimum amount of added dichloromethane as needed for solubility. Unless otherwise described, reactions were carried out at ambient temperature. Elevated temperatures were obtained using thermostat-controlled silicone oil baths. Low temperatures were obtained by ice bath or by mixing dry-ice with organic solvents. Zinc triflate was purchased from Aldrich and used as received. Methyl 3-(tert-butyldimethylsilyloxy)-2-diazo-3-butenoate was prepared by the method described by Davies.<sup>1</sup>

NMR spectra were measured on Bruker AV-400, Bruker DRX-400 (<sup>1</sup>H at 400 MHz, <sup>13</sup>C at 100 MHz), Bruker DRX-500 (<sup>1</sup>H at 500 MHz, <sup>13</sup>C at 125 MHz), or Bruker AVIII-600 (<sup>1</sup>H at 600 MHz, <sup>13</sup>C at 150 MHz). Data for <sup>1</sup>H NMR are recorded as follows relative to residual solvent peaks: (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddq = doublet of quartets, ddd= doublet of doublet of doublets, tdd triplet of doublet of doublets, ddd = doublet of doublet of doublets, m = multiplet, comp = composite), coupling constant (Hz), and integration. Data for <sup>13</sup>C NMR spectra are reported in terms of chemical shift ( $\delta$ , ppm) relative to residual solvent peak. All spectra are recorded in CDCl<sub>3</sub> as solvent, unless otherwise described. Mass spectra (MS) and high resolution mass spectra (HRMS) were recorded by JEOL AccuTOF-CS (ESI positive, needle voltage 1800-2400eV, flow rate 50uL/min). IR spectra were recorded on a JASCO FT-IR-4100 instrument. Melting points were determined with a MEL-TEMP Digital melting point apparatus.

#### General procedures for the hetero-Diels-Alder (HDA) reaction



HDA reaction using BF<sub>3</sub>.Et<sub>2</sub>O - Method A. To a cold solution (-78°C) of benzaldehyde (0.2 g, 1.88 mmoles) and Danishefsky's diene (0.4 mL, 2.26 mmoles ) in dry DCM (19 mL) was added BF<sub>3</sub>.Et<sub>2</sub>O (0.24 mL, 1.88 mmoles) dropwise, which produced an instant color change from colorless to yellow to dark brown. After 8 hours at -78°C, the reaction was quenched with NaHCO<sub>3</sub> (10 mL) followed by brine (10 mL), then extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 15 mL). The combined organic layer was dried over MgSO<sub>4</sub>, filtered and evaporated under reduced pressure.

**HDA reaction using Rh\_2(OAc)\_4 – Method B.** Rhodium(II) acetate (5.8 mg, 0.013 mmoles) and 4-nitrobenzaldehyde (0.2g, 1.32 mmoles) were dissolved in 5 mL of DCM. The suspension was stirred for 20 minutes at RT, before adding Danishefsky's diene (0.5 mL, 2.65 mmoles). The solution was left to stir at room temperature for 24 hrs. After the reaction was complete judging by TLC analysis, TFA (1 mL) was added and the solution was stirred for a further 30 minutes. The reaction was later washed with saturated NaHCO<sub>3</sub> (10 mL) and brine then extracted into DCM (3 × 15 mL). The organic extracts were combined, dried over MgSO<sub>4</sub>, filtered and evaporated to yield a yellow solid. Characterization of most of the HDA products can be found in the literature.<sup>2</sup>

#### General Procedure for the Mukaiyama-Michael reaction



To a flame-dried 25-mL round bottom flask under nitrogen was added zinc triflate (2.1 mg, 0.006 mmol), followed by 6-phenylpyranone (102 mg, 0.586 mmol) that was dissolved in dry DCM (2 mL). Methyl 3-(tert-butyldimethylsilyloxy)-2-diazo-3-butenoate (225 mg, 0.879 mmol)

was then added via syringe all at once. The orange solution was stirred at  $40^{\circ}$ C for 16 hour and then slowly cooled to room temperature. The Mukaiyama-Michael reactions were worked up using two methods, as shown below. For the synthesis of methyl 2-diazo-3-oxo-4-(( $2S^*, 6S^*$ )-4-oxo-6-phenyltetrahyro-2*H*-pyran-2-yl)butanoate, method A using 4N HCl was followed.

**Mukaiyama-Michael reaction work up using 4N HCl - Method A.** After the reaction was complete judging by TLC analysis, the crude reaction mixture was concentrated under reduced pressure then dissolved in 10 mL of tetrahydrofuran (THF). To that was added 2.0 mL of 4N aqueous HCl solution dropwise. After 2hrs the reaction was quenched by slow addition of NaHCO<sub>3</sub> (15mL) until the reaction was neutralized. The resulting solution was extracted with DCM ( $3 \times 15$  mL) and the combined organic layer was dried over anhydrous MgSO<sub>4</sub> and then concentrated under reduced pressure.

**Mukaiyama-Michael reaction work up using TBAF and AcOH - Method B.** The calculation for the work-up below is based on the substrate 2-(4-methoxyphenyl)pyranone (292 mg, 1.43 mmoles). After the reaction was complete (TLC analysis), the crude reaction mixture was concentrated under reduced pressure then dissolved in 14 mL of tetrahydrofuran (THF) at 0°C. To that solution was added AcOH (0.6 mL) and TBAF (1M THF solution, 2mL, 2.1 mmoles). The resulting mixture was stirred at 0°C for 4 hrs. The reaction mixture was quenched with  $Et_3N$ , then diluted with saturated NaHCO<sub>3</sub> (15mL), and the aqueous layer was extracted with DCM (20mL x 3). The combined organic extracts were washed with brine, dried over MgSO<sub>4</sub> and concentrated under reduced pressure after filtration.

General Procedure for catalytic dinitrogen extrusion. The catalyst  $Rh_2(pfb)_4$  (5 mg, 0.005 mmoles) was dissolved in anhydrous DCM (2 mL) and then transferred to a flame-dried two neck flask. Methyl 2-diazo-3-oxo-4-(4-oxo-6-phenyltetrahyro-2*H*-pyran-2-yl)butanoate (151 mg, 0.477 mmoles) was dissolved in anhydrous DCM (3 mL) and added dropwise to the reaction mixture via a syringe pump over two hours. Once the addition was complete, the reaction was left to stir at reflux (40°C) for an additional two hours. After the diazo starting material had been consumed judging by TLC analysis, the reaction was cooled to room temperature, the solvent

was evaporated, and the reaction was purified using column chromatography to yield a white powdery solid.

#### **Characterization of all new compounds**

Characterization for HDA products.

### 2-Mesityl-2H-pyran-4(3H)-one



Prepared by method A. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (100% to 95% hexane): yellow solid (65% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (dd, *J* = 6.0,0.6 Hz, 1H), 6.88 (s, 2H), 5.81 (dd, *J* = 16.0,3.8 Hz, 1H), 5.53 (dd, *J* = 6.0,1.2 Hz, 1H), 3.16 (dd, *J* = 17.2,16.0 Hz, 1H), 2.43 (ddd, *J* = 17.2,3.8,1.2 Hz, 1H), 2.38 (s, 6H), 2.28 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.45, 163.49, 138.26, 136.12, 130.41, 130.36, 107.12, 78.78, 40.36, 20.80, 20.56. HRMS (ESI+): expected mass 217.1223, found 217.1230. M.p. 72.0-73.0 °C.

### 2-(Anthracen-9-yl)-2H-pyran-4(3H)-one



Prepared by method A. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (100% to 95% hexane): orange solid (53% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.54 (s, 1H), 8.36 (d, *J* = 8.8 Hz, 2H), 8.07 (dd, *J* = 8.4,0.8 Hz, 2H), 7.70 (d, *J* = 6.0 Hz, 1H), 7.58-7.49 (comp, 4H), 6.94 (dd, *J* = 16.0,4.0 Hz, 1H), 5.74 (dd, *J* = 6.0,0.8 Hz, 1H), 3.69 (dd, *J* = 17.8, 16.0 Hz, 1H), 2.73 (ddd, *J* = 17.8,4.0,0.8 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  192.03, 163.36, 131.36, 129.65, 129.54, 129.04, 127.04, 126.43, 124.85, 123.50, 107.68, 78.11, 41.91. HRMS (ESI+): expected mass 275.1067, found 275.1075. M.p. 160.0-162.3 °C.

### 2-(2,6-Dimethyl-4-nitrophenyl)-2*H*-pyran-4(3*H*)-one

Prepared by method A. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (100% to 85% hexane); pale yellow solid (50% yield). The 2,6-dimethyl-4-nitro benzaldehyde was synthesized following literature procedures.<sup>3</sup> <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (s, 2H), 7.50 (d, *J* = 6.0 Hz, 1H), 5.87 (dd, *J* = 16.0,4.0 Hz, 1H), 5.58 (d, *J* = 6.0 Hz, 1H), 3.10 (dd, *J* = 17.5,16.0 Hz, 1H), 2.52 (s, 6H), 2.45 (ddd, *J* = 17.5,4.0,1.0 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  190.76, 162.67, 147.18, 140.07, 138.15, 124.11, 107.65, 77.95, 39.38, 20.95. HRMS (ESI+): expected mass 248.0917, found 248.0912. M.p. 120.1-122.3 °C.

### Data Characterization for Mukaiyama-Michael products

Methyl 2-diazo-3-oxo-4-((2S\*,6S\*)-4-oxo-6-phenyltetrahyro-2H-pyran-2-yl)butanoate (7a)



Followed method A for the work-up. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 75% hexane): yellow solid (99% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39-7.28 (comp, 5H), 5.29 (t, J = 5.8 Hz, 1H), 4.60-4.53 (m, 1H), 3.79 (s, 3H), 3.31 (dd, J = 15.6,8.0 Hz, 1H), 3.05 (dd, J = 15.6,5.6 Hz, 1H), 2.87 (ddd, J = 14.8, 6.4, 1.2 Hz, 1H), 2.79 (ddd, J = 14.8, 5.2, 1.2 Hz, 1H), 2.65 (ddd, J = 14.8, 4.8,1.2 Hz, 1H), 2.45 (ddd, J = 14.8,7.2,1.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  206.24, 188.90, 161.52, 139.61, 128.60, 128.14, 126.82, 74.05, 68.65, 52.26, 46.46, 46.06, 44.54. IR (cm<sup>-1</sup>): 2959, 2925, 2854, 2143, 1708, 1664, 1646. HRMS (ESI+): expected mass 317.1132, found 317.1128. M.p. 71.0-73.1 °C.

# Methyl 2-diazo-4-((2*S*\*,6*S*\*)-6-(4-nitrophenyl)-4-oxotetrahydro-2*H*-pyran-2-yl)-3-oxobutanoate (7b)



Followed method A for the work-up. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 60% hexane): yellow solid (80% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.25-8.22 (comp, 2H), 7.58-7.55 (comp, 2H), 5.35 (dd, *J* = 6.6,5.4 Hz, 1H), 4.70-4.63 (m, 1H), 3.82 (s, 3H), 3.39 (dd, *J* = 16.0,8.2 Hz, 1H), 3.04 (dd, *J* = 16.0,5.2 Hz, 1H), 2.87 – 2.76 (comp, 2H), 2.69 (ddd, *J* = 14.8,5.2,1.2 Hz, 1H), 2.50 (ddd, *J* = 14.8,6.6,1.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  204.90, 188.64, 161.54, 147.59, 146.91, 127.47, 123.86, 73.14, 69.34, 52.35, 46.25, 46.15, 44.17. IR (cm<sup>-1</sup>): 2959, 2921, 2849, 2123, 1717, 1641, 1598, 1512, 1335, 1302. HRMS (ESI+): expected mass 362.0983, found 362.0984. M.p. 103.3-104.7 °C.

# Methyl 2-diazo-3-oxo-4-((2*S*\*,6*S*\*)-4-oxo-6-(4-(trifluoromethyl)phenyl)tetrahyro-2*H*-pyran-2-yl)butanoate (7c)



Followed method A for the work-up. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 70% hexane): yellow solid (77% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 5.30 (t, J = 5.6 Hz, 1H), 4.61-4.54 (m, 1H), 3.77 (s, 3H), 3.32 (dd, J = 15.6,8.1 Hz, 1H), 3.02 (dd, J = 15.6,5.2 Hz, 1H), 2.80 (d, J = 5.6 Hz, 2H), 2.64 (dd, J = 14.8,4.6 Hz, 1H), 2.45 (dd, J = 14.8,7.2 Hz, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  205.32, 188.67, 161.46, 143.71, 130.20 (q, J = 32.6 Hz), 126.97, 125.50 (q, J = 3.7 Hz), 123.90 (q, J = 270.5 Hz), 73.37, 69.04, 52.20, 46.21, 46.04, 44.33. HRMS (ESI+): expected mass 385.1011 , found 385.1005. IR (cm<sup>-1</sup>): 2964, 2921, 2854, 2128, 1717, 1641, 1622, 1316. HRMS (ESI+): expected mass 385.1011, found 385.1005. M.p. 64.5-65.5 °C.

Methyl 2-diazo-3-oxo-4-((2S\*,6S\*)-4-oxo-6-p-tolyltetrahydro-2H-pyran-2-yl)butanoate (7d)



Followed method B for the work-up. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 70% hexane): yellow oil (97% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.24-7.22 (comp, 2H), 7.17-7.15 (comp, 2H), 5.26 (t, *J* = 6.0 Hz, 1H), 4.55-4.48 (m, 1H), 3.79 (s, 3H), 3.29 (dd, *J* = 15.6,8.0 Hz, 1H), 3.03 (dd, *J* = 15.6,5.6 Hz, 1H), 2.86 (ddd, *J* = 14.8, 6.0, 1.4 Hz, 1H), 2.77 (ddd, *J* = 14.8, 5.6, 1.2 Hz, 1H), 2.62 (ddd, *J* = 14.8,7.6,1.2 Hz, 1H), 2.43 (ddd, *J* = 14.8,7.6,1.2 Hz, 1H), 2.33 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  206.38, 188.88, 161.52, 137.88, 136.49, 129.21, 126.84, 73.96, 68.35, 52.22, 46.51, 45.89, 44.61, 21.07. IR (cm<sup>-1</sup>): 2906, 2959, 2128, 2128, 1713, 1646, 1512. HRMS (ESI+): expected mass 331.1288, found 331.1279.

## Methyl 2-diazo-4-((2*S*\*,6*S*\*)-6-(4-methoxyphenyl)-4-oxotetrahydro-2*H*-pyran-2-yl)-3-oxobutanoate (7e)



Followed method B for the work-up. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 75% hexane); yellow oil (92% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.27-7.24 (comp, 2H), 6.89-6.85 (comp, 2H), 5.25 (t, *J* = 5.6 Hz, 1H), 4.50-4.44 (m, 1H), 3.78 (s, 6H), 3.27 (dd, *J* = 15.6,8.0 Hz, 1H), 3.02 (dd, *J* = 15.6,5.2 Hz, 1H), 2.85 (ddd, *J* = 14.8, 6.0, 1.2 Hz, 1H), 2.76 (ddd, *J* = 14.8, 5.2, 1.2 Hz, 1H), 2.60 (ddd, *J* = 14.8,4.4,1.2 Hz, 1H), 2.41 (ddd, *J* = 14.8,8.0,1.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  206.40, 188.87, 161.48, 159.33, 131.51, 128.27, 113.84, 73.75, 68.13, 55.20, 52.20, 46.55, 45.79, 44.67. IR (cm<sup>-1</sup>): 3055, 2959, 2835, 2138, 1708, 1646, 1607, 1507, 1431. HRMS (ESI+): expected mass 347.1238, found 347.1242.

## Methyl 2-diazo-4-((2*S*\*,6*S*\*)-6-mesityl-4-oxotetrahydro-2*H*-pyran-2-yl)-3-oxobutanoate (10)



Followed method B for the work-up. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 80% hexane): yellow solid (99% yield). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  6.83 (s, 2H), 5.51 (dd, J = 12.0, 3.6 Hz, 1H), 5.11 – 5.05 (m, 1H), 3.82 (s, 3H), 3.33 (dd, J = 15.0, 8.4 Hz, 1H), 3.17 (dd, J = 15.0, 6.0 Hz, 1H), 2.97 (dd, J = 15.0, 12.0 Hz, 1H), 2.92 (dd, J = 15.0, 6.6 Hz, 1H), 2.50 (ddd, J = 15.0, 3.0, 2.0 Hz, 1H), 2.46 – 2.39 (comp, 7H), 2.24 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  206.74, 188.77, 161.55, 137.37, 136.15, 132.67, 130.27, 70.64, 70.33, 52.25, 45.64, 45.48, 42.81, 20.73, 20.54. IR (cm<sup>-1</sup>): 2973, 2359, 2339, 2137, 1713, 1652, 1612. HRMS (ESI+): expected mass 359.1601, found 359.1609. M.p. 83.7-86.5 °C.

Methyl 2-diazo-4-((2*S*\*,6*S*\*)-6-(anthracen-9-yl)-4-oxotetrahydro-2*H*-pyran-2-yl)-3-oxobutanoate (12)



Followed method B for the work-up. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 80% hexane): white solid (90% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.67 (d, J = 8.4 Hz, 2H), 8.46 (s, 1H), 8.03-8.01 (comp, 2H), 7.56-7.52 (comp, 2H), 7.49-7.45 (comp, 2H), 6.68 (dd, J = 12.0,3.2 Hz, 1H), 5.40-5.34 (m, 1H), 3.80 (s, 3H), 3.65 (dd, J = 15.2,8.8 Hz, 1H), 3.48 (dd, J = 15.2, 12.0 Hz, 1H), 3.30 (dd, J = 15.2,5.6 Hz, 1H), 3.26 (dd, J = 15.2,7.2 Hz, 1H), 2.71-2.67 (comp, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  206.14, 188.76, 161.62, 131.69, 129.94, 129.50, 129.22, 129.08, 126.16, 124.85, 119.57, 71.70, 70.14, 52.27, 47.49, 46.00, 42.51. IR (cm<sup>-1</sup>): 2361, 2149, 1714, 1694, 1633. HRMS (ESI+): expected mass 417.1445, found 417.1439. M.p. 157.5-158.5 °C.

Methyl 2-diazo-4-((2*R*\*,6*R*\*)-6-(2,6-dimethyl-4-nitrophenyl)-4-oxotetrahydro-2*H*-pyran-2-yl)-3-oxobutanoate (14)



Followed method B for the work-up. Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 80% hexane): yellow solid (95% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 (s, 2H), 5.61 (dd, *J* = 12.0,3.0 Hz, 1H), 5.12-5.08 (m, 1H), 3.82 (s, 3H), 3.31 (dd, *J* = 15.0, 9.0 Hz, 1H), 3.19 (dd, *J* = 15.0,5.5 Hz, 1H), 2.94 (dd, *J* = 15.0,6.5 Hz, 1H), 2.90 (dd, *J* = 15.0, 12.0 Hz, 1H), 2.57 (s, 6H), 2.55-2.52 (m, 1H), 2.45-2.41 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  205.04, 188.58, 161.57, 146.71, 142.52, 138.26, 124.03,70.96, 69.98, 52.33, 45.53, 44.40, 42.74, 20.96. IR (cm<sup>-1</sup>): 2964, 2144, 1711, 1675, 1618, 1421, 1360, 1220. HRMS (ESI+): expected mass 390.1296, found 390.1301. M.p. 107.5-109.0 °C.

### **Data Characterization for Dinitrogen Extrusion Products**

(1S\*,2R\*,6R\*)-Methyl 4,8-dioxo-2-phenyl-9-oxabicyclo[4.2.1]nonane-1-carboxylate (syn-8a)



Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 65% hexane): white solid (77% combined yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34-7.27 (comp, 4H), 7.24-7.20 (m, 1H), 5.25-5.21 (m, 1H), 3.54 (dd, *J* = 9.6,6.4 Hz, 1H), 3.38 (dd, *J* = 13.0,6.4 Hz, 1H), 3.31 (s, 3H), 3.01-2.94 (comp, 2H), 2.69 (ddd, *J* = 11.6,6.4,1.6 Hz, 1H), 2.53-2.47 (comp, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  207.02, 206.63, 165.60, 140.09, 128.61, 128.01, 127.41, 89.87, 70.03, 52.65, 52.55, 48.80, 45.54, 40.75. IR (cm<sup>-1</sup>): 1769, 1732, 1693, 1268, 1245, 2925. HRMS (ESI+): expected mass 289.1071, found 289.1069. M.p. 165.0-166.5 °C.

# (1*S*\*,2*S*\*,6*R*\*)-Methyl 4,8-dioxo-2-phenyl-9-oxabicyclo[4.2.1]nonane-1-carboxylate (*anti*-8a)



Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 65% hexane): white solid (77% combined yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29-7.27 (comp, 3H), 7.21-7.19 (comp, 2H), 4.99 – 4.95 (m, 1H), 3.72 (dd, *J* = 12.0,4.0 Hz, 1H), 3.52 (s, 3H), 3.31 (dd, *J* = 16.0,6.6 Hz, 1H), 3.16 (dd, *J* = 18.8, 10.0 Hz, 1H), 3.03-2.96 (m, 1H), 2.87 (dd, *J* = 14.4, 4.0 Hz, 1H), 2.74-2.65 (comp, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  207.21, 206.07, 166.01, 136.61, 128.71, 128.31, 127.99, 86.62, 69.53, 52.66, 51.75, 48.01, 47.49, 43.99. IR (cm<sup>-1</sup>): 1775, 1727, 1704, 1292, 1235, 2916, 2357, 1064, 1045. HRMS (ESI+): expected mass 289.1071, found 289.1065. M.p. 129.5-131.5 °C.

#### Methyl 2-(4-nitrophenyl)-4,8-dioxo-9-oxabicyclo[4.2.1]nonane-1-carboxylate (8b)



Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 60% hexane): yellow solid (94% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.19-8.13 (comp, 4H), 7.55-7.46 (comp, 4H), 5.30-5.26 (m, 1H), 5.06 (ddt, J = 9.6, 6.8, 1.6 Hz, 1H), 3.96 (dd, J = 9.6, 5.4 Hz, 1H), 3.70 (dd, J = 9.2, 6.4 Hz, 1H), 3.62 (s, 3H), 3.42 – 3.37 (m, 1H), 3.39 (s, 3H), 3.24-3.14 (comp, 2H), 3.04 (ddd, J = 18.0, 9.2, 0.8 Hz, 1H), 2.99-2.86 (comp, 3H), 2.74-2.68 (comp, 3H), 2.58-2.52 (comp, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  207.50 and 206.44, 205.39 and 205.27, 166.11 and 165.34, 147.74 and 147.32, 147.15 and 144.39, 130.15 and 128.97, 123.90 and 123.25, 89.26 and 86.19, 70.39 and 70.32, 53.04 and 53.01, 52.51 and 51.98, 48.20 and 46.59, 45.88 and 44.97, 43.62 and 40.82. IR (cm<sup>-1</sup>): 2959.23, 2915.84, 2858.95, 1769.37, 1736.58, 1707.66, 1607.38, 1507.10, 1345.11. HRMS (ESI+): expected mass 334.0921, found 334.0918.

## Methyl-4,8-dioxo-2-(4-(trifluoromethyl)phenyl)-9-oxabicyclo[4.2.1]nonane-1-carboxylate (8c)



Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 60% hexane): yellow solid (92% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56-7.53 (comp, 4H), 7.47-7.37 (comp, 4H), 5.26 – 5.23 (m, 1H), 5.02 (ddt, *J* = 10.0,6.5,1.6 Hz, 1H), 3.84 (dd, *J* = 10.0,5.7 Hz, 1H), 3.63 (dd, *J* = 9.3,6.5 Hz, 1H), 3.57 (s, 3H), 3.40-3.34 (m, 1H), 3.35 (s, 3H), 3.22 – 3.14 (comp, 2H), 3.01 (dd, *J* = 18.0,9.3 Hz, 1H), 2.95-2.88 (comp, 3H), 2.74-2.65 (comp, 3H), 2.56-2.50 (comp, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  207.48 and 206.66, 205.82 and 205.55, 166.05 and 165.47, 144.31 and 140.89, 129.71 and 129.70 (q, *J* = 32.5 Hz, 2C), 129.41 and 128.42, 125.65 and 125.16 (q, *J* = 3.7 Hz, 2C), 125.3 and 125.1 (q, *J* = 271 Hz, 2C), 89.52 and 86.31, 70.22 and 70.01, 52.88 and 52.54, 51.86 and 48.52, 47.05 and 46.78, 46.73 and 45.17, 43.87 and 40.81. IR (cm<sup>-1</sup>): 2969, 2930, 1769, 1741, 1703, 1331. HRMS (ESI+): expected mass 357.0944, found 357.0951.

#### Methyl 4,8-dioxo-2-p-tolyl-9-oxabicyclo[4.2.1]nonane-1-carboxylate (8d)



Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 70% hexane): yellow solid (55% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.22-7.20 (comp, 2H), 7.10-7.05 (comp, 6H), 5.24 – 5.20 (m, 1H), 5.00 – 4.96 (m, 1H), 3.86-3.78 (m, 1H), 3.70 (dd, *J* = 11.7,4.5 Hz, 1H), 3.55 (s, 3H), 3.52 (dd, *J* = 9.5,6.5 Hz, 1H), 3.40 – 3.30 (comp, 2H), 3.35 (s, 3H), 3.18 (dd, *J* = 19.0,10.0 Hz, 1H), 3.01-2.94 (comp, 3H), 2.89-2.86 (m, 1H), 2.74-2.65 (comp, 2H), 2.52-2.47 (comp, 2H), 2.31 (s, 3H), 2.30 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  207.20 and 207.13, 206.71 and 206.09, 166.05 and 165.70, 137.72 and 137.12, 136.94 and 133.44, 129.33 and 129.03, 128.55 and 127.97, 90.00 and 86.69, 70.01 and 69.46, 52.72 and 52.66, 52.60 and

51.73, 48.93 and 47.64, 47.60 and 45.28, 44.06 and 40.87, 21.08 and 21.03. IR (cm<sup>-1</sup>): 2959, 2930, 1765, 1746, 1708. HRMS (ESI+): expected mass 303.1227, found 303.1231.

### Methyl 2-(4-methoxyhenyl)-4,8-dioxo-9-oxabicyclo[4.2.1]nonane-1-carboxylate (8e)



Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 60% hexane): yellow solid (22% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 – 7.21 (comp, 4H), 7.12-7.11 (m, 1H), 6.84-6.82 (comp, 3H), 5.23-5.20 (m, 1H), 4.99-4.96 (m, 1H), 3.89–3.79 (m, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 3.71-3.67 (m, 1H), 3.56 (s,3H), 3.54-3.50 (m, 1H), 3.37 (s, 3H), 3.39 – 3.30 (comp, 2H), 3.18 (dd, *J* = 19.0,10.0 Hz, 1H), 3.01-2.93 (comp, 3H), 2.87 (dd, *J* = 14.5,4.0 Hz, 1H), 2.73-2.63 (comp, 2H), 2.52-2.48 (comp, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  207.37 and 207.16, 206.73 and 206.13, 165.72 and 165.68, 159.17 and 158.83, 131.83 and 129.85, 129.28 and 128.46, 113.99 and 113.66, 90.05 and 86.68, 69.98 and 69.44, 55.18 and 55.15, 52.76 and 52.70, 52.57 and 51.72, 48.93 and 47.74, 47.25 and 44.95, 44.07 and 40.94. IR (cm<sup>-1</sup>): 2954.41, 2920.66, 2834.85, 1769.37, 1741.41, 1707.66, 1607.38, 1507.10, 1254.47. HRMS (ESI+): expected mass 319.1176, found 319.1184.

# (1*S*\*,2*R*\*,6*R*\*)-Methyl 2-mesityl-4,8-dioxo-9-oxabicyclo[4.2.1]nonane-1-carboxylate (*syn*-11)



Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (100% to 70% hexane): pale yellow oil (42% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.81 (d, *J* = 12.0 Hz, 2H), 5.24 – 5.21 (m, 1H), 3.92 (dd, *J* = 12.0,6.0 Hz, 1H), 3.41 (dd, *J* = 12.0,6.0 Hz, 1H), 3.39-3.34 (m, 1H), 3.20 (s, 3H), 2.90 (ddd, *J* = 17.5,9.0,0.5 Hz, 1H), 2.53 (s, 3H), 2.44 (s, 3H), 2.34-2.29 (comp, 3H), 2.21 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  207.71, 207.45, 165.69, 138.35, 136.54, 136.34, 133.01, 131.24, 129.20, 89.52, 70.23, 52.62, 52.27, 44.32, 41.67, 39.92, 21.34,

20.61, 20.52. IR (cm<sup>-1</sup>): 2967.96, 2921.85, 1768.57, 1743.99, 1700.67, 1609.83, 1433.53, 1264.48. HRMS (ESI+): expected mass 331.1540, found 331.1549.

(1*S*\*,2*R*\*,6*R*\*)-Methyl 2-(anthracen-9-yl)-4,8-dioxo-9-oxabicyclo[4.2.1]nonane-1-carboxylate (*syn*-13)



Purified by preparative thin layer chromatography (gradient elution: hexane/ethyl acetate (70% hexane): yellow solid (45% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.04 (d, *J* = 9.0 Hz, 1H), 8.58 (d, *J* = 9.0 Hz, 1H), 8.39 (s, 1H), 7.99 (t, *J* = 7.2 Hz, 2H), 7.64-7.58 (comp, 2H), 7.50-7.44 (comp, 2H), 5.48 – 5.45 (m, 1H), 5.11 (dd, *J* = 12.0,5.7 Hz, 1H), 3.80 (t, *J* = 12.0 Hz, 1H), 3.61 (dd, *J* = 12.0,6.5 Hz, 1H), 3.07 (dd, *J* = 17.5,9.0 Hz, 1H), 2.70 (s, 3H), 2.60 (comp, 2H), 2.49 (ddd, *J* = 11.0,5.5,1.5 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  207.74, 207.62, 165.31, 131.68, 131.58, 131.36, 130.98, 129.49, 129.23, 129.08, 128.42, 126.92, 125.87, 125.59, 124.92, 124.91, 123.68, 89.43, 70.74, 52.67, 52.09, 46.23, 41.44, 40.17. IR (cm<sup>-1</sup>): 2953, 2926, 2853, 1772, 1726, 1699, 1597. HRMS (ESI+): expected mass 389.1384, found 389.1391. M.p. 159.0-161.5 °C.

### (1*S*\*,2*R*\*,6*R*\*)-Methyl 2-(2,6-dimethyl-4-nitrophenyl)-4,8-dioxo-9-oxabicyclo[4.2.1]nonane-1-carboxylate (*syn*-15)



Purified by chromatography on silica gel (gradient elution: hexane/ethyl acetate (90% to 60% hexane): pale yellow solid (77% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 (dd, *J* = 10.0,2.5 Hz, 2H), 5.28 – 5.25 (m, 1H), 4.00 (dd, *J* = 12.0,5.5 Hz, 1H), 3.42 (dd, *J* = 12.0,6.5 Hz, 1H), 3.32 – 3.28 (m, 1H), 3.26 (s, 3H), 2.95 (dd, *J* = 18.0,9.0 Hz, 1H), 2.66 (s, 3H), 2.59 (s, 3H), 2.51 – 2.44 (comp, 2H), 2.28 (ddd, *J* = 11.0,5.5,1.7 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  206.78, 206.48, 165.29, 146.18, 144.04, 140.52, 138.26, 124.96, 122.64, 88.81, 70.60, 52.65, 52.58, 43.40, 41.79,

39.73, 21.74, 20.80. IR (cm<sup>-1</sup>): 2923, 2852, 2358, 1747, 1702, 1519, 1346, 1260, 1225. HRMS (ESI+): expected mass 362.1234, found 362.1241. M.p. 165.0-166.1 °C.

### 2. <u>NMR spectra of new compounds</u>

### Content

| 2-Mesityl-2 <i>H</i> -pyran-4(3H)-one             | S-16 |
|---------------------------------------------------|------|
| 2-(Anthracen-9-yl)-2H-pyran-4(3H)-one.            | S-18 |
| 2-(2,6-Dimethyl-4-nitrophenyl)-2H-pyran-4(3H)-one | S-20 |
| 7a                                                | S-22 |
| 7b                                                | S-24 |
| 7c                                                | S-26 |
| 7d                                                | S-28 |
| 7e                                                | S-30 |
| 10                                                | S-32 |
| 12                                                | S-34 |
| 14                                                | S-36 |
| <i>Syn</i> -8a                                    | S-38 |
| <i>Anti-</i> 8a                                   | S-40 |
| 8b                                                | S-42 |
| 8c                                                | S-44 |
| 8d                                                | S-46 |
| 8e                                                | S-48 |
| Svn-11                                            | S-50 |
| Svn-13                                            | S-52 |
| Syn-15                                            | S-54 |
















































































# 3. 2D spectra and NOE experiments

2D NMR spectra for the minor product (1*S*\*,2*S*\*,6*R*\*)-Methyl 4,8-dioxo-2-phenyl-9-oxabicyclo[4.2.1]nonane-1-carboxylate (*anti*-8a)

## COSY





HSQC



HMBC







NOE experiments for Mukaiyama-Michael product: Methyl 2-diazo-3-oxo-4-((2*S*\*,6*S*\*)-4-oxo-6-phenyltetrahyro-2*H*-pyran-2-yl)butanoate (7a)



NOE experiments for the elimination products: trans-9 (major) vs. cis-9 (minor)



#### 4. Crystal Structure Data

Compound name : Major product (*syn*-8) Chemical formula :  $C_{16}H_{16}O_5$ Final  $R_1$  [I>2 $\sigma$ (I)] : 3.59 %



**Figure 1.** A view of UM#1906 showing the anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 30% probability level. Hydrogen atoms are displayed with an arbitrarily small radius.

A colorless needle of  $C_{16}H_{16}O_5$ , approximate dimensions  $0.05 \times 0.095 \times 0.53 \text{ mm}^3$ , was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 120(2) K on a three-circle diffractometer system equipped with Bruker Smart Apex II CCD area detector using a graphite monochromator and a MoK  $\alpha$  fine-focus sealed tube ( $\lambda$ = 0.71073 Å). The detector was placed at a distance of 5.0000 cm from the crystal.

A total of 1830 frames were collected with a scan width of -0.3° an exposure time of 60 sec/frame using Apex2 (Bruker, 2005). The total data collection time was 33.5 hours. The frames were integrated with Apex2 software package using a narrow-frame integration algorithm. The integration of the data using a Triclinic unit cell yielded a total of 6300 reflections to a maximum  $\theta$  angle of 27.50°, of which 6300 were independent (completeness = 99.7%, R<sub>int</sub> = 0.00%, R<sub>sig</sub> = 2.54%) and 5367 were greater than  $2\sigma(I)$ . The final cell dimensions of a = 10.3115(11) Å, b = 11.0094(12) Å, c = 13.2743(14) Å,  $\alpha = 89.6028(14)^\circ$ ,  $\beta = 67.7337(13)^\circ$ ,  $\gamma = 80.3302(14)^\circ$ , V = 1372.1(3) Å<sup>3</sup>, are based upon the refinement of the XYZ-centroids of 8296 reflections with 2.2 <  $\theta < 28.3^\circ$  using Apex2 software. Analysis of the data showed 0 % decay during data collection. Data were corrected for absorption effects with the Semi-empirical from equivalents method using SADABS (Sheldrick, 1996). The minimum and maximum transmission coefficients were 0.945 and 0.995.

The structure was solved and refined using the SHELXS-97 (Sheldrick, 1990) and SHELXL-97 (Sheldrick, 1997) software in the space group *P*-1 with Z = 4 for the formula unit C<sub>16</sub>H<sub>16</sub>O<sub>5</sub>. The final anisotropic full-matrix least-squares refinement on  $F^2$  with 498 variables converged at  $R_1 = 3.59$  % for the observed data and  $wR_2 = 7.79$  % for all data. The goodness-of-fit was 1.000. The largest peak on the final difference map was 0.354  $e/Å^3$  and the largest hole was - 0.227  $e/Å^3$ . On the basis of the final model, the calculated density was 1.396 g/cm<sup>3</sup> and F(000), 608 e.

## **Comments:**

- Data quality: very good

- Twinning: non-merohedral twinning in about 1:1 ratio by 180 deg. rotation around 001 axis in real space

- Disorder: none
- H-atoms: all refined
- Residual density: in the middle of the bonds
- Structure quality: very good
- Strong data set, no disorder, R1 4% maximum. Publishable quality.



| Table 1. | Crystal | data and | structure | refinement | for | UM#1906. |
|----------|---------|----------|-----------|------------|-----|----------|
|          | 2       |          |           |            |     |          |

| 1906                                                            |                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Doyle/DeanaJaber Diazo Decomp-Major product @                   | 120K                                                                                                                                                                                                                                                                                                                                                                                |
| C16 H16 O5                                                      |                                                                                                                                                                                                                                                                                                                                                                                     |
| 288.29                                                          |                                                                                                                                                                                                                                                                                                                                                                                     |
| 120(2) K                                                        |                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.71073 Å                                                       |                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.53×0.095×0.05 mm <sup>3</sup>                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| colorless needle                                                |                                                                                                                                                                                                                                                                                                                                                                                     |
| Triclinic                                                       |                                                                                                                                                                                                                                                                                                                                                                                     |
| P-1                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |
| $a = 10.3115(11) \text{ Å}$ $\alpha = 89.6028(14)^{\circ}$      |                                                                                                                                                                                                                                                                                                                                                                                     |
| $b = 11.0094(12) \text{ Å} \qquad \beta = 67.7337(13)^{\circ}$  |                                                                                                                                                                                                                                                                                                                                                                                     |
| $c = 13.2743(14) \text{ Å} \qquad \gamma = 80.3302(14)^{\circ}$ |                                                                                                                                                                                                                                                                                                                                                                                     |
| 1372.1(3) Å <sup>3</sup>                                        |                                                                                                                                                                                                                                                                                                                                                                                     |
| 4                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 | 1906<br>Doyle/DeanaJaber Diazo Decomp-Major product @<br>C16 H16 O5<br>288.29<br>120(2) K<br>0.71073 Å<br>0.53×0.095×0.05 mm <sup>3</sup><br>colorless needle<br>Triclinic<br>P-1<br>$a = 10.3115(11)$ Å $\alpha = 89.6028(14)^{\circ}$<br>$b = 11.0094(12)$ Å $\beta = 67.7337(13)^{\circ}$<br>$c = 13.2743(14)$ Å $\gamma = 80.3302(14)^{\circ}$<br>1372.1(3) Å <sup>3</sup><br>4 |

| Density, $\rho_{calc}$<br>Absorption coefficient, $\mu$<br>F(000)<br>Diffractometer<br>Radiation source<br>Detector distance<br>Data collection method<br>Total frames<br>Frame size<br>Frame width<br>Exposure per frame<br>Total measurement time | 1.396 g/cm <sup>3</sup><br>0.104 mm <sup>-1</sup><br>608 $\overline{e}$<br>Bruker Smart Apex II CCD area detector<br>fine-focus sealed tube, MoK $\alpha$<br>5.000 cm<br>$\omega$ scans<br>1830<br>1024 pixels<br>-0.3°<br>60 sec<br>33 5 hours |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                     | 55.5 110015                                                                                                                                                                                                                                     |  |  |
| $\theta$ range for data collection                                                                                                                                                                                                                  | 1.88 to 27.50°                                                                                                                                                                                                                                  |  |  |
| Index ranges                                                                                                                                                                                                                                        | $-12 \le h \le 13, -14 \le k \le 14, 0 \le l \le 17$                                                                                                                                                                                            |  |  |
| Reflections collected                                                                                                                                                                                                                               | 6300                                                                                                                                                                                                                                            |  |  |
| Independent reflections                                                                                                                                                                                                                             | 6300                                                                                                                                                                                                                                            |  |  |
| Observed reflection, $I \ge 2\sigma(I)$                                                                                                                                                                                                             | 5367                                                                                                                                                                                                                                            |  |  |
| Coverage of independent reflections                                                                                                                                                                                                                 | 99.7 %                                                                                                                                                                                                                                          |  |  |
| Variation in check reflections                                                                                                                                                                                                                      | 0 %                                                                                                                                                                                                                                             |  |  |
| Absorption correction                                                                                                                                                                                                                               | Semi-empirical from equivalents                                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                                                                     | SADABS (Sheldrick, 1996)                                                                                                                                                                                                                        |  |  |
| Max. and min. transmission                                                                                                                                                                                                                          | 0.995 and 0.945                                                                                                                                                                                                                                 |  |  |
| Structure solution technique                                                                                                                                                                                                                        | direct                                                                                                                                                                                                                                          |  |  |
| Structure solution program                                                                                                                                                                                                                          | SHELXS-97 (Sheldrick, 1990)                                                                                                                                                                                                                     |  |  |
| Refinement technique                                                                                                                                                                                                                                | Full-matrix least-squares on F <sup>2</sup>                                                                                                                                                                                                     |  |  |
| Refinement program                                                                                                                                                                                                                                  | SHELXL-97 (Sheldrick, 1997) $(2 - 32)^2$                                                                                                                                                                                                        |  |  |
| Function minimized                                                                                                                                                                                                                                  | $\sum W(F_0^2 - F_c^2)^2$                                                                                                                                                                                                                       |  |  |
| Data / restraints / parameters                                                                                                                                                                                                                      | 6300 / 0 / 498                                                                                                                                                                                                                                  |  |  |
| Goodness-of-fit on F <sup>2</sup>                                                                                                                                                                                                                   | 1.000                                                                                                                                                                                                                                           |  |  |
| $\Delta/\sigma_{\rm max}$                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                           |  |  |
| Final R indices: $R_1$ , $1>2\sigma(1)$                                                                                                                                                                                                             | 0.0359                                                                                                                                                                                                                                          |  |  |
| $wR_2$ , all data                                                                                                                                                                                                                                   | 0.0779                                                                                                                                                                                                                                          |  |  |
| R <sub>int</sub>                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                          |  |  |
| $\mathbf{R}_{\mathbf{sig}}$                                                                                                                                                                                                                         | 0.0254                                                                                                                                                                                                                                          |  |  |
| Weighting scheme<br>Largest diff. peak and hole                                                                                                                                                                                                     | w = $1/[\sigma^2(F_o^2) + (0.02P)^2 + 0.562P]$ , P = $[max(F_o^2, 0) + 2F_o^2]/3$<br>0.354 and -0.227 $\bar{e}/Å^3$                                                                                                                             |  |  |

 $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, \ wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$ 

| Atom | x/a         | y/b         | z/c         | U <sub>eq</sub> |  |
|------|-------------|-------------|-------------|-----------------|--|
| CIA  | 0.22635(16) | 0.32619(14) | 0.25043(12) | 0.0206(3)       |  |
| C2A  | 0.10385(16) | 0.32845(15) | 0.22948(13) | 0.0231(3)       |  |
| C3A  | 0.05685(16) | 0.42586(16) | 0.17739(13) | 0.0248(3)       |  |
| C4A  | 0.13135(17) | 0.52299(15) | 0.14907(13) | 0.0256(3)       |  |
| C5A  | 0.25254(16) | 0.52239(14) | 0.17139(13) | 0.0212(3)       |  |
| C6A  | 0.30221(15) | 0.42319(13) | 0.22102(12) | 0.0176(3)       |  |
| C7A  | 0.44285(15) | 0.41846(13) | 0.23378(12) | 0.0171(3)       |  |
| C8A  | 0.55910(16) | 0.33459(15) | 0.13711(13) | 0.0213(3)       |  |
| C9A  | 0.70306(16) | 0.30808(15) | 0.14566(12) | 0.0218(3)       |  |
| 09A  | 0.79052(12) | 0.37467(12) | 0.10687(10) | 0.0323(3)       |  |
| C10A | 0.73173(17) | 0.19566(15) | 0.20587(14) | 0.0235(3)       |  |
| C11A | 0.63514(16) | 0.21148(14) | 0.32752(13) | 0.0221(3)       |  |

**Table 2.** Atomic coordinates and equivalent<sup>\*</sup> isotropic atomic displacement parameters ( $Å^2$ ) for UM#1906.

| O11A | 0.48554(10) | 0.24223(9)   | 0.34222(9)  | 0.0196(2) |
|------|-------------|--------------|-------------|-----------|
| C12A | 0.65908(17) | 0.31795(15)  | 0.38644(14) | 0.0235(3) |
| C13A | 0.55991(16) | 0.42593(14)  | 0.37052(12) | 0.0190(3) |
| O13A | 0.56593(12) | 0.53390(10)  | 0.37454(9)  | 0.0239(2) |
| C14A | 0.44513(15) | 0.37263(12)  | 0.34424(12) | 0.0172(3) |
| C15A | 0.30217(15) | 0.41986(13)  | 0.43701(12) | 0.0186(3) |
| O15A | 0.24458(12) | 0.52596(10)  | 0.44725(9)  | 0.0255(2) |
| O16A | 0.25329(12) | 0.33268(10)  | 0.50378(9)  | 0.0235(2) |
| C16A | 0.1223(2)   | 0.37689(18)  | 0.59645(16) | 0.0351(4) |
| C1B  | 0.75571(16) | 0.17931(14)  | 0.59334(13) | 0.0189(3) |
| C2B  | 0.87838(16) | 0.17725(14)  | 0.50000(13) | 0.0221(3) |
| C3B  | 0.92517(16) | 0.07956(15)  | 0.42193(13) | 0.0227(3) |
| C4B  | 0.84949(17) | -0.01639(15) | 0.43792(13) | 0.0236(3) |
| C5B  | 0.72800(16) | -0.01621(14) | 0.53176(12) | 0.0200(3) |
| C6B  | 0.67989(15) | 0.08222(13)  | 0.61008(12) | 0.0169(3) |
| C7B  | 0.54159(15) | 0.08455(13)  | 0.70790(12) | 0.0165(3) |
| C8B  | 0.41969(16) | 0.16512(15)  | 0.68290(13) | 0.0209(3) |
| C9B  | 0.28052(16) | 0.19378(15)  | 0.78089(13) | 0.0221(3) |
| O9B  | 0.19379(12) | 0.12532(11)  | 0.80412(10) | 0.0312(3) |
| C10B | 0.25798(17) | 0.30945(15)  | 0.85096(14) | 0.0236(3) |
| C11B | 0.35803(15) | 0.29395(14)  | 0.91300(13) | 0.0203(3) |
| O11B | 0.50630(10) | 0.26108(9)   | 0.83760(9)  | 0.0186(2) |
| C12B | 0.33458(17) | 0.18785(14)  | 0.98812(13) | 0.0213(3) |
| C13B | 0.42953(14) | 0.07910(13)  | 0.91426(11) | 0.0163(3) |
| O13B | 0.42212(11) | -0.02891(9)  | 0.92336(9)  | 0.0203(2) |
| C14B | 0.54361(14) | 0.13076(13)  | 0.81785(11) | 0.0157(3) |
| C15B | 0.68689(14) | 0.08060(13)  | 0.82595(11) | 0.0162(3) |
| O15B | 0.74416(11) | -0.02539(9)  | 0.80080(9)  | 0.0209(2) |
| O16B | 0.73513(11) | 0.16505(9)   | 0.86709(9)  | 0.0210(2) |
| C16B | 0.86695(17) | 0.11881(17)  | 0.88156(15) | 0.0278(4) |
|      |             |              |             |           |

 $^{\ast}$   $U_{eq}$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

**Table 3.** Anisotropic atomic displacement parameters<sup>\*</sup> ( $Å^2$ ) for UM#1906.

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C1A  | 0.0239(8)       | 0.0183(7)       | 0.0202(7)       | -0.0005(6)      | -0.0089(6)      | -0.0041(6)      |
| C2A  | 0.0197(7)       | 0.0237(8)       | 0.0242(8)       | -0.0041(6)      | -0.0053(6)      | -0.0064(6)      |
| C3A  | 0.0168(7)       | 0.0329(9)       | 0.0227(8)       | -0.0054(7)      | -0.0075(6)      | 0.0007(6)       |
| C4A  | 0.0249(8)       | 0.0273(8)       | 0.0234(8)       | 0.0021(7)       | -0.0101(6)      | 0.0008(6)       |
| C5A  | 0.0231(7)       | 0.0189(7)       | 0.0210(7)       | 0.0027(6)       | -0.0076(6)      | -0.0038(6)      |
| C6A  | 0.0185(7)       | 0.0184(7)       | 0.0154(7)       | -0.0026(5)      | -0.0067(6)      | -0.0015(5)      |
| C7A  | 0.0205(7)       | 0.0153(7)       | 0.0173(7)       | 0.0012(5)       | -0.0082(6)      | -0.0056(5)      |
| C8A  | 0.0210(7)       | 0.0256(8)       | 0.0187(7)       | -0.0018(6)      | -0.0088(6)      | -0.0046(6)      |
| C9A  | 0.0207(7)       | 0.0264(8)       | 0.0169(7)       | -0.0056(6)      | -0.0054(6)      | -0.0046(6)      |
| 09A  | 0.0274(6)       | 0.0427(7)       | 0.0315(6)       | 0.0075(5)       | -0.0123(5)      | -0.0162(5)      |
| C10A | 0.0195(7)       | 0.0223(8)       | 0.0283(8)       | -0.0043(7)      | -0.0098(6)      | -0.0010(6)      |
| C11A | 0.0223(7)       | 0.0178(7)       | 0.0276(8)       | 0.0027(6)       | -0.0118(6)      | -0.0018(6)      |
| 011A | 0.0200(5)       | 0.0128(5)       | 0.0254(5)       | 0.0010(4)       | -0.0082(4)      | -0.0020(4)      |
| C12A | 0.0254(8)       | 0.0243(8)       | 0.0245(8)       | 0.0010(6)       | -0.0138(7)      | -0.0037(6)      |
| C13A | 0.0240(7)       | 0.0204(7)       | 0.0142(7)       | 0.0007(5)       | -0.0084(6)      | -0.0057(6)      |
| 013A | 0.0332(6)       | 0.0186(5)       | 0.0244(6)       | 0.0005(4)       | -0.0141(5)      | -0.0091(4)      |
| C14A | 0.0222(7)       | 0.0111(6)       | 0.0195(7)       | 0.0008(5)       | -0.0090(6)      | -0.0037(5)      |
| C15A | 0.0233(7)       | 0.0173(7)       | 0.0168(7)       | -0.0006(5)      | -0.0091(6)      | -0.0047(6)      |
|      |                 |                 |                 |                 |                 |                 |

| O15A | 0.0306(6)  | 0.0167(5) | 0.0252(6) | -0.0008(4) | -0.0080(5) | -0.0001(4) |
|------|------------|-----------|-----------|------------|------------|------------|
| O16A | 0.0263(6)  | 0.0178(5) | 0.0201(5) | 0.0006(4)  | -0.0018(4) | -0.0039(4) |
| C16A | 0.0352(10) | 0.0267(9) | 0.0283(9) | -0.0001(7) | 0.0044(8)  | -0.0049(8) |
| C1B  | 0.0206(7)  | 0.0159(7) | 0.0200(7) | 0.0009(6)  | -0.0082(6) | -0.0013(5) |
| C2B  | 0.0211(7)  | 0.0200(7) | 0.0256(8) | 0.0077(6)  | -0.0093(6) | -0.0042(6) |
| C3B  | 0.0181(7)  | 0.0249(8) | 0.0201(7) | 0.0052(6)  | -0.0041(6) | 0.0016(6)  |
| C4B  | 0.0269(8)  | 0.0212(8) | 0.0192(7) | -0.0014(6) | -0.0076(6) | 0.0021(6)  |
| C5B  | 0.0234(7)  | 0.0171(7) | 0.0201(7) | 0.0017(6)  | -0.0096(6) | -0.0026(6) |
| C6B  | 0.0186(7)  | 0.0166(7) | 0.0157(7) | 0.0025(5)  | -0.0075(5) | -0.0017(5) |
| C7B  | 0.0176(7)  | 0.0150(7) | 0.0170(7) | 0.0017(5)  | -0.0063(6) | -0.0043(5) |
| C8B  | 0.0220(7)  | 0.0233(8) | 0.0192(7) | 0.0023(6)  | -0.0105(6) | -0.0030(6) |
| C9B  | 0.0185(7)  | 0.0262(8) | 0.0240(8) | 0.0033(6)  | -0.0120(6) | -0.0011(6) |
| O9B  | 0.0229(6)  | 0.0367(7) | 0.0369(7) | 0.0015(5)  | -0.0125(5) | -0.0104(5) |
| C10B | 0.0191(7)  | 0.0216(8) | 0.0269(8) | 0.0021(7)  | -0.0070(6) | 0.0001(6)  |
| C11B | 0.0183(7)  | 0.0172(7) | 0.0224(7) | -0.0030(6) | -0.0052(6) | -0.0016(5) |
| O11B | 0.0166(5)  | 0.0137(5) | 0.0236(5) | -0.0008(4) | -0.0056(4) | -0.0021(4) |
| C12B | 0.0208(7)  | 0.0222(8) | 0.0183(7) | -0.0018(6) | -0.0054(6) | -0.0015(6) |
| C13B | 0.0166(6)  | 0.0202(7) | 0.0148(7) | 0.0009(5)  | -0.0085(5) | -0.0044(5) |
| O13B | 0.0233(5)  | 0.0189(5) | 0.0204(5) | 0.0030(4)  | -0.0086(4) | -0.0075(4) |
| C14B | 0.0168(7)  | 0.0136(6) | 0.0167(7) | 0.0001(5)  | -0.0061(5) | -0.0031(5) |
| C15B | 0.0174(7)  | 0.0176(7) | 0.0127(6) | 0.0016(5)  | -0.0038(5) | -0.0051(5) |
| O15B | 0.0212(5)  | 0.0183(5) | 0.0212(5) | 0.0001(4)  | -0.0071(4) | -0.0002(4) |
| O16B | 0.0187(5)  | 0.0213(5) | 0.0253(6) | -0.0009(4) | -0.0102(4) | -0.0053(4) |
| C16B | 0.0197(8)  | 0.0337(9) | 0.0329(9) | -0.0028(8) | -0.0135(7) | -0.0045(7) |
|      |            |           |           |            |            |            |

 $^{\ast}$  The anisotropic atomic displacement factor exponent takes the form:-2  $\pi^{2}$  [  $h^{2}a^{\ast2}U_{11}$  +... + 2hka^{\ast}b^{\ast}U\_{12} ]

| Atom | x/a        | y/b         | z/c        | U <sub>iso</sub> |
|------|------------|-------------|------------|------------------|
| H1A  | 0.2612(19) | 0.2561(17)  | 0.2840(15) | 0.026(5)         |
| H2A  | 0.0540(19) | 0.2605(16)  | 0.2497(15) | 0.027(5)         |
| H3A  | -0.027(2)  | 0.4264(17)  | 0.1620(15) | 0.030(5)         |
| H4A  | 0.100(2)   | 0.5921(18)  | 0.1124(16) | 0.032(5)         |
| H5A  | 0.3014(18) | 0.5917(16)  | 0.1536(14) | 0.024(4)         |
| H7A  | 0.4636(16) | 0.5008(15)  | 0.2304(13) | 0.014(4)         |
| H8A  | 0.5252(18) | 0.2558(16)  | 0.1366(15) | 0.025(3)         |
| H8B  | 0.5689(18) | 0.3734(16)  | 0.0710(15) | 0.025(3)         |
| H10A | 0.8335(19) | 0.1817(16)  | 0.1959(14) | 0.025(3)         |
| H10B | 0.7126(18) | 0.1247(17)  | 0.1729(15) | 0.025(3)         |
| H11A | 0.6451(18) | 0.1326(16)  | 0.3624(15) | 0.025(4)         |
| H12A | 0.625(2)   | 0.3082(17)  | 0.4661(16) | 0.032(4)         |
| H12B | 0.757(2)   | 0.3350(17)  | 0.3586(15) | 0.032(4)         |
| H16A | 0.136(2)   | 0.440(2)    | 0.6374(17) | 0.040(3)         |
| H16B | 0.099(2)   | 0.305(2)    | 0.6394(17) | 0.040(3)         |
| H16C | 0.048(2)   | 0.4117(19)  | 0.5728(17) | 0.040(3)         |
| H1B  | 0.7235(18) | 0.2463(16)  | 0.6444(14) | 0.021(4)         |
| H2B  | 0.9319(19) | 0.2444(17)  | 0.4890(15) | 0.029(5)         |
| H3B  | 1.0141(19) | 0.0769(16)  | 0.3563(15) | 0.025(5)         |
| H4B  | 0.8782(19) | -0.0849(17) | 0.3842(15) | 0.027(5)         |
| H5B  | 0.6777(19) | -0.0857(17) | 0.5412(15) | 0.029(5)         |
| H7B  | 0.5236(17) | 0.0018(15)  | 0.7187(13) | 0.016(4)         |
| H8C  | 0.4046(19) | 0.1212(17)  | 0.6253(15) | 0.028(3)         |
| H8D  | 0.4496(19) | 0.2411(17)  | 0.6556(15) | 0.028(3)         |

 $\label{eq:table 4. Hydrogen atom coordinates and isotropic atomic displacement parameters (\AA^2) \ for \ UM\#1906.$ 

| H10C | 0.2769(19) | 0.3763(17) | 0.8047(15) | 0.025(3) |   |
|------|------------|------------|------------|----------|---|
| H10D | 0.1607(19) | 0.3261(16) | 0.9036(15) | 0.025(3) |   |
| H11B | 0.3524(18) | 0.3729(16) | 0.9486(14) | 0.022(4) |   |
| H12C | 0.2373(19) | 0.1752(16) | 1.0226(14) | 0.023(3) |   |
| H12D | 0.3718(18) | 0.1969(16) | 1.0446(15) | 0.023(3) |   |
| H16D | 0.941(2)   | 0.0859(18) | 0.8126(18) | 0.040(3) |   |
| H16E | 0.892(2)   | 0.1892(19) | 0.9091(17) | 0.040(3) |   |
| H16F | 0.850(2)   | 0.0550(19) | 0.9367(17) | 0.040(3) |   |
|      |            |            |            |          | _ |

| Table 5. | Bond lengths | (Å) and angles (° | ) for UM#1906. |
|----------|--------------|-------------------|----------------|

\_

| C1A-C2A        | 1 389(2)                 | C1A-C6A        | 1 396(2)               | C1A-H1A        | 0.973(18)                |
|----------------|--------------------------|----------------|------------------------|----------------|--------------------------|
| C2A-C3A        | 1.309(2)<br>1.390(2)     | C2A-H2A        | 0.959(18)              | C3A-C4A        | 1.388(2)                 |
| C3A-H3A        | 0.963(19)                | C4A-C5A        | 1 388(2)               | C4A-H4A        | 0.977(19)                |
| C5A-C6A        | 1 395(2)                 | C5A-H5A        | 0.963(17)              | C6A-C7A        | 1 515(2)                 |
| C7A-C8A        | 1.556(2)                 | C7A-C14A       | 1 555(2)               | C7A-H7A        | 0.962(16)                |
| C8A-C9A        | 1.501(2)                 | C8A-H8A        | 0.990(18)              | C8A-H8B        | 0.951(18)                |
| C9A-09A        | 1.2170(19)               | C9A-C10A       | 1.517(2)               | C10A-C11A      | 1 535(2)                 |
| C10A-H10A      | 0.991(18)                | C10A-H10B      | 0.981(19)              | C11A-O11A      | 14593(18)                |
| C11A-C12A      | 1.517(2)                 | C11A-H11A      | 0.901(19)              | 011A-C14A      | 1 4235(16)               |
| C12A-C13A      | 1.517(2)<br>1.502(2)     | C12A-H12A      | 0.99(2)                | C12A-H12B      | 0.982(19)                |
| C13A-013A      | 1.302(2)<br>1.2032(18)   | C13A-C14A      | 1.554(2)               | C14A-C15A      | 1.528(2)                 |
| C15A-015A      | 1.2052(10)<br>1.2015(18) | C15A-O16A      | 1.3316(17)             | 016A-C16A      | 1.520(2)<br>1 450(2)     |
| C16A-H16A      | 0.94(2)                  | C16A-H16B      | 0.98(2)                | C16A-H16C      | 0.96(2)                  |
| C1B-C2B        | 1.392(2)                 | C1B-C6B        | 1.396(2)               | C1B-H1B        | 0.931(18)                |
| C2B-C3B        | 1.392(2)<br>1.388(2)     | C2B-H2B        | 0.974(18)              | C3B-C4B        | 1.385(2)                 |
| C3B-H3B        | 0.993(18)                | C4B-C5B        | 1.392(2)               | C4B-H4B        | 0.969(19)                |
| C5B-C6B        | 1.395(2)                 | C5B-H5B        | 0.976(18)              | C6B-C7B        | 15183(19)                |
| C7B-C8B        | 1.555(2)                 | C7B-C14B       | 1 558(2)               | C7B-H7B        | 0.959(16)                |
| C8B-C9B        | 1.551(2)<br>1.513(2)     | C8B-H8C        | 0.98(2)                | C8B-H8D        | 0.959(10)                |
| C9B-09B        | 1.315(2)<br>1.2155(19)   | C9B-C10B       | 1.515(2)               | C10B-C11B      | 1.534(2)                 |
| C10B-H10C      | 0.953(18)                | C10B-H10D      | 0.968(18)              | C11B-O11B      | 1.551(2)<br>1.4594(17)   |
| C11B-C12B      | 1.521(2)                 | C11B-H11B      | 0.900(10)<br>0.975(18) | O11B-C14B      | 1.4207(16)               |
| C12B-C12B      | 1.321(2)<br>1.400(2)     | C12B-H12C      | 0.975(10)              | C12B-H12D      | 0.076(10)                |
| C13B-013B      | 1.499(2)<br>1.2067(17)   | C13B-C14B      | 1 5553(19)             | C14B-C15B      | 1.5313(19)               |
| C15B-015B      | 1.2007(17)<br>1.2026(17) | C15B-O16B      | 1.3336(17)             | 016B-C16B      | 1.5515(19)<br>1.4518(10) |
| C16B-H16D      | 0.97(2)                  | C16B-H16E      | 0.97(2)                | C16B-H16F      | 1.4510(17)<br>1.00(2)    |
|                | 0.97(2)                  |                | 0.97(2)                |                | 1.00(2)                  |
| C2A-C1A-C6A    | 120.16(15)               | C2A-C1A-H1A    | 120.3(11)              | C6A-C1A-H1A    | 119.5(11)                |
| C1A-C2A-C3A    | 120.55(15)               | C1A-C2A-H2A    | 118.8(11)              | C3A-C2A-H2A    | 120.7(11)                |
| C4A-C3A-C2A    | 119.35(15)               | С4А-С3А-Н3А    | 120.4(11)              | С2А-С3А-Н3А    | 120.3(11)                |
| C3A-C4A-C5A    | 120.41(15)               | СЗА-С4А-Н4А    | 120.3(11)              | C5A-C4A-H4A    | 119.3(11)                |
| C4A-C5A-C6A    | 120.39(14)               | C4A-C5A-H5A    | 119.6(10)              | C6A-C5A-H5A    | 120.0(10)                |
| C5A-C6A-C1A    | 119.10(14)               | C5A-C6A-C7A    | 119.29(13)             | C1A-C6A-C7A    | 121.44(13)               |
| C6A-C7A-C8A    | 107.42(12)               | C6A-C7A-C14A   | 114.90(12)             | C8A-C7A-C14A   | 110.42(12)               |
| C6A-C7A-H7A    | 108.6(9)                 | С8А-С7А-Н7А    | 109.8(10)              | C14A-C7A-H7A   | 105.7(10)                |
| C9A-C8A-C7A    | 113.75(12)               | C9A-C8A-H8A    | 108.9(10)              | C7A-C8A-H8A    | 106.8(10)                |
| C9A-C8A-H8B    | 108.7(11)                | C7A-C8A-H8B    | 108.8(11)              | H8A-C8A-H8B    | 109.8(15)                |
| O9A-C9A-C8A    | 121.31(15)               | O9A-C9A-C10A   | 122.05(15)             | C8A-C9A-C10A   | 116.63(13)               |
| C9A-C10A-C11A  | 111.75(13)               | C9A-C10A-H10A  | 108.3(10)              | C11A-C10A-H10A | 110.8(10)                |
| C9A-C10A-H10B  | 107.6(11)                | C11A-C10A-H10B | 108.8(11)              | H10A-C10A-H10B | 109.5(15)                |
| O11A-C11A-C12A | 104.56(12)               | O11A-C11A-C10A | 110.79(13)             | C12A-C11A-C10A | 112.79(13)               |
| O11A-C11A-H11A | 105.8(10)                | C12A-C11A-H11A | 112.4(11)              | C10A-C11A-H11A | 110.1(10)                |
| C14A-O11A-C11A | 109.51(11)               | C13A-C12A-C11A | 102.82(12)             | C13A-C12A-H12A | 106.2(11)                |
| C11A-C12A-H12A | 111.2(11)                | C13A-C12A-H12B | 109.8(11)              | C11A-C12A-H12B | 115.7(11)                |
| H12A-C12A-H12B | 110.5(15)                | O13A-C13A-C12A | 128.28(14)             | O13A-C13A-C14A | 124.80(13)               |
| C12A-C13A-C14A | 106.90(12)               | O11A-C14A-C15A | 111.72(11)             | O11A-C14A-C13A | 104.75(11)               |
| C15A-C14A-C13A | 106.84(12)               | 011A-C14A-C7A  | 113.17(12)             | C15A-C14A-C7A  | 110.41(12)               |
| C13A-C14A-C7A  | 109.60(11)               | O15A-C15A-O16A | 125.26(14)             | O15A-C15A-C14A | 121.76(13)               |
| O16A-C15A-C14A | 112.96(12)               | C15A-O16A-C16A | 114.05(12)             | O16A-C16A-H16A | 109.8(13)                |
|                | × ,                      |                | × /                    |                |                          |

| O16A-C16A-H16B | 106.2(12)  | H16A-C16A-H16B | 111.4(18)  | O16A-C16A-H16C | 110.8(13)  |
|----------------|------------|----------------|------------|----------------|------------|
| H16A-C16A-H16C | 107.5(18)  | H16B-C16A-H16C | 111.3(17)  | C2B-C1B-C6B    | 120.33(14) |
| C2B-C1B-H1B    | 119.8(10)  | C6B-C1B-H1B    | 119.9(10)  | C3B-C2B-C1B    | 120.29(14) |
| C3B-C2B-H2B    | 119.5(11)  | C1B-C2B-H2B    | 120.2(11)  | C4B-C3B-C2B    | 119.49(14) |
| C4B-C3B-H3B    | 120.1(10)  | C2B-C3B-H3B    | 120.3(10)  | C3B-C4B-C5B    | 120.69(15) |
| C3B-C4B-H4B    | 121.4(11)  | C5B-C4B-H4B    | 117.9(11)  | C4B-C5B-C6B    | 120.05(14) |
| C4B-C5B-H5B    | 118.8(11)  | C6B-C5B-H5B    | 121.1(11)  | C5B-C6B-C1B    | 119.15(14) |
| C5B-C6B-C7B    | 119.03(13) | C1B-C6B-C7B    | 121.72(13) | C6B-C7B-C8B    | 108.16(12) |
| C6B-C7B-C14B   | 114.57(12) | C8B-C7B-C14B   | 110.65(12) | C6B-C7B-H7B    | 108.7(10)  |
| C8B-C7B-H7B    | 109.6(10)  | C14B-C7B-H7B   | 105.0(10)  | C9B-C8B-C7B    | 113.56(12) |
| C9B-C8B-H8C    | 109.0(10)  | C7B-C8B-H8C    | 108.3(11)  | C9B-C8B-H8D    | 109.3(11)  |
| C7B-C8B-H8D    | 108.5(11)  | H8C-C8B-H8D    | 108.1(15)  | O9B-C9B-C8B    | 121.69(15) |
| O9B-C9B-C10B   | 121.85(15) | C8B-C9B-C10B   | 116.41(13) | C9B-C10B-C11B  | 111.02(12) |
| C9B-C10B-H10C  | 108.4(11)  | C11B-C10B-H10C | 109.3(11)  | C9B-C10B-H10D  | 109.4(11)  |
| C11B-C10B-H10D | 108.5(11)  | H10C-C10B-H10D | 110.3(15)  | O11B-C11B-C12B | 104.49(11) |
| O11B-C11B-C10B | 110.75(12) | C12B-C11B-C10B | 112.21(13) | O11B-C11B-H11B | 104.7(10)  |
| C12B-C11B-H11B | 114.6(10)  | C10B-C11B-H11B | 109.7(10)  | C14B-O11B-C11B | 109.46(10) |
| C13B-C12B-C11B | 102.67(12) | C13B-C12B-H12C | 112.1(11)  | C11B-C12B-H12C | 115.7(10)  |
| C13B-C12B-H12D | 106.3(10)  | C11B-C12B-H12D | 110.9(10)  | H12C-C12B-H12D | 108.6(14)  |
| O13B-C13B-C12B | 128.67(13) | O13B-C13B-C14B | 124.43(13) | C12B-C13B-C14B | 106.89(12) |
| O11B-C14B-C15B | 111.85(11) | O11B-C14B-C13B | 104.85(11) | C15B-C14B-C13B | 105.96(11) |
| O11B-C14B-C7B  | 113.47(11) | C15B-C14B-C7B  | 110.72(11) | C13B-C14B-C7B  | 109.53(11) |
| O15B-C15B-O16B | 125.27(13) | O15B-C15B-C14B | 121.94(13) | O16B-C15B-C14B | 112.74(12) |
| C15B-O16B-C16B | 114.22(12) | O16B-C16B-H16D | 110.3(12)  | O16B-C16B-H16E | 105.9(12)  |
| H16D-C16B-H16E | 110.2(17)  | O16B-C16B-H16F | 108.9(12)  | H16D-C16B-H16F | 111.5(16)  |
| H16E-C16B-H16F | 109.8(17)  |                |            |                |            |
|                |            |                |            |                |            |

Table 6. Torsion angles (°) in UM#1906 compared for molecules A and B.

| Angle                 | А           | В           |
|-----------------------|-------------|-------------|
| C6 - C1 - C2 - C3     | 1.2(2)      | 1.0(2)      |
| C1 - C2 - C3 - C4     | -1.8(2)     | -0.5(2)     |
| C2 - C3 - C4 - C5     | 0.7(2)      | -0.6(2)     |
| C3 - C4 - C5 - C6     | 1.0(2)      | 1.1(2)      |
| C4 - C5 - C6 - C1     | -1.6(2)     | -0.5(2)     |
| C4 - C5 - C6 - C7     | 173.67(14)  | 175.83(13)  |
| C2 - C1 - C6 - C5     | 0.6(2)      | -0.5(2)     |
| C2 - C1 - C6 - C7     | -174.65(14) | -176.75(14) |
| C5 - C6 - C7 - C8     | -96.87(16)  | -95.75(15)  |
| C1 - C6 - C7 - C8     | 78.33(17)   | 80.51(17)   |
| C5 - C6 - C7 - C14    | 139.84(14)  | 140.34(14)  |
| C1 - C6 - C7 - C14    | -44.95(19)  | -43.41(19)  |
| C6 - C7 - C8 - C9     | -173.00(13) | -169.83(13) |
| C14 - C7 - C8 - C9    | -47.00(17)  | -43.59(17)  |
| C7 - C8 - C9 - O9     | -90.04(18)  | -88.13(18)  |
| C7 - C8 - C9 - C10    | 89.29(17)   | 89.41(17)   |
| O9 - C9 - C10 - C11   | 113.11(17)  | 107.94(17)  |
| C8 - C9 - C10 - C11   | -66.22(18)  | -69.60(17)  |
| C9 - C10 - C11 - O11  | 54.44(17)   | 56.28(17)   |
| C9 - C10 - C11 - C12  | -62.38(17)  | -60.05(17)  |
| C12 - C11 - O11 - C14 | 33.33(15)   | 33.45(15)   |
| C10 - C11 - O11 - C14 | -88.45(14)  | -87.57(14)  |
| O11 - C11 - C12 - C13 | -32.55(15)  | -32.87(15)  |
| C10 - C11 - C12 - C13 | 87.91(15)   | 87.17(14)   |
| C11 - C12 - C13 - O13 | -157.51(16) | -157.40(15) |
| C11 - C12 - C13 - C14 | 21.19(16)   | 21.58(15)   |
| C11 - O11 - C14 - C15 | -134.58(12) | -133.57(12) |

| C11 - O11 - C14 - C13 | -19.29(14)  | -19.19(14)  |
|-----------------------|-------------|-------------|
| C11 - O11 - C14 - C7  | 100.05(14)  | 100.30(13)  |
| O13 - C13 - C14 - O11 | 176.63(14)  | 176.56(13)  |
| C12 - C13 - C14 - O11 | -2.13(15)   | -2.48(14)   |
| O13 - C13 - C14 - C15 | -64.72(18)  | -65.00(17)  |
| C12 - C13 - C14 - C15 | 116.52(13)  | 115.97(12)  |
| O13 - C13 - C14 - C7  | 54.92(19)   | 54.46(18)   |
| C12 - C13 - C14 - C7  | -123.84(13) | -124.57(12) |
| C6 - C7 - C14 - O11   | 89.18(15)   | 86.99(14)   |
| C8 - C7 - C14 - O11   | -32.49(16)  | -35.60(15)  |
| C6 - C7 - C14 - C15   | -36.88(16)  | -39.74(16)  |
| C8 - C7 - C14 - C15   | -158.55(12) | -162.32(11) |
| C6 - C7 - C14 - C13   | -154.31(12) | -156.23(12) |
| C8 - C7 - C14 - C13   | 84.02(14)   | 81.18(14)   |
| O11 - C14 - C15 - O15 | -174.18(13) | -172.05(12) |
| C13 - C14 - C15 - O15 | 71.81(17)   | 74.25(16)   |
| C7 - C14 - C15 - O15  | -47.30(19)  | -44.43(18)  |
| O11 - C14 - C15 - O16 | 7.28(17)    | 10.44(16)   |
| C13 - C14 - C15 - O16 | -106.73(13) | -103.26(13) |
| C7 - C14 - C15 - O16  | 134.16(13)  | 138.06(12)  |
| O15 - C15 - O16 - C16 | -2.2(2)     | -0.6(2)     |
| C14 - C15 - O16 - C16 | 176.27(14)  | 176.77(12)  |

Compound name : Minor product (*anti-8*) Chemical formula :  $C_{16}H_{16}O_5$ Final  $R_1$  [I>2 $\sigma$ (I)] : 2.83 %



Figure 1. A view showing the anisotropic atomic displacement ellipsoids for the non-hydrogen atoms at the 30% probability level. Hydrogen atoms are displayed with an arbitrarily small radius.

A colorless prism of  $C_{16}H_{16}O_5$ , approximate dimensions  $0.365 \times 0.46 \times 0.51 \text{ mm}^3$ , was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 150(2) K on a three-circle diffractometer system equipped with Bruker Smart Apex II CCD area detector using a graphite monochromator and a MoK  $\alpha$  fine-focus sealed tube ( $\lambda$ = 0.71073 Å). The detector was placed at a distance of 5.000 cm from the crystal.

A total of 3030 frames were collected with a scan width of -0.30° an exposure time of 5 sec/frame using Apex2 (Bruker, 2005). The total data collection time was 9.3 hours. The frames were integrated with Apex2 software package using a narrow-frame integration algorithm. The integration of the data using a Orthorhombic unit cell yielded a total of 17271 reflections to a maximum  $\theta$  angle of 30.00°, of which 4018 were independent (completeness = 100.0%, R<sub>int</sub> = 1.74%, R<sub>sig</sub> = 1.47%) and 3955 were greater than  $2\sigma(I)$ . The final cell dimensions of *a* = 8.4520(9) Å, *b* = 9.9029(11) Å, *c* = 16.5155(18) Å,  $\alpha = 90^{\circ}$ ,  $\beta = 90^{\circ}$ ,  $\lambda = 90^{\circ}$ , V = 1382.3(3) Å<sup>3</sup>, are based upon the refinement of the XYZ-centroids of 12995 reflections with 2.4 <  $\theta$  < 32.2° using Apex2 software. Analysis of the data showed 0 % decay during data collection. Data were corrected for absorption effects with the Semi-empirical from equivalents method using SADABS (Sheldrick, 1996). The minimum and maximum transmission coefficients were 0.886 and 0.963.

The structure was solved and refined using the SHELXS-97 (Sheldrick, 1990) and SHELXL-97 (Sheldrick, 1997) software in the space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> with Z = 4 for the formula unit C<sub>16</sub>H<sub>16</sub>O<sub>5</sub>. The final anisotropic full-matrix least-squares refinement on F<sup>2</sup> with 249 variables converged at R<sub>1</sub> = 2.83 % for the observed data and wR<sub>2</sub> = 6.71 % for all data. The goodness-offit was 1.001. The largest peak on the final difference map was 0.279  $\bar{e}/Å^3$  and the largest hole was -0.131  $\bar{e}/Å^3$ . On the basis of the final model, the calculated density was 1.385 g/cm<sup>3</sup> and F(000), 608  $\bar{e}$ .

#### **Comments:**

- H-atoms: all refined
- Residual density: in the middle of the
- Absolute configuration: not established



 Table 1. Crystal data and structure refinement for UM#1972.

| X-ray lab book No.           | 1972                                             |  |
|------------------------------|--------------------------------------------------|--|
| Crystal ID                   | Dovle/Jaber Phenyl-Mirror product 150K           |  |
| Empirical formula            | $C_{16}H_{16}O_5$                                |  |
| Formula weight               | 288.29                                           |  |
| Temperature                  | 150(2) K                                         |  |
| Wavelength                   | 0 71073 Å                                        |  |
| Crystal size                 | $0.51 \times 0.46 \times 0.365 \text{ mm}^3$     |  |
| Crystal habit                | colorless prism                                  |  |
| Crystal system               | Orthorhombic                                     |  |
| Space group                  | P2,2,2,                                          |  |
| Unit cell dimensions         | $a = 8.4520(9)$ Å $\alpha = 90^{\circ}$          |  |
|                              | $b = 9.9029(11) \text{ Å}$ $\beta = 90^{\circ}$  |  |
|                              | $c = 165155(18) \text{ Å}$ $\gamma = 90^{\circ}$ |  |
| Volume                       | $1382 \ 3(3) \ \text{\AA}^3$                     |  |
| 7                            | A                                                |  |
| Density o                    | $\frac{1}{1}$ 385 g/cm <sup>3</sup>              |  |
| Absorption coefficient $\mu$ | $0.103 \text{ mm}^{-1}$                          |  |
| F(000)                       | 608 e                                            |  |
| Diffractometer               | Druker Smort Anex II CCD area detector           |  |
| Padiation source             | fine focus sealed tube MoV a                     |  |
| Dataatar distance            | 5 000 cm                                         |  |
| Detector distance            | S.000 cill                                       |  |
| Data conection method        | $\omega$ and $\psi$ scans                        |  |
| Total frames                 | 3030<br>512 - i - i                              |  |
| Frame size                   | 512 pixels                                       |  |
| Frame width                  | -0.30°                                           |  |
| Exposure per frame           | 5 sec                                            |  |
| Total measurement time       | 9.3 hours                                        |  |
| $\theta$ range for data coll | ection                     | 2.40 to 30.00°                                                                |  |  |  |
|------------------------------|----------------------------|-------------------------------------------------------------------------------|--|--|--|
| Index ranges                 |                            | $-11 \le h \le 11, -13 \le k \le 13, -23 \le l \le 23$                        |  |  |  |
| Reflections collecte         | d                          | 17271                                                                         |  |  |  |
| Independent reflecti         | ons                        | 4018                                                                          |  |  |  |
| Observed reflection          | $I \geq 2\sigma(I)$        | 3955                                                                          |  |  |  |
| Coverage of indepen          | ndent reflections          | 100.0 %                                                                       |  |  |  |
| Variation in check r         | eflections                 | 0 %                                                                           |  |  |  |
| Absorption correction        | on                         | Semi-empirical from equivalents                                               |  |  |  |
| 1                            |                            | SADABS (Sheldrick, 1996)                                                      |  |  |  |
| Max. and min. trans          | mission                    | 0.963 and 0.886                                                               |  |  |  |
| Structure solution te        | chnique                    | direct                                                                        |  |  |  |
| Structure solution p         | rogram                     | SHELXS-97 (Sheldrick, 1990)                                                   |  |  |  |
| Refinement techniq           | ue                         | Full-matrix least-squares on $F^2$                                            |  |  |  |
| Refinement program           | 1                          | SHELXL-97 (Sheldrick, 1997)                                                   |  |  |  |
| Function minimized           |                            | $\Sigma w (F_0^2 - F_c^2)^2$                                                  |  |  |  |
| Data / restraints / pa       | rameters                   | 4018 / 0 / 249                                                                |  |  |  |
| Goodness-of-fit on           | $F^2$                      | 1.001                                                                         |  |  |  |
| $\Delta \sigma_{\rm max}$    |                            | 0.001                                                                         |  |  |  |
| Final R indices:             | $R_1$ , $I > 2\sigma(I)$   | 0.0283                                                                        |  |  |  |
|                              | wR <sub>2</sub> , all data | 0.0671                                                                        |  |  |  |
|                              | Rint                       | 0.0174                                                                        |  |  |  |
|                              | Raia                       | 0.0147                                                                        |  |  |  |
| Weighting scheme             | 1 - Sig                    | $w = 1/[\sigma^2(F_2^2) + (0.03P)^2 + 0.3615P]$ P = [max(F_2^2_0) + 2F_2^2]/3 |  |  |  |
| Absolute structure r         | arameter                   | -0 1(5)                                                                       |  |  |  |
| Largest diff. peak a         | nd hole                    | $0.279 \text{ and } -0.131  \overline{e}/\text{Å}^3$                          |  |  |  |
| <b>C</b> 1 1 1               |                            |                                                                               |  |  |  |

 $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, \ wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$ 

**Table 2.** Atomic coordinates and equivalent<sup>\*</sup> isotropic atomic displacement parameters (Å<sup>2</sup>) for UM#1972.

| Atom | x/a         | y/b          | z/c        | $\mathrm{U}_{\mathrm{eq}}$ |
|------|-------------|--------------|------------|----------------------------|
| C1   | 0.63633(13) | 0.34498(11)  | 0.12104(6) | 0.02255(19)                |
| C2   | 0.50744(13) | 0.40226(11)  | 0.16110(7) | 0.0265(2)                  |
| C3   | 0.47345(13) | 0.36522(11)  | 0.24027(7) | 0.0253(2)                  |
| C4   | 0.56858(12) | 0.27075(11)  | 0.27916(7) | 0.02292(19)                |
| C5   | 0.69707(12) | 0.21306(10)  | 0.23912(6) | 0.01947(18)                |
| C6   | 0.73282(11) | 0.24987(10)  | 0.15942(6) | 0.01721(16)                |
| C7   | 0.86764(11) | 0.18466(9)   | 0.11182(6) | 0.01645(16)                |
| C8   | 0.86164(11) | 0.02867(9)   | 0.12065(6) | 0.01841(17)                |
| C9   | 0.96906(12) | -0.04768(9)  | 0.06277(6) | 0.01963(17)                |
| O9   | 0.91467(10) | -0.10121(9)  | 0.00272(5) | 0.03078(18)                |
| C10  | 1.14397(12) | -0.06139(10) | 0.08107(6) | 0.02168(18)                |
| C11  | 1.22046(11) | 0.06390(10)  | 0.11875(6) | 0.01985(17)                |
| O11  | 1.15204(8)  | 0.18456(7)   | 0.08136(4) | 0.01903(14)                |
| C12  | 1.19917(13) | 0.08142(11)  | 0.20999(6) | 0.02264(19)                |
| C13  | 1.08724(11) | 0.19942(10)  | 0.21929(6) | 0.01819(17)                |
| O13  | 1.04734(9)  | 0.25237(8)   | 0.28150(4) | 0.02343(15)                |
| C14  | 1.03392(11) | 0.24102(9)   | 0.13351(5) | 0.01601(16)                |
| C15  | 1.04838(11) | 0.39433(9)   | 0.12199(6) | 0.01749(17)                |
| O15  | 1.10301(11) | 0.46903(8)   | 0.17182(5) | 0.02799(17)                |
| O16  | 0.99901(9)  | 0.43324(7)   | 0.04917(4) | 0.02421(15)                |
| C16  | 1.01805(13) | 0.57755(11)  | 0.03409(7) | 0.0249(2)                  |

 $^{\ast}$   $U_{eq}$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

| Atom | x/a        | y/b         | z/c        | U <sub>iso</sub> |  |
|------|------------|-------------|------------|------------------|--|
| H1   | 0.6588(18) | 0.3682(15)  | 0.0667(9)  | 0.027(4)         |  |
| H2   | 0.4400(18) | 0.4682(15)  | 0.1337(9)  | 0.031(4)         |  |
| Н3   | 0.3851(18) | 0.4029(15)  | 0.2652(9)  | 0.029(3)         |  |
| H4   | 0.5471(17) | 0.2455(15)  | 0.3343(9)  | 0.030(4)         |  |
| Н5   | 0.7570(17) | 0.1476(14)  | 0.2639(8)  | 0.021(3)         |  |
| H7   | 0.8560(15) | 0.2051(13)  | 0.0562(7)  | 0.015(3)         |  |
| H8A  | 0.8851(16) | 0.0003(14)  | 0.1741(8)  | 0.021(2)         |  |
| H8B  | 0.7556(17) | 0.0034(14)  | 0.1080(8)  | 0.021(2)         |  |
| H10A | 1.1910(18) | -0.0848(16) | 0.0318(9)  | 0.034(3)         |  |
| H10B | 1.1598(19) | -0.1351(16) | 0.1159(10) | 0.034(3)         |  |
| H11  | 1.3320(17) | 0.0626(15)  | 0.1039(8)  | 0.022(3)         |  |
| H12A | 1.1550(19) | 0.0071(16)  | 0.2369(9)  | 0.034(3)         |  |
| H12B | 1.3027(18) | 0.1031(16)  | 0.2358(9)  | 0.034(3)         |  |
| H16A | 0.9537(18) | 0.6268(15)  | 0.0727(9)  | 0.030(2)         |  |
| H16B | 0.9819(18) | 0.5928(15)  | -0.0202(9) | 0.030(2)         |  |
| H16C | 1.1252(19) | 0.5994(16)  | 0.0386(9)  | 0.030(2)         |  |

**Table 3.** Hydrogen atom coordinates and isotropic atomic displacement parameters ( $Å^2$ ) for UM#1972.

**Table 4.** Anisotropic atomic displacement parameters<sup>\*</sup> ( $Å^2$ ) for UM#1972.

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C1   | 0.0231(5)       | 0.0239(4)       | 0.0206(4)       | 0.0011(4)       | -0.0017(4)      | 0.0030(4)       |
| C2   | 0.0226(5)       | 0.0254(5)       | 0.0316(5)       | 0.0006(4)       | -0.0027(4)      | 0.0071(4)       |
| C3   | 0.0190(5)       | 0.0251(5)       | 0.0317(5)       | -0.0046(4)      | 0.0038(4)       | 0.0032(4)       |
| C4   | 0.0216(5)       | 0.0232(5)       | 0.0239(5)       | -0.0008(4)      | 0.0049(4)       | -0.0008(4)      |
| C5   | 0.0193(4)       | 0.0183(4)       | 0.0208(4)       | 0.0015(3)       | 0.0013(3)       | 0.0010(3)       |
| C6   | 0.0166(4)       | 0.0158(4)       | 0.0192(4)       | -0.0021(3)      | -0.0001(3)      | -0.0006(3)      |
| C7   | 0.0170(4)       | 0.0156(4)       | 0.0168(4)       | -0.0004(3)      | 0.0002(3)       | 0.0000(3)       |
| C8   | 0.0182(4)       | 0.0153(4)       | 0.0217(4)       | -0.0017(3)      | 0.0019(3)       | -0.0019(3)      |
| C9   | 0.0230(4)       | 0.0143(4)       | 0.0216(4)       | -0.0001(3)      | 0.0025(3)       | -0.0011(3)      |
| 09   | 0.0309(4)       | 0.0323(4)       | 0.0291(4)       | -0.0116(3)      | -0.0025(3)      | 0.0008(3)       |
| C10  | 0.0217(4)       | 0.0185(4)       | 0.0249(4)       | -0.0035(4)      | 0.0021(4)       | 0.0022(4)       |
| C11  | 0.0173(4)       | 0.0188(4)       | 0.0235(4)       | -0.0017(4)      | 0.0014(3)       | 0.0021(3)       |
| 011  | 0.0194(3)       | 0.0179(3)       | 0.0198(3)       | 0.0000(3)       | 0.0045(3)       | 0.0018(3)       |
| C12  | 0.0231(5)       | 0.0225(5)       | 0.0223(4)       | -0.0005(4)      | -0.0037(4)      | 0.0040(4)       |
| C13  | 0.0176(4)       | 0.0177(4)       | 0.0193(4)       | 0.0005(3)       | -0.0009(3)      | -0.0026(3)      |
| 013  | 0.0277(4)       | 0.0237(3)       | 0.0188(3)       | -0.0020(3)      | 0.0013(3)       | -0.0021(3)      |
| C14  | 0.0174(4)       | 0.0149(4)       | 0.0157(4)       | -0.0014(3)      | 0.0012(3)       | 0.0002(3)       |
| C15  | 0.0155(4)       | 0.0167(4)       | 0.0203(4)       | -0.0004(3)      | 0.0020(3)       | 0.0007(3)       |
| 015  | 0.0392(4)       | 0.0189(3)       | 0.0259(4)       | -0.0018(3)      | -0.0074(3)      | -0.0045(3)      |
| O16  | 0.0335(4)       | 0.0175(3)       | 0.0217(3)       | 0.0023(3)       | -0.0050(3)      | -0.0054(3)      |
| C16  | 0.0279(5)       | 0.0174(4)       | 0.0294(5)       | 0.0046(4)       | -0.0034(4)      | -0.0037(4)      |

 $^{\ast}$  The anisotropic atomic displacement factor exponent takes the form:-2  $\pi^{2}$  [  $h^{2}a^{\ast2}U_{11}$  +... + 2hka^{\ast}b^{\ast}U\_{12} ]

| C1-C2<br>C2-C3<br>C3-H3<br>C5-C6<br>C7-C8<br>C8-C9<br>C9-O9<br>C10-H10A<br>C11-C12<br>C12-C13 | $\begin{array}{c} 1.3951(15)\\ 1.3880(16)\\ 0.931(15)\\ 1.3988(13)\\ 1.5525(13)\\ 1.5198(13)\\ 1.2147(13)\\ 0.934(15)\\ 1.5275(14)\\ 1.5114(14) \end{array}$ | C1-C6<br>C2-H2<br>C4-C5<br>C5-H5<br>C7-C14<br>C8-H8A<br>C9-C10<br>C10-H10B<br>C11-H11<br>C12-H12A | $\begin{array}{c} 1.3979(14)\\ 0.978(15)\\ 1.3940(14)\\ 0.919(14)\\ 1.5540(13)\\ 0.948(14)\\ 1.5151(15)\\ 0.939(16)\\ 0.974(14)\\ 0.937(16) \end{array}$ | C1-H1<br>C3-C4<br>C4-H4<br>C6-C7<br>C7-H7<br>C8-H8B<br>C10-C11<br>C11-O11<br>O11-C14<br>C12-H12B | 0.945(14)<br>1.3907(15)<br>0.962(15)<br>1.5276(13)<br>0.946(12)<br>0.954(14)<br>1.5313(14)<br>1.4641(12)<br>1.4321(11)<br>0.997(16) |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| C13-O13                                                                                       | 1.2018(12)                                                                                                                                                   | C13-C14                                                                                           | 1.5427(13)                                                                                                                                               | C14-C15                                                                                          | 1.5349(13)                                                                                                                          |
| C15-O15                                                                                       | 1.1991(12)                                                                                                                                                   | C15-O16                                                                                           | 1.3300(12)                                                                                                                                               | O16-C16                                                                                          | 1.4596(12)                                                                                                                          |
| C16-H16A                                                                                      | 0.969(15)                                                                                                                                                    | C16-H16B                                                                                          | 0.959(15)                                                                                                                                                | C16-H16C                                                                                         | 0.934(16)                                                                                                                           |
| C2-C1-C6                                                                                      | 120.96(10)                                                                                                                                                   | С2-С1-Н1                                                                                          | 120.5(9)                                                                                                                                                 | С6-С1-Н1                                                                                         | 118.5(9)                                                                                                                            |
| C3-C2-C1                                                                                      | 120.06(10)                                                                                                                                                   | С3-С2-Н2                                                                                          | 119.5(9)                                                                                                                                                 | С1-С2-Н2                                                                                         | 120.5(9)                                                                                                                            |
| C2-C3-C4                                                                                      | 119.55(10)                                                                                                                                                   | С2-С3-Н3                                                                                          | 118.5(9)                                                                                                                                                 | С4-С3-Н3                                                                                         | 121.9(9)                                                                                                                            |
| C3-C4-C5                                                                                      | 120.46(10)                                                                                                                                                   | С3-С4-Н4                                                                                          | 120.2(9)                                                                                                                                                 | C5-C4-H4                                                                                         | 119.3(9)                                                                                                                            |
| C4-C5-C6                                                                                      | 120.52(9)                                                                                                                                                    | С4-С5-Н5                                                                                          | 120.5(9)                                                                                                                                                 | С6-С5-Н5                                                                                         | 118.9(9)                                                                                                                            |
| C1-C6-C5                                                                                      | 118.44(9)                                                                                                                                                    | C1-C6-C7                                                                                          | 119.12(9)                                                                                                                                                | C5-C6-C7                                                                                         | 122.36(9)                                                                                                                           |
| C6-C7-C8                                                                                      | 110.36(8)                                                                                                                                                    | C6-C7-C14                                                                                         | 113.84(7)                                                                                                                                                | C8-C7-C14                                                                                        | 111.42(7)                                                                                                                           |
| С6-С7-Н7                                                                                      | 109.3(8)                                                                                                                                                     | С8-С7-Н7                                                                                          | 107.5(8)                                                                                                                                                 | С14-С7-Н7                                                                                        | 104.0(8)                                                                                                                            |
| C9-C8-C7                                                                                      | 114.61(8)                                                                                                                                                    | C9-C8-H8A                                                                                         | 108.3(8)                                                                                                                                                 | C7-C8-H8A                                                                                        | 112.1(8)                                                                                                                            |
| C9-C8-H8B                                                                                     | 107.1(8)                                                                                                                                                     | C7-C8-H8B                                                                                         | 105.7(9)                                                                                                                                                 | H8A-C8-H8B                                                                                       | 108.8(12)                                                                                                                           |
| O9-C9-C10                                                                                     | 119.54(9)                                                                                                                                                    | 09-C9-C8                                                                                          | 120.30(10)                                                                                                                                               | C10-C9-C8                                                                                        | 120.13(8)                                                                                                                           |
| C9-C10-C11                                                                                    | 114.86(8)                                                                                                                                                    | C9-C10-H10A                                                                                       | 105.3(9)                                                                                                                                                 | C11-C10-H10A                                                                                     | 112.0(10)                                                                                                                           |
| C9-C10-H10B                                                                                   | 109.3(10)                                                                                                                                                    | C11-C10-H10B                                                                                      | 108.7(10)                                                                                                                                                | H10A-C10-H10B                                                                                    | 106.3(14)                                                                                                                           |
| O11-C11-C12                                                                                   | 106.07(8)                                                                                                                                                    | O11-C11-C10                                                                                       | 108.85(8)                                                                                                                                                | C12-C11-C10                                                                                      | 116.31(9)                                                                                                                           |
| O11-C11-H11                                                                                   | 106.6(8)                                                                                                                                                     | C12-C11-H11                                                                                       | 111.4(8)                                                                                                                                                 | C10-C11-H11                                                                                      | 107.2(8)                                                                                                                            |
| C14-O11-C11                                                                                   | 109.90(7)                                                                                                                                                    | C13-C12-C11                                                                                       | 105.18(8)                                                                                                                                                | C13-C12-H12A                                                                                     | 108.0(10)                                                                                                                           |
| C11-C12-H12A                                                                                  | 115.1(9)                                                                                                                                                     | C13-C12-H12B                                                                                      | 109.8(9)                                                                                                                                                 | C11-C12-H12B                                                                                     | 110.0(9)                                                                                                                            |
| HI2A-CI2-HI2B                                                                                 | 108.5(13)                                                                                                                                                    | 013-C13-C12                                                                                       | 126.86(9)                                                                                                                                                | 013-C13-C14                                                                                      | 125.92(9)                                                                                                                           |
| C12-C13-C14                                                                                   | 107.22(8)                                                                                                                                                    | 011-C14-C15                                                                                       | 104.84(7)                                                                                                                                                | 011-C14-C13                                                                                      | 104.14(7)                                                                                                                           |
| C15-C14-C13                                                                                   | 110.77(7)                                                                                                                                                    | 011-C14-C7                                                                                        | 110.59(7)                                                                                                                                                | C15-C14-C7                                                                                       | 113.50(8)                                                                                                                           |
| C13-C14-C7                                                                                    | 112.33(7)                                                                                                                                                    | 015-015-016                                                                                       | 124.24(9)                                                                                                                                                | 015-C15-C14                                                                                      | 123.77(9)                                                                                                                           |
| 016-015-014                                                                                   | 111.94(8)                                                                                                                                                    |                                                                                                   | 113./9(8)                                                                                                                                                | 016-C16-H16A                                                                                     | 108.6(9)                                                                                                                            |
|                                                                                               | 106.2(9)                                                                                                                                                     |                                                                                                   | 110.9(13)<br>110.2(12)                                                                                                                                   | 010-010-HI00                                                                                     | 108.7(10)                                                                                                                           |
| H16A-C16-H16C                                                                                 | 112.0(13)                                                                                                                                                    | H16B-C16-H16C                                                                                     | 110.3(13)                                                                                                                                                |                                                                                                  |                                                                                                                                     |
| C6-C1-C2-C3                                                                                   | 0.09(17)                                                                                                                                                     | C1-C2-C3-C4                                                                                       | -0.05(17)                                                                                                                                                | C2-C3-C4-C5                                                                                      | -0.18(16)                                                                                                                           |
| C3-C4-C5-C6                                                                                   | 0.38(16)                                                                                                                                                     | C2-C1-C6-C5                                                                                       | 0.11(15)                                                                                                                                                 | C2-C1-C6-C7                                                                                      | 176.98(9)                                                                                                                           |
| C4-C5-C6-C1                                                                                   | -0.34(15)                                                                                                                                                    | C4-C5-C6-C7                                                                                       | -177.11(9)                                                                                                                                               | C1-C6-C7-C8                                                                                      | -129.84(9)                                                                                                                          |
| C5-C6-C7-C8                                                                                   | 46.91(12)                                                                                                                                                    | C1-C6-C7-C14                                                                                      | 104.01(10)                                                                                                                                               | C5-C6-C7-C14                                                                                     | -79.24(11)                                                                                                                          |
| C6-C7-C8-C9                                                                                   | 168.33(8)                                                                                                                                                    | C14-C7-C8-C9                                                                                      | -64.18(10)                                                                                                                                               | C7-C8-C9-O9                                                                                      | -101.74(11)                                                                                                                         |
| C7-C8-C9-C10                                                                                  | 80.26(11)                                                                                                                                                    | O9-C9-C10-C11                                                                                     | 143.90(10)                                                                                                                                               | C8-C9-C10-C11                                                                                    | -38.08(13)                                                                                                                          |
| C9-C10-C11-O11                                                                                | -37.79(11)                                                                                                                                                   | C9-C10-C11-C12                                                                                    | 81.89(11)                                                                                                                                                | C12-C11-O11-C14                                                                                  | -25.74(10)                                                                                                                          |
| C10-C11-O11-C14                                                                               | 100.12(9)                                                                                                                                                    | 011-C11-C12-C13                                                                                   | 11.76(10)                                                                                                                                                | C10-C11-C12-C13                                                                                  | -109.41(10)                                                                                                                         |
| C11-C12-C13-O13                                                                               | -174.76(10)                                                                                                                                                  | C11-C12-C13-C14                                                                                   | 4.74(10)                                                                                                                                                 | C11-O11-C14-C15                                                                                  | 144.60(7)                                                                                                                           |
| C11-011-C14-C13                                                                               | 28.17(9)                                                                                                                                                     | CII-OII-CI4-C7                                                                                    | -92.71(9)                                                                                                                                                | 013-C13-C14-011                                                                                  | 159.74(9)                                                                                                                           |
| C12-C13-C14-O11                                                                               | -19.77(10)                                                                                                                                                   | 013-C13-C14-C15                                                                                   | 47.52(12)                                                                                                                                                | C12-C13-C14-C15                                                                                  | -131.98(8)                                                                                                                          |
| 013-013-014-01                                                                                | -80.56(12)                                                                                                                                                   | C12-C13-C14-C7                                                                                    | 99.94(9)                                                                                                                                                 | C6-C7-C14-O11                                                                                    | -1/4.56(7)                                                                                                                          |
| 08-07-014-011                                                                                 | 59.86(10)                                                                                                                                                    | C6-C7-C14-C15                                                                                     | -5/.0/(10)                                                                                                                                               | C8-C7-C14-C15                                                                                    | 1//.35(8)                                                                                                                           |
| C6-C7-C14-C13                                                                                 | 69.56(10)                                                                                                                                                    | C8-C7-C14-C13                                                                                     | -56.02(10)                                                                                                                                               | 011-014-015-015                                                                                  | -107.58(10)                                                                                                                         |
| C13-C14-C15-O15                                                                               | 4.18(15)                                                                                                                                                     | 07-014-015-015                                                                                    | 151.63(10)                                                                                                                                               | 011-014-015-016                                                                                  | 69.94(10)                                                                                                                           |
| C13-C14-C13-O16<br>C14 C15 O16 C16                                                            | -1/8.30(8)<br>177.00(8)                                                                                                                                      | U/-U14-U13-U16                                                                                    | -30.83(10)                                                                                                                                               | 013-013-010-016                                                                                  | 0.41(14)                                                                                                                            |
| 014-013-010-010                                                                               | -1//.09(8)                                                                                                                                                   |                                                                                                   |                                                                                                                                                          |                                                                                                  |                                                                                                                                     |

Table 5. Bond lengths (Å), valence and torsion angles (°) for UM#1972.

Compound name : Diazoacetoacetate substituted tetrahydro-4-pyranones (7) Chemical formula :  $C_{16}H_{16}N_2O_5$ 



A colorless prism-like specimen of  $C_{16}H_{16}N_2O_5$ , approximate dimensions 0.17 mm x 0.27 mm x 0.42 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker Smart Apex2 system equipped with a graphite monochromator and a MoK<sub>a</sub> fine-focus sealed tube ( $\lambda = 0.71073$  Å).



A total of 1819 frames were collected. The total exposure time was 12.12 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 21973 reflections to a maximum  $\theta$  angle of 27.50° (0.77 Å resolution), of which 7204 were independent (average redundancy 3.050, completeness = 99.8%, R<sub>int</sub> = 1.54%, R<sub>sig</sub> = 1.67%) and 6391 (88.71%) were greater than  $2\sigma(F^2)$ . The final cell constants of <u>a</u> = 11.0436(6) Å, <u>b</u> = 11.2585(6) Å, <u>c</u> = 13.4333(8) Å,  $\alpha$  = 90.2150(9)°,  $\beta$  = 107.0708(8)°,  $\gamma$  = 100.0912(9)°, volume = 1569.23(15) Å<sup>3</sup>, are based upon the refinement of the XYZ-centroids of 9928 reflections above 20  $\sigma(I)$  with 4.719° < 2 $\theta$  < 62.22°. Data were corrected for absorption effects using the multi-scan method (SADABS). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9589 and 0.9831.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1, with Z = 4 for the formula unit,  $C_{16}H_{16}N_2O_5$ . The final anisotropic fullmatrix least-squares refinement on F<sup>2</sup> with 441 variables converged at R1 = 3.36%, for the observed data and wR2 = 6.86% for all data. The goodness-of-fit was 0.999. The largest peak in the final difference electron density synthesis was 0.317 e<sup>-</sup>/Å<sup>3</sup> and the largest hole was -0.176 e<sup>-</sup> /Å<sup>3</sup> with an RMS deviation of 0.037 e<sup>-</sup>/Å<sup>3</sup>. On the basis of the final model, the calculated density was 1.339 g/cm<sup>3</sup> and F(000), 664 e<sup>-</sup>.

| Identification code    | UM2037                     |                                |  |  |  |
|------------------------|----------------------------|--------------------------------|--|--|--|
| Chemical formula       | $C_{16}H_{16}N_2O_5$       |                                |  |  |  |
| Formula weight         | 316.31                     |                                |  |  |  |
| Temperature            | 100(2) K                   |                                |  |  |  |
| Wavelength             | 0.71073 Å                  |                                |  |  |  |
| Crystal size           | 0.17 x 0.27 x 0.42 mm      |                                |  |  |  |
| Crystal habit          | colorless prism            |                                |  |  |  |
| Crystal system         | Triclinic                  |                                |  |  |  |
| Space group            | P -1                       |                                |  |  |  |
| Unit cell dimensions   | a = 11.0436(6) Å           | $\alpha = 90.2150(9)^{\circ}$  |  |  |  |
|                        | b = 11.2585(6) Å           | $\beta = 107.0708(8)^{\circ}$  |  |  |  |
|                        | c = 13.4333(8) Å           | $\gamma = 100.0912(9)^{\circ}$ |  |  |  |
| Volume                 | 1569.23(15) Å <sup>3</sup> |                                |  |  |  |
| Ζ                      | 4                          |                                |  |  |  |
| Density (calculated)   | $1.339 \text{ Mg/cm}^3$    |                                |  |  |  |
| Absorption coefficient | 0.101 mm <sup>-1</sup>     |                                |  |  |  |
| F(000)                 | 664                        |                                |  |  |  |
|                        |                            |                                |  |  |  |

Table 1. Sample and crystal data for UM2037.

Table 2. Data collection and structure refinement for UM2037.

| Diffractometer                      | Bruker Smart Apex2                                    |                           |  |  |  |
|-------------------------------------|-------------------------------------------------------|---------------------------|--|--|--|
| Radiation source                    | fine-focus sealed tube, $MoK_{\alpha}$                |                           |  |  |  |
| Theta range for data collection     | 1.84 to 27.50°                                        |                           |  |  |  |
| Index ranges                        | -14<=h<=14, -14<=k<=14, -1                            | 7<=l<=17                  |  |  |  |
| Reflections collected               | 21973                                                 |                           |  |  |  |
| Independent reflections             | 7204 [R(int) = 0.0154]                                |                           |  |  |  |
| Coverage of independent reflections | 99.8%                                                 |                           |  |  |  |
| Absorption correction               | multi-scan                                            |                           |  |  |  |
| Max. and min. transmission          | 0.9831 and 0.9589                                     |                           |  |  |  |
| Structure solution technique        | direct methods                                        |                           |  |  |  |
| Structure solution program          | SHELXS-97 (Sheldrick, 2008                            | 3)                        |  |  |  |
| Refinement method                   | Full-matrix least-squares on F                        | -2                        |  |  |  |
| Refinement program                  | SHELXL-97 (Sheldrick, 2008                            | 3)                        |  |  |  |
| Function minimized                  | $\Sigma w(F_o^2 - F_c^2)^2$                           |                           |  |  |  |
| Data / restraints / parameters      | 7204 / 0 / 441                                        |                           |  |  |  |
| Goodness-of-fit on F <sup>2</sup>   | 0.999                                                 |                           |  |  |  |
| $\Delta/\sigma_{max}$               | 0.001                                                 |                           |  |  |  |
| Final R indices                     | 6391 data; $I > 2\sigma(I)$ R1 = 0.0336, wR2 = 0.0669 |                           |  |  |  |
|                                     | all data                                              | R1 = 0.0384, wR2 = 0.0686 |  |  |  |
| Weighting scheme                    | $w=1/[\sigma^2(F_o^2)+(0.0100P)^2+0.8850P]$           |                           |  |  |  |

| where $P = (F_o^2 + 2F_c^2)/3$    |
|-----------------------------------|
| 0.317 and -0.176 eÅ <sup>-3</sup> |

#### Largest diff. peak and hole

## Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters $(\text{\AA}^2)$ for UM2037.

 $U(\mbox{eq})$  is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|      | x/a         | y/b         | z/c         | U(eq)       |
|------|-------------|-------------|-------------|-------------|
| C1A  | 0.63677(12) | 0.91830(10) | 0.88520(10) | 0.0281(3)   |
| O1A  | 0.70214(8)  | 0.02580(7)  | 0.85019(6)  | 0.02442(17) |
| C2A  | 0.80256(10) | 0.09042(10) | 0.92376(9)  | 0.0201(2)   |
| O2A  | 0.84318(8)  | 0.06132(7)  | 0.01196(6)  | 0.02699(18) |
| C3A  | 0.85396(10) | 0.20131(10) | 0.88219(8)  | 0.0191(2)   |
| N1A  | 0.79766(9)  | 0.21486(8)  | 0.78055(7)  | 0.02033(19) |
| N2A  | 0.75407(10) | 0.22894(10) | 0.69674(8)  | 0.0295(2)   |
| C4A  | 0.95445(10) | 0.30337(10) | 0.93352(8)  | 0.0185(2)   |
| O4A  | 0.98302(7)  | 0.38903(7)  | 0.88349(6)  | 0.02148(16) |
| C5A  | 0.01742(10) | 0.30035(10) | 0.04962(8)  | 0.0213(2)   |
| C6A  | 0.14488(10) | 0.38752(9)  | 0.08798(8)  | 0.0180(2)   |
| O6A  | 0.23501(7)  | 0.33741(6)  | 0.04993(6)  | 0.01818(15) |
| C7A  | 0.19043(10) | 0.40233(10) | 0.20753(8)  | 0.0206(2)   |
| C8A  | 0.32838(11) | 0.46780(10) | 0.24864(8)  | 0.0214(2)   |
| O8A  | 0.36400(8)  | 0.54369(8)  | 0.32071(7)  | 0.03083(19) |
| C9A  | 0.41851(10) | 0.42832(10) | 0.19519(9)  | 0.0214(2)   |
| C10A | 0.35990(10) | 0.41451(9)  | 0.07619(8)  | 0.0186(2)   |
| C11A | 0.35336(10) | 0.53267(10) | 0.02145(9)  | 0.0193(2)   |
| C12A | 0.40644(11) | 0.64593(10) | 0.07273(10) | 0.0234(2)   |
| C13A | 0.40139(11) | 0.75086(11) | 0.01757(11) | 0.0290(3)   |
| C14A | 0.34182(11) | 0.74336(11) | 0.91120(11) | 0.0310(3)   |
| C15A | 0.28762(12) | 0.63084(12) | 0.85923(10) | 0.0302(3)   |
| C16A | 0.29382(11) | 0.52653(11) | 0.91399(9)  | 0.0246(2)   |
| C1B  | 0.60971(13) | 0.29628(14) | 0.44380(12) | 0.0427(4)   |
| O1B  | 0.53563(8)  | 0.20437(8)  | 0.48829(7)  | 0.0305(2)   |
| C2B  | 0.40972(11) | 0.17290(10) | 0.43467(9)  | 0.0224(2)   |
| O2B  | 0.35850(8)  | 0.21379(7)  | 0.35347(6)  | 0.02729(18) |
| C3B  | 0.34546(10) | 0.08181(10) | 0.48840(8)  | 0.0206(2)   |
| N1B  | 0.41943(9)  | 0.05070(9)  | 0.57930(7)  | 0.0232(2)   |
| N2B  | 0.47720(10) | 0.02317(11) | 0.65548(8)  | 0.0341(3)   |
| C4B  | 0.21054(11) | 0.02008(10) | 0.46215(8)  | 0.0201(2)   |
| O4B  | 0.17907(8)  | 0.94029(7)  | 0.51577(6)  | 0.02546(18) |
| C5B  | 0.11542(11) | 0.06405(10) | 0.37077(9)  | 0.0228(2)   |
| C6B  | 0.98577(10) | 0.97971(9)  | 0.33529(8)  | 0.0192(2)   |
| O6B  | 0.00583(7)  | 0.87695(7)  | 0.28322(6)  | 0.02043(16) |

|      | x/a         | y/b         | z/c         | U(eq)       |  |
|------|-------------|-------------|-------------|-------------|--|
| C7B  | 0.88369(10) | 0.04150(10) | 0.26156(9)  | 0.0212(2)   |  |
| C8B  | 0.76370(11) | 0.95232(10) | 0.20470(8)  | 0.0215(2)   |  |
| O8B  | 0.65590(8)  | 0.97453(8)  | 0.18897(7)  | 0.02835(19) |  |
| C9B  | 0.78819(11) | 0.83605(10) | 0.16571(9)  | 0.0233(2)   |  |
| C10B | 0.89216(10) | 0.78502(10) | 0.24772(9)  | 0.0208(2)   |  |
| C11B | 0.85209(11) | 0.72764(9)  | 0.33854(9)  | 0.0208(2)   |  |
| C12B | 0.72517(11) | 0.70239(10) | 0.34070(9)  | 0.0245(2)   |  |
| C13B | 0.69297(12) | 0.64093(11) | 0.42215(10) | 0.0291(3)   |  |
| C14B | 0.78782(13) | 0.60537(11) | 0.50256(10) | 0.0311(3)   |  |
| C15B | 0.91541(13) | 0.63174(11) | 0.50214(10) | 0.0326(3)   |  |
| C16B | 0.94718(12) | 0.69218(11) | 0.42076(10) | 0.0283(3)   |  |

## Table 4. Bond lengths (Å) for UM2037.

|           | υ          |           |            |           |            |           |            |
|-----------|------------|-----------|------------|-----------|------------|-----------|------------|
| C1A-O1A   | 1.4507(13) | C1A-H1A1  | 0.98       | C1B-O1B   | 1.4465(14) | C1B-H1B1  | 0.98       |
| C1A-H1A2  | 0.98       | C1A-H1A3  | 0.98       | C1B-H1B2  | 0.98       | C1B-H1B3  | 0.98       |
| O1A-C2A   | 1.3432(13) | C2A-O2A   | 1.2061(13) | O1B-C2B   | 1.3473(14) | C2B-O2B   | 1.2061(14) |
| C2A-C3A   | 1.4614(15) | C3A-N1A   | 1.3455(14) | C2B-C3B   | 1.4586(15) | C3B-N1B   | 1.3411(14) |
| C3A-C4A   | 1.4579(15) | N1A-N2A   | 1.1109(13) | C3B-C4B   | 1.4677(15) | N1B-N2B   | 1.1130(14) |
| C4A-O4A   | 1.2264(13) | C4A-C5A   | 1.5129(15) | C4B-O4B   | 1.2202(13) | C4B-C5B   | 1.5117(15) |
| C5A-C6A   | 1.5153(14) | C5A-H5A1  | 0.99       | C5B-C6B   | 1.5160(15) | C5B-H5B1  | 0.99       |
| C5A-H5A2  | 0.99       | C6A-O6A   | 1.4365(12) | C5B-H5B2  | 0.99       | C6B-O6B   | 1.4323(13) |
| C6A-C7A   | 1.5343(15) | C6A-H6A   | 1.0        | C6B-C7B   | 1.5363(15) | C6B-H6B   | 1.0        |
| O6A-C10A  | 1.4397(12) | C7A-C8A   | 1.5096(15) | O6B-C10B  | 1.4367(13) | C7B-C8B   | 1.5104(15) |
| C7A-H7A1  | 0.99       | C7A-H7A2  | 0.99       | C7B-H7B1  | 0.99       | C7B-H7B2  | 0.99       |
| C8A-O8A   | 1.2144(14) | C8A-C9A   | 1.5087(15) | C8B-O8B   | 1.2171(14) | C8B-C9B   | 1.5044(16) |
| C9A-C10A  | 1.5343(15) | C9A-H9A1  | 0.99       | C9B-C10B  | 1.5347(15) | C9B-H9B1  | 0.99       |
| С9А-Н9А2  | 0.99       | C10A-C11A | 1.5249(14) | C9B-H9B2  | 0.99       | C10B-C11B | 1.5245(15) |
| C10A-H10A | 1.0        | C11A-C12A | 1.3923(15) | C10B-H10B | 1.0        | C11B-C12B | 1.3894(16) |
| C11A-C16A | 1.3954(16) | C12A-C13A | 1.3975(16) | C11B-C16B | 1.3969(16) | C12B-C13B | 1.3965(16) |
| C12A-H12A | 0.95       | C13A-C14A | 1.3819(19) | C12B-H12B | 0.95       | C13B-C14B | 1.3822(19) |
| C13A-H13A | 0.95       | C14A-C15A | 1.3902(19) | C13B-H13B | 0.95       | C14B-C15B | 1.3899(19) |
| C14A-H14A | 0.95       | C15A-C16A | 1.3893(16) | C14B-H14B | 0.95       | C15B-C16B | 1.3886(17) |
| C15A-H15A | 0.95       | C16A-H16A | 0.95       | C15B-H15B | 0.95       | C16B-H16B | 0.95       |
|           |            |           |            |           |            |           |            |

### Table 5. Bond angles (°) for UM2037.

| O1A-C1A-H1A1  | 109.5      | O1A-C1A-H1A2  | 109.5      |
|---------------|------------|---------------|------------|
| H1A1-C1A-H1A2 | 109.5      | O1A-C1A-H1A3  | 109.5      |
| H1A1-C1A-H1A3 | 109.5      | H1A2-C1A-H1A3 | 109.5      |
| C2A-O1A-C1A   | 115.19(9)  | O2A-C2A-O1A   | 124.55(10) |
| O2A-C2A-C3A   | 125.03(10) | O1A-C2A-C3A   | 110.42(9)  |
| N1A-C3A-C4A   | 113.57(9)  | N1A-C3A-C2A   | 115.72(9)  |

| C4A-C3A-C2A    | 130.67(10) | N2A-N1A-C3A    | 177.88(12) |
|----------------|------------|----------------|------------|
| O4A-C4A-C3A    | 120.20(10) | O4A-C4A-C5A    | 122.25(10) |
| C3A-C4A-C5A    | 117.52(9)  | C4A-C5A-C6A    | 112.65(9)  |
| C4A-C5A-H5A1   | 109.1      | C6A-C5A-H5A1   | 109.1      |
| C4A-C5A-H5A2   | 109.1      | C6A-C5A-H5A2   | 109.1      |
| H5A1-C5A-H5A2  | 107.8      | O6A-C6A-C5A    | 106.42(8)  |
| O6A-C6A-C7A    | 110.82(8)  | C5A-C6A-C7A    | 110.80(8)  |
| O6A-C6A-H6A    | 109.6      | С5А-С6А-Н6А    | 109.6      |
| С7А-С6А-Н6А    | 109.6      | C6A-O6A-C10A   | 112.58(8)  |
| C8A-C7A-C6A    | 111.85(9)  | C8A-C7A-H7A1   | 109.2      |
| C6A-C7A-H7A1   | 109.2      | C8A-C7A-H7A2   | 109.2      |
| C6A-C7A-H7A2   | 109.2      | Н7А1-С7А-Н7А2  | 107.9      |
| O8A-C8A-C9A    | 123.00(10) | O8A-C8A-C7A    | 122.45(10) |
| C9A-C8A-C7A    | 114.52(9)  | C8A-C9A-C10A   | 112.26(9)  |
| C8A-C9A-H9A1   | 109.2      | C10A-C9A-H9A1  | 109.2      |
| С8А-С9А-Н9А2   | 109.2      | C10A-C9A-H9A2  | 109.2      |
| Н9А1-С9А-Н9А2  | 107.9      | O6A-C10A-C11A  | 111.12(8)  |
| O6A-C10A-C9A   | 109.46(8)  | C11A-C10A-C9A  | 115.25(9)  |
| O6A-C10A-H10A  | 106.9      | C11A-C10A-H10A | 106.9      |
| C9A-C10A-H10A  | 106.9      | C12A-C11A-C16A | 118.45(10) |
| C12A-C11A-C10A | 123.38(10) | C16A-C11A-C10A | 118.15(10) |
| C11A-C12A-C13A | 120.71(11) | C11A-C12A-H12A | 119.6      |
| C13A-C12A-H12A | 119.6      | C14A-C13A-C12A | 120.18(11) |
| C14A-C13A-H13A | 119.9      | C12A-C13A-H13A | 119.9      |
| C13A-C14A-C15A | 119.65(11) | C13A-C14A-H14A | 120.2      |
| C15A-C14A-H14A | 120.2      | C16A-C15A-C14A | 120.11(12) |
| C16A-C15A-H15A | 119.9      | C14A-C15A-H15A | 119.9      |
| C15A-C16A-C11A | 120.90(11) | C15A-C16A-H16A | 119.6      |
| C11A-C16A-H16A | 119.6      | O1B-C1B-H1B1   | 109.5      |
| O1B-C1B-H1B2   | 109.5      | H1B1-C1B-H1B2  | 109.5      |
| O1B-C1B-H1B3   | 109.5      | H1B1-C1B-H1B3  | 109.5      |
| H1B2-C1B-H1B3  | 109.5      | C2B-O1B-C1B    | 115.52(9)  |
| O2B-C2B-O1B    | 124.53(10) | O2B-C2B-C3B    | 125.25(10) |
| O1B-C2B-C3B    | 110.22(9)  | N1B-C3B-C2B    | 115.78(10) |
| N1B-C3B-C4B    | 113.19(9)  | C2B-C3B-C4B    | 130.99(10) |
| N2B-N1B-C3B    | 177.67(12) | O4B-C4B-C3B    | 119.83(10) |
| O4B-C4B-C5B    | 123.11(10) | C3B-C4B-C5B    | 117.00(9)  |
| C4B-C5B-C6B    | 113.18(9)  | C4B-C5B-H5B1   | 108.9      |
| C6B-C5B-H5B1   | 108.9      | C4B-C5B-H5B2   | 108.9      |
| C6B-C5B-H5B2   | 108.9      | H5B1-C5B-H5B2  | 107.8      |
| O6B-C6B-C5B    | 105.87(9)  | O6B-C6B-C7B    | 110.95(9)  |
| C5B-C6B-C7B    | 111.04(9)  | O6B-C6B-H6B    | 109.6      |
| С5В-С6В-Н6В    | 109.6      | С7В-С6В-Н6В    | 109.6      |
| C6B-O6B-C10B   | 113.09(8)  | C8B-C7B-C6B    | 112.16(9)  |
|                |            |                |            |

| C8B-C7B-H7B1   | 109.2      | C6B-C7B-H7B1   | 109.2      |
|----------------|------------|----------------|------------|
| C8B-C7B-H7B2   | 109.2      | C6B-C7B-H7B2   | 109.2      |
| H7B1-C7B-H7B2  | 107.9      | O8B-C8B-C9B    | 122.74(10) |
| O8B-C8B-C7B    | 122.49(10) | C9B-C8B-C7B    | 114.73(9)  |
| C8B-C9B-C10B   | 112.12(9)  | C8B-C9B-H9B1   | 109.2      |
| C10B-C9B-H9B1  | 109.2      | C8B-C9B-H9B2   | 109.2      |
| C10B-C9B-H9B2  | 109.2      | H9B1-C9B-H9B2  | 107.9      |
| O6B-C10B-C11B  | 111.74(9)  | O6B-C10B-C9B   | 109.06(9)  |
| C11B-C10B-C9B  | 116.11(9)  | O6B-C10B-H10B  | 106.4      |
| C11B-C10B-H10B | 106.4      | C9B-C10B-H10B  | 106.4      |
| C12B-C11B-C16B | 118.47(11) | C12B-C11B-C10B | 123.39(10) |
| C16B-C11B-C10B | 118.02(10) | C11B-C12B-C13B | 120.81(11) |
| C11B-C12B-H12B | 119.6      | C13B-C12B-H12B | 119.6      |
| C14B-C13B-C12B | 120.14(11) | C14B-C13B-H13B | 119.9      |
| C12B-C13B-H13B | 119.9      | C13B-C14B-C15B | 119.61(11) |
| C13B-C14B-H14B | 120.2      | C15B-C14B-H14B | 120.2      |
| C16B-C15B-C14B | 120.18(12) | C16B-C15B-H15B | 119.9      |
| C14B-C15B-H15B | 119.9      | C15B-C16B-C11B | 120.78(12) |
| C15B-C16B-H16B | 119.6      | C11B-C16B-H16B | 119.6      |
|                |            |                |            |

## Table 6. Torsion angles (°) for UM2037.

| C1A-O1A-C2A-O2A     | 3.90(16)    | C1A-O1A-C2A-C3A     | -175.25(9)  |
|---------------------|-------------|---------------------|-------------|
| O2A-C2A-C3A-N1A     | 177.79(11)  | O1A-C2A-C3A-N1A     | -3.06(13)   |
| O2A-C2A-C3A-C4A     | -4.61(19)   | O1A-C2A-C3A-C4A     | 174.54(10)  |
| C4A-C3A-N1A-N2A     | 12.(3)      | C2A-C3A-N1A-N2A     | -170.(3)    |
| N1A-C3A-C4A-O4A     | -2.11(15)   | C2A-C3A-C4A-O4A     | -179.75(11) |
| N1A-C3A-C4A-C5A     | 176.05(9)   | C2A-C3A-C4A-C5A     | -1.59(17)   |
| O4A-C4A-C5A-C6A     | -19.82(15)  | C3A-C4A-C5A-C6A     | 162.07(9)   |
| C4A-C5A-C6A-O6A     | -71.96(11)  | C4A-C5A-C6A-C7A     | 167.48(9)   |
| C5A-C6A-O6A-C10A    | 177.01(8)   | C7A-C6A-O6A-C10A    | -62.44(10)  |
| O6A-C6A-C7A-C8A     | 50.48(12)   | C5A-C6A-C7A-C8A     | 168.39(9)   |
| C6A-C7A-C8A-O8A     | 139.04(11)  | C6A-C7A-C8A-C9A     | -42.81(13)  |
| O8A-C8A-C9A-C10A    | -137.66(11) | C7A-C8A-C9A-C10A    | 44.21(12)   |
| C6A-O6A-C10A-C11A   | -65.45(11)  | C6A-O6A-C10A-C9A    | 62.98(10)   |
| C8A-C9A-C10A-O6A    | -52.47(12)  | C8A-C9A-C10A-C11A   | 73.63(11)   |
| O6A-C10A-C11A-C12A  | 130.79(10)  | C9A-C10A-C11A-C12A  | 5.55(14)    |
| O6A-C10A-C11A-C16A  | -50.84(13)  | C9A-C10A-C11A-C16A  | -176.09(9)  |
| C16A-C11A-C12A-C13A | -0.69(16)   | C10A-C11A-C12A-C13A | 177.67(10)  |
| C11A-C12A-C13A-C14A | 0.86(17)    | C12A-C13A-C14A-C15A | -0.38(18)   |
| C13A-C14A-C15A-C16A | -0.25(18)   | C14A-C15A-C16A-C11A | 0.42(18)    |
| C12A-C11A-C16A-C15A | 0.06(16)    | C10A-C11A-C16A-C15A | -178.39(10) |
| C1B-O1B-C2B-O2B     | 1.79(18)    | C1B-O1B-C2B-C3B     | -178.84(11) |
| O2B-C2B-C3B-N1B     | -178.43(11) | O1B-C2B-C3B-N1B     | 2.21(14)    |
|                     |             |                     |             |

| O2B-C2B-C3B-C4B     | -1.0(2)     | O1B-C2B-C3B-C4B     | 179.61(11)  |
|---------------------|-------------|---------------------|-------------|
| C2B-C3B-N1B-N2B     | 164.(3)     | C4B-C3B-N1B-N2B     | -14.(3)     |
| N1B-C3B-C4B-O4B     | -7.14(15)   | C2B-C3B-C4B-O4B     | 175.41(11)  |
| N1B-C3B-C4B-C5B     | 170.20(10)  | C2B-C3B-C4B-C5B     | -7.25(18)   |
| O4B-C4B-C5B-C6B     | -14.82(16)  | C3B-C4B-C5B-C6B     | 167.93(9)   |
| C4B-C5B-C6B-O6B     | -73.25(11)  | C4B-C5B-C6B-C7B     | 166.24(9)   |
| C5B-C6B-O6B-C10B    | 177.78(8)   | C7B-C6B-O6B-C10B    | -61.66(11)  |
| O6B-C6B-C7B-C8B     | 48.66(12)   | C5B-C6B-C7B-C8B     | 166.10(9)   |
| C6B-C7B-C8B-O8B     | 140.45(11)  | C6B-C7B-C8B-C9B     | -41.71(13)  |
| O8B-C8B-C9B-C10B    | -137.81(11) | C7B-C8B-C9B-C10B    | 44.36(13)   |
| C6B-O6B-C10B-C11B   | -66.21(11)  | C6B-O6B-C10B-C9B    | 63.51(11)   |
| C8B-C9B-C10B-O6B    | -53.24(12)  | C8B-C9B-C10B-C11B   | 74.05(12)   |
| O6B-C10B-C11B-C12B  | 136.90(11)  | C9B-C10B-C11B-C12B  | 10.96(15)   |
| O6B-C10B-C11B-C16B  | -47.08(13)  | C9B-C10B-C11B-C16B  | -173.03(10) |
| C16B-C11B-C12B-C13B | -1.20(17)   | C10B-C11B-C12B-C13B | 174.80(10)  |
| C11B-C12B-C13B-C14B | 0.63(18)    | C12B-C13B-C14B-C15B | 0.37(18)    |
| C13B-C14B-C15B-C16B | -0.78(19)   | C14B-C15B-C16B-C11B | 0.19(19)    |
| C12B-C11B-C16B-C15B | 0.79(18)    | C10B-C11B-C16B-C15B | -175.43(11) |

# Table 7. Anisotropic atomic displacement parameters (Å<sup>2</sup>) for UM2037. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [ h<sup>2</sup> a<sup>\*2</sup> U<sub>11</sub> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sub>12</sub> ]

|      | <b>U</b> <sub>11</sub> | $U_{22}$  | $U_{33}$  | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|------------------------|-----------|-----------|-----------------|-----------------|-----------------|
| C1A  | 0.0269(6)              | 0.0205(5) | 0.0303(6) | 0.0055(5)       | 0.0025(5)       | -0.0024(5)      |
| O1A  | 0.0233(4)              | 0.0217(4) | 0.0230(4) | 0.0042(3)       | 0.0019(3)       | -0.0010(3)      |
| C2A  | 0.0183(5)              | 0.0211(5) | 0.0211(5) | 0.0010(4)       | 0.0060(4)       | 0.0042(4)       |
| O2A  | 0.0294(4)              | 0.0260(4) | 0.0205(4) | 0.0057(3)       | 0.0036(3)       | -0.0017(3)      |
| C3A  | 0.0183(5)              | 0.0236(5) | 0.0156(5) | 0.0033(4)       | 0.0048(4)       | 0.0050(4)       |
| N1A  | 0.0169(4)              | 0.0214(4) | 0.0230(5) | 0.0033(4)       | 0.0063(4)       | 0.0037(4)       |
| N2A  | 0.0273(5)              | 0.0344(6) | 0.0235(5) | 0.0068(4)       | 0.0026(4)       | 0.0057(4)       |
| C4A  | 0.0162(5)              | 0.0213(5) | 0.0205(5) | 0.0021(4)       | 0.0079(4)       | 0.0059(4)       |
| O4A  | 0.0217(4)              | 0.0214(4) | 0.0229(4) | 0.0055(3)       | 0.0086(3)       | 0.0047(3)       |
| C5A  | 0.0191(5)              | 0.0251(5) | 0.0189(5) | 0.0030(4)       | 0.0068(4)       | 0.0003(4)       |
| C6A  | 0.0179(5)              | 0.0188(5) | 0.0186(5) | 0.0027(4)       | 0.0074(4)       | 0.0036(4)       |
| O6A  | 0.0177(4)              | 0.0160(3) | 0.0217(4) | 0.0011(3)       | 0.0082(3)       | 0.0016(3)       |
| C7A  | 0.0198(5)              | 0.0235(5) | 0.0191(5) | 0.0024(4)       | 0.0073(4)       | 0.0031(4)       |
| C8A  | 0.0230(5)              | 0.0220(5) | 0.0184(5) | 0.0049(4)       | 0.0055(4)       | 0.0032(4)       |
| O8A  | 0.0301(5)              | 0.0330(5) | 0.0264(4) | -0.0065(4)      | 0.0086(4)       | -0.0019(4)      |
| C9A  | 0.0182(5)              | 0.0225(5) | 0.0227(5) | 0.0038(4)       | 0.0055(4)       | 0.0027(4)       |
| C10A | 0.0163(5)              | 0.0181(5) | 0.0223(5) | 0.0027(4)       | 0.0077(4)       | 0.0025(4)       |
| C11A | 0.0153(5)              | 0.0193(5) | 0.0261(6) | 0.0046(4)       | 0.0104(4)       | 0.0032(4)       |
| C12A | 0.0208(5)              | 0.0217(5) | 0.0302(6) | 0.0014(5)       | 0.0119(5)       | 0.0026(4)       |
| C13A | 0.0253(6)              | 0.0182(5) | 0.0487(8) | 0.0035(5)       | 0.0195(6)       | 0.0033(4)       |
| C14A | 0.0245(6)              | 0.0255(6) | 0.0502(8) | 0.0188(6)       | 0.0196(6)       | 0.0089(5)       |

|      | U <sub>11</sub> | $U_{22}$  | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------|-----------------|-----------------|-----------------|-----------------|
| C15A | 0.0237(6)       | 0.0354(7) | 0.0324(7)       | 0.0149(5)       | 0.0095(5)       | 0.0053(5)       |
| C16A | 0.0219(5)       | 0.0241(6) | 0.0272(6)       | 0.0052(5)       | 0.0084(5)       | 0.0010(4)       |
| C1B  | 0.0286(7)       | 0.0457(8) | 0.0394(8)       | 0.0176(6)       | 0.0002(6)       | -0.0136(6)      |
| O1B  | 0.0231(4)       | 0.0322(5) | 0.0277(4)       | 0.0099(4)       | 0.0005(3)       | -0.0052(3)      |
| C2B  | 0.0220(5)       | 0.0203(5) | 0.0226(6)       | 0.0011(4)       | 0.0045(4)       | 0.0018(4)       |
| O2B  | 0.0246(4)       | 0.0273(4) | 0.0262(4)       | 0.0101(3)       | 0.0036(3)       | 0.0016(3)       |
| C3B  | 0.0214(5)       | 0.0228(5) | 0.0169(5)       | 0.0036(4)       | 0.0036(4)       | 0.0057(4)       |
| N1B  | 0.0202(5)       | 0.0277(5) | 0.0221(5)       | 0.0036(4)       | 0.0077(4)       | 0.0033(4)       |
| N2B  | 0.0253(5)       | 0.0512(7) | 0.0253(6)       | 0.0125(5)       | 0.0064(4)       | 0.0075(5)       |
| C4B  | 0.0221(5)       | 0.0208(5) | 0.0186(5)       | 0.0002(4)       | 0.0073(4)       | 0.0049(4)       |
| O4B  | 0.0253(4)       | 0.0290(4) | 0.0223(4)       | 0.0075(3)       | 0.0083(3)       | 0.0033(3)       |
| C5B  | 0.0219(5)       | 0.0217(5) | 0.0228(6)       | 0.0047(4)       | 0.0043(4)       | 0.0027(4)       |
| C6B  | 0.0200(5)       | 0.0197(5) | 0.0184(5)       | 0.0021(4)       | 0.0061(4)       | 0.0039(4)       |
| O6B  | 0.0196(4)       | 0.0206(4) | 0.0230(4)       | 0.0009(3)       | 0.0095(3)       | 0.0035(3)       |
| C7B  | 0.0225(5)       | 0.0205(5) | 0.0203(5)       | 0.0029(4)       | 0.0057(4)       | 0.0046(4)       |
| C8B  | 0.0236(5)       | 0.0243(5) | 0.0170(5)       | 0.0066(4)       | 0.0063(4)       | 0.0047(4)       |
| O8B  | 0.0219(4)       | 0.0305(4) | 0.0323(5)       | 0.0070(4)       | 0.0067(4)       | 0.0065(3)       |
| C9B  | 0.0255(6)       | 0.0240(5) | 0.0187(5)       | 0.0010(4)       | 0.0052(4)       | 0.0023(4)       |
| C10B | 0.0221(5)       | 0.0199(5) | 0.0213(5)       | 0.0003(4)       | 0.0083(4)       | 0.0034(4)       |
| C11B | 0.0248(5)       | 0.0163(5) | 0.0216(5)       | -0.0002(4)      | 0.0082(4)       | 0.0026(4)       |
| C12B | 0.0237(6)       | 0.0230(5) | 0.0253(6)       | -0.0015(4)      | 0.0073(5)       | 0.0008(4)       |
| C13B | 0.0300(6)       | 0.0255(6) | 0.0318(6)       | -0.0046(5)      | 0.0154(5)       | -0.0057(5)      |
| C14B | 0.0456(7)       | 0.0215(6) | 0.0255(6)       | 0.0005(5)       | 0.0158(6)       | -0.0043(5)      |
| C15B | 0.0390(7)       | 0.0284(6) | 0.0275(6)       | 0.0076(5)       | 0.0063(5)       | 0.0045(5)       |
| C16B | 0.0266(6)       | 0.0277(6) | 0.0313(6)       | 0.0069(5)       | 0.0092(5)       | 0.0054(5)       |

Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å<sup>2</sup>) for UM2037.

|      | x/a     | y/b     | z/c     | U(eq)    |
|------|---------|---------|---------|----------|
| H1A1 | -0.3054 | -0.1403 | -0.0963 | 0.035(2) |
| H1A2 | -0.4407 | -0.1174 | -0.1709 | 0.035(2) |
| H1A3 | -0.3877 | -0.0600 | -0.0536 | 0.035(2) |
| H5A1 | 0.0319  | 0.2174  | 0.0661  | 0.030(3) |
| H5A2 | -0.0417 | 0.3207  | 0.0873  | 0.030(3) |
| H6A  | 0.1352  | 0.4679  | 0.0584  | 0.014(3) |
| H7A1 | 0.1341  | 0.4480  | 0.2313  | 0.026(2) |
| H7A2 | 0.1826  | 0.3216  | 0.2365  | 0.026(2) |
| H9A1 | 0.4398  | 0.3501  | 0.2213  | 0.030(4) |
| H9A2 | 0.4997  | 0.4886  | 0.2131  | 0.027(3) |
| H10A | 0.4163  | 0.3714  | 0.0486  | 0.017(3) |
| H12A | 0.4465  | 0.6519  | 0.1460  | 0.026(3) |
| H13A | 0.4390  | 0.8275  | 0.0533  | 0.036(4) |

|      | x/a     | y/b    | z/c     | U(eq)    |
|------|---------|--------|---------|----------|
| H14A | 0.3379  | 0.8147 | -0.1262 | 0.037(4) |
| H15A | 0.2463  | 0.6253 | -0.2139 | 0.037(4) |
| H16A | 0.2570  | 0.4500 | -0.1222 | 0.030(4) |
| H1B1 | 0.6130  | 1.2649 | 0.3767  | 0.055(3) |
| H1B2 | 0.6974  | 1.3186 | 0.4914  | 0.055(3) |
| H1B3 | 0.5688  | 1.3677 | 0.4331  | 0.055(3) |
| H5B1 | 0.1522  | 1.0732 | 0.3117  | 0.033(3) |
| H5B2 | 0.1026  | 1.1447 | 0.3905  | 0.033(3) |
| H6B  | -0.0424 | 0.9538 | 0.3974  | 0.018(3) |
| H7B1 | -0.1397 | 1.1024 | 0.3024  | 0.026(2) |
| H7B2 | -0.0793 | 1.0843 | 0.2099  | 0.026(2) |
| H9B1 | -0.1844 | 0.8504 | 0.1023  | 0.036(4) |
| H9B2 | -0.2929 | 0.7757 | 0.1464  | 0.027(3) |
| H10B | -0.0842 | 0.7196 | 0.2106  | 0.018(3) |
| H12B | -0.3405 | 0.7272 | 0.2861  | 0.028(3) |
| H13B | -0.3943 | 0.6235 | 0.4223  | 0.035(4) |
| H14B | -0.2341 | 0.5631 | 0.5578  | 0.039(4) |
| H15B | -0.0189 | 0.6084 | 0.5577  | 0.042(4) |
| H16B | 0.0346  | 0.7096 | 0.4210  | 0.034(4) |
|      |         |        |         |          |

#### Table 9: Data collection details for UM2037.

| Axis  | dx/mm  | 20/°   | ω/°     | φ/°    | χ/°   | Width/° | Frames | Time/s | Wavelength/Å |
|-------|--------|--------|---------|--------|-------|---------|--------|--------|--------------|
| Omega | 50.039 | -31.50 | -31.50  | 0.00   | 54.71 | 0.50    | 366    | 24.00  | 0.71073      |
| Omega | 50.039 | -31.50 | -31.50  | 120.00 | 54.71 | 0.50    | 366    | 24.00  | 0.71073      |
| Omega | 50.039 | -31.50 | -31.50  | 240.00 | 54.71 | 0.50    | 366    | 24.00  | 0.71073      |
| Phi   | 50.039 | -31.50 | -211.50 | 0.00   | 54.71 | 0.50    | 720    | 24.00  | 0.71073      |

#### **References:**

1. Davies, H. M. L.; Ahmed, G.; Churchill, M. R. J. Am. Chem. Soc. 1996, 118, 10774-10780.

2. a) Kitazawa, T.; Mukaiyama, T. Heterocycles 2006, 69, 417-427.

b) Watanabe, Y.; Washio, T.; Shimada, N.; Anada, M.; Hashimoto, S. *Chem. Commun.* **2009**, 7294-7296. c) Varelis, P.; Graham, A. J.; Johnson, B. L.; Skelton, B. W.; White, A. H. *Aust. J. Chem.* **1994**, 47, 1735-1739.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

3. Shiina, I.; Miyao, R. Heterocycles 2008, 76, 1313-1328.