Fluorescent One-Dimensional Nanostructures from a Group of Uniform Materials Based on Organic Salts

Sergio L. de Rooy, ^a Bilal El-Zahab, ^{‡ a} Min Li, ^a Susmita Das, Ellen Broering, ^{b a} Lin Chandler, ^c Isiah M. Warner * ^a

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

Electronic Supporting Information

Table S1. Melting points of Rhodamine-Based GUMBOS.

Figure S1. ¹H-NMR (CDC13, 400MHz) of spectrum, A. [R6G][C1] and B. [R6G][TPB].

Figure S2. ¹C-NMR (CDCl3, 400MHz) of spectrum, A. [R6G][C1] and B. [R6G][TPB].

Figure S3. Electrospray ionization mass spectrum in positive ion mode, **A.** $[R6G^+]$ and negative ion mode **B.** $[TPB^-]$.

Figure S4. SEM image of A. Free [R6G][TPB] nanowires. B. [R6G][TPB] nanowire array.

Figure S5. Photostability of [R6G][TPB] nanowire array excited at 526 nm for the duration of 5000 s (14 nm slit width).

Rhodamine-Based GUMBOS	Melting point
[R110][TPB]	199 °C
[R6G][TPB]	87 °C
[RB][[TPB]	79 °C

Table S1. Melting points of Rhodamine-Based GUMBOS.

Figure S1. ¹H-NMR (CDCl3, 400MHz) of spectrum, A. [R6G][Cl] and B. [R6G][TPB].

Figure S2. ¹C-NMR (CDCl3, 400MHz) of spectrum, A. [R6G][Cl] and B. [R6G][TPB].

Figure S3. Electrospray ionization mass spectrum in positive ion mode, **A.** [R6G⁺] and negative ion mode **B.** [TPB⁻].

Figure S4. SEM image of A. Free [R6G][TPB] nanowires. B. [R6G][TPB] nanowire array.

Figure S5. Photostability of [R6G][TPB] nanowire array excited at 526 nm for the duration of 5000 s (14 nm slit width).