Supplementary Information for:

Direct assembly synthesis of metal complex-semiconductor hybrid photocatalyst anchored by phosphonate for highly efficient CO₂ reduction

Tomiko M. Suzuki,* Hiromitsu Tanaka, Takeshi Morikawa, Masayo Iwaki, Shunsuke Sato, Shu Saeki, Masae Inoue, Tsutomu Kajino and Tomoyoshi Motohiro Toyota Central Research & Development Labs. Inc., Nagakute, Aichi 480-1192, Japan.

Email: tomiko@mosk.tytlabs.co.jp

SI-1. Materials

N-doped Ta₂O₅ powder

N-doped Ta₂O₅ powder (N-Ta₂O₅) was prepared by annealing Ta₂O₅ powder under NH₃ flow at 848 K for 6 h, according to a previously reported method.^{1,2}

Synthesis of [Ru-dpbpy]/N-Ta₂O₅ by a direct assembly method

4,4'-diphosphonate-2,2'-bipyridine ([dpbpy])³ adsorbed on N-Ta₂O₅ ([dpbpy]/N-Ta₂O₅) was prepared by shaking a mixture of N-Ta₂O₅ (500 mg) and 1.5 mM [dpbpy] solution in DMSO (10 mL) overnight. The solution was centrifuged, washed, and dried *in vacuo* at 313 K. The adsorption spectra of the supernatants were measured using a UV/vis spectrophotometer (Shimadzu UV-3600) and the amount of adsorbed ligand ([dpbpy]) on N-Ta₂O₅ was calculated. [dpbpy]/N-Ta₂O₅ (400 mg) and [Ru(bpy)(CO)₂(CF₃SO₃)₂]⁴ (2 equiv. vs. adsorbed [dpbpy]) were mixed in ethanol under N₂ and refluxed for 5 h. The solution was filtered, washed, and dried *in vacuo* to obtain [Ru-dpbpy]/N-Ta₂O₅. The [Ru(dcbpy)(bpy)(CO)₂]²⁺/N-Ta₂O₅ ([Ru-dcbpy]/N-Ta₂O₅, anchoring group: carboxylate) hybrid photocatalysts were also synthesized by a similar method. The chemical structures of the composites were characterized using Fourier transform infrared (FTIR) spectroscopy (VERTEX 80, Bruker Optics) combined with an attenuated total reflectance (ATR) accessory (Dura Sample IR, Smiths Detection). The

Ru content in the samples was determined by inductively-coupled plasma (ICP) analysis (Rigaku CIROUS 120 EOP).

Synthesis of [Ru-dpbpy]/TiO₂ by a direct assembly method

Ru-complex immobilized using phosphonate groups on TiO₂ powder (particle size 20 nm)-coated fluorine-doped tin dioxide (FTO) glass were fabricated by the direct assembly method (abbreviated as [Ru-dpbpy]/TiO₂).

4,4'-diphosphonate-2,2'-bipyridine ([dpbpy])³ adsorbed on TiO₂/FTO electrode ([dpbpy]/TiO₂) was prepared by shaking a mixture of TiO₂/FTO electrode (0.8 cm x 1 cm) and 1 mM [dpbpy] solution in DMSO (5 mL) overnight. The electrode was washed and dried *in vacuo* at 313 K. [dpbpy]/TiO₂ and [Ru(bpy)(CO)₂(CF₃SO₃)₂]⁴ were mixed in ethanol under N₂ and refluxed for 5 h. The solution was filtered, washed, and dried *in vacuo* to obtain [Ru-dpbpy]/TiO₂. The [Ru-dcbpy]/TiO₂ electrode (anchoring group: carboxylate) was also synthesized by a similar method.

SI-2. FE-SEM image of N-Ta₂O₅

A Hitachi FE-SEM S-5500 field-emission scanning electron microscope was used for morphological characterization of N-Ta₂O₅.

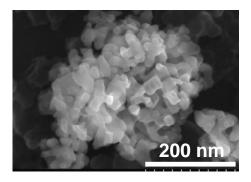


Fig. S1 FE-SEM image of N-Ta₂O₅.

SI-3. TOF-SIMS measurements of hybrid photocatalysts

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements were performed using a TOF-SIMS V instrument (ION-TOF GmbH) equipped with a Bi liquid metal ion gun. Mass spectra were acquired with a pulsed 30 keV, 1.6 pA Bi⁺ primary ion beam in high current bunched mode from an area of $100 \mu m \times 100 \mu m$. The total ion dose in these measurements was maintained to ensure static conditions.

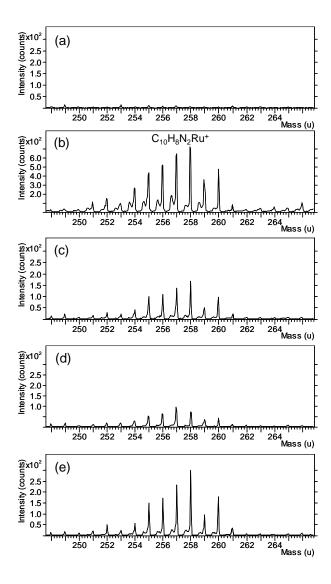


Fig. S2 TOF-SIMS positive spectra of (a) N-Ta₂O₅, (b) [Ru-bpy], (c) [Ru-dcbpy]/N-Ta₂O₅, (d) [Ru-dcbpy]_{ads}/N-Ta₂O₅, and (e) [Ru-dpbpy]/N-Ta₂O₅.

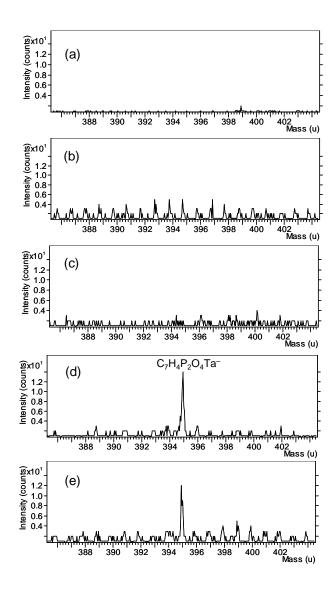


Fig. S3 TOF-SIMS negative spectra of (a) N-Ta₂O₅, (b) [Ru-bpy], (c)dpbpy, (d) [dpbpy]/N-Ta₂O₅, and (e) [Ru-dpbpy]/N-Ta₂O₅.

SI-4. Cyclic voltammograms of Ru-complex on electrode

The redox potentials of the complexes were measured in an MeCN solution containing tetraethylammonium tetrafluoroborate (0.1 M) under Ar or CO_2 atmosphere. The cyclic voltammetry was performed using an ALS2323 (ALS CO., Ltd.) electrochemical analyzer with a glassy carbon disk working electrode and I_2/I_3^- (0.1 M) reference electrode, and a Pt counter electrode.

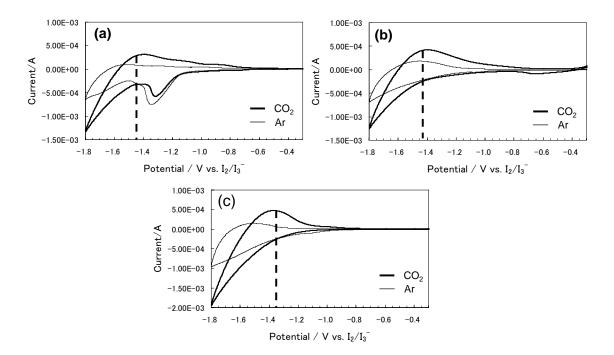


Fig. S4 Cyclic voltammograms of (a) a mixture of Ru-bpy solution and FTO-TiO₂, (b) [Ru-dcbpy]/TiO₂, and (c) [Ru-dpbpy]/TiO₂ in acetnitrile solutions containing tetraethyammonium tetrafluoroborate $(0.1\ M)$ under Ar or CO₂ atmosphere.

References

- 1) T. Morikawa, S. Saeki, T. Suzuki, T. Kajino and T. Motohiro, *Appl. Phys. Lett.*, 2010, **96**, 142111.
- 2) S. Sato, T. Morikawa, S. Saeki, T. Kajino and T. Motohiro, *Angew. Chem. Int. Ed.*, 2010, **49**, 5101.
- 3) V. Penicaud, F. Odobel and B. Bujoli, Tetrahedron Lett., 1998, 39, 3689.
- 4) P. A. Anderson, G. B. Deacon, K. H. Haarmann, F. R. Keene, T. J. Meyer, D. A. Reitsma, B. W. Skelton, G. F. Strouse, N. C. Thomas, J. A. Treadway and A. H. White, *Inorg. Chem.*, 1995, **34**, 6145.