Electronic Supplementary Information

Chemical and photochemical oxidation of organic substrates by ruthenium aqua complexes with water as an oxygen source

Fei Li, *^a Miao Yu,^a Yi Jiang,^a Fang Huang^a, Yanqing Li,^a Biaobiao Zhang,^a and Licheng Sun*^{ab}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian 116024, China. E-mail: lifei@dlut.edu.cn; Fax: +46 84986245; Tel: +46 84986247 ^bDepartment of Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden. E-mail: lichengs@kth.se.

Materials

All synthetic reactions were carried out under N₂ atmosphere with standard Schlenk techniques. Solvents were dried and distilled prior to use according to the standard methods. Compounds $[Ru(dmp)_2(H_2O)_2](PF_6)_2$ (1),^[1] $[Ru(bpy)_3]Cl_2^{[2]}$, $Ru(tpy)Cl_3^{[3]}$ and $[Ru(tpy)(bpy)Cl]Cl^{[4]}$ were prepared according to known procedures and stored in fridge under N₂ atmosphere. All other chemicals are commercially available. $[Co(NH_3)_5Cl]Cl_2$ and $Ce(NH_4)_2(NO_3)_6$ (Ce^{IV}) were purchased from Aldrich and Tianjin chemical company, respectively. $H_2^{18}O$ (97 atom%) was purchased from Aladdin chemical company.

Instruments

¹H NMR Spectra were collected at 298 K using a Bruker DRX-400 instrument. Electrospray ionization mass spectra were recorded on a Q-Tof Micromass spectrometer (Manchester, England). EI-MS analyses were carried out on a gas chromatograph fitted with a mass spectrometer (GC–MS 6890/5973, Agilent, USA). UV-Vis absorption measurements were carried out on a HP 8450 spectrophotometer.

Synthesis of [Ru(tpy)(bpy)(H₂O)](ClO₄)₂ (2)

 $[Ru(tpy)(bpy)(H_2O)](ClO_4)_2$ was synthesized by a modified procedure reported by Berlinguette.^[4] To a 5 mL MeOH/H₂O (1:1 v:v) solution of [Ru(tpy)(bpy)Cl]Cl (168 mg, 0.3 mmol), was added AgNO₃ (102 mg, 0.6 mmol), the resulting mixture was heated at reflux for 3h and filtrated through Celite. Excess of NaClO₄ was added to the filtrate, slow evaporation of MeOH resulted in the formation of red crystals, which was collected and dried under vacuum (159 mg, 75 %). The structure of this complex was characterized by ¹H NMR, which is identical to that reported in literature.^[4]

General procedure for catalytic oxidation with Ce^{IV} as oxidant

To a N₂-degassed D₂O solution (1 mL) of alkene (0.1 mmol) and catalyst (0.001 mmol) was added Ce^{IV} (0.4 mmol), the mixture was stirred at room temperature for 3 h. The final solution was directly analyzed by ¹H NMR spectroscopy by adding fixed amount of DMF as an internal standard. Control experiment was carried out in a similar manner described above but without catalyst.

General procedure for photocatalytic oxidation

A N₂-degassed aqueous phosphate buffer solution (5 mL, pH 6.8) containing catalyst $(2 \times 10^{-5} \text{ M})$, $[\text{Ru}(\text{bpy})_3]\text{Cl}_2 (2 \times 10^{-4} \text{ M})$, organic substrate (alcohol or sulfide 2×10^{-2} M) and $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2 (2 \times 10^{-2} \text{ M})$ was exposed to irradiation of an Xe lamp light source (500 W) with a cut-off filter ($\lambda > 400$ nm) and stirred for 5 h at room temperature. The resulted solution was extracted with CH₂Cl₂ for three times and dried with anhydrous Na₂SO₄. After removal of solvent, the products were characterized and quantified by ¹H NMR spectroscopy. Control experiment was carried out in a similar manner described above but without catalyst.

¹⁸O labeling experiment with cyclohexene as substrate

To a N₂-degassed $H_2^{18}O$ solution (0.5 mL) of cyclohexene (0.1 mmol) and catalyst (0.001 mmol) was added Ce^{IV} (0.4 mmol), the mixture was stirred at room temperature for 3 h. The final solution was extracted by diethyl ether and analyzed by GC-MS.

¹⁸O labeling experiment with thioanisole as substrate

A N₂-degassed H₂¹⁸O phosphate buffer solution (1 mL, pH 6.8) containing catalyst (2 $\times 10^{-5}$ M), [Ru(bpy)₃]Cl₂ (2 $\times 10^{-4}$ M), organic substrate (alcohol or sulfide 2 $\times 10^{-2}$ M) and [Co(NH₃)₅Cl]Cl₂ (2 $\times 10^{-2}$ M) was exposed to irradiation of an Xe lamp light source (500 W) with a cut-off filter ($\lambda > 400$ nm) and stirred for 5 h at room temperature. The resulted solution was extracted with CH₂Cl₂ and purified by a shot column. The product was finally analyzed by ESI-MS.

Electrochemistry

The electrochemical measurements were recorded on a BAS-100W electrochemical potentiostat in a three-electrode cell under argon atmosphere. The working electrode was a glassy carbon disk (diameter, 3 mm) successively polished with 3 and 1 μ m diamond pastes and sonicated in ion-free water before use. The counter electrode was a platinum wire. The reference electrode was an aqueous Ag/AgCl electrode. Potential versus NHE was calibrated by using Ru(bpy)₃Cl₂ as a reference with *E*(Ru^{II/III}) = 1.26 V.

Figure S1 a) EI-MS spectrum of adipic acid generated with $H_2^{18}O$ as solvent. The spectrum is identical to that of ¹⁸O labeled adipic acid reported by Kojima and Funkuzumi *et al.*^[5] b) ESI-MS spectra of methyl phenyl sulfoxide generated with $H_2^{16}O$ (left) and $H_2^{18}O$ (right) as solvents. Left: PhS(¹⁶O)CH₃, *m/z* = 141 [M + H⁺], *m/z* = 143 [M + Na⁺] and *m/z* = 303 [2M + Na⁺]. Right: PhS(¹⁸O)CH₃, *m/z* = 143 [M + H⁺], *m/z* = 165 [M + Na⁺], *m/z* = 285 [2M + H⁺] and *m/z* = 307 [2M + Na⁺].

Figure S2 The adsorption of phosphate buffer solution consisting of complex **2** (6×10^{-5} M), $[Ru(bpy)_3]^{2+}$ (3×10^{-5} M) and $[Co(NH_3)_5Cl]^{2+}$ (3×10^{-4} M) before and after visible light illumination. The band with maximum at 460 nm arising from MLCT transitions of **2** disappears as Ru^{II}=O oxidized to Ru^{IV}=O upon illumination,^[6] while the adsorption of photosenzitizer at 420 and 450 nm remains.

Fig. S3 UV/Vis spectral changes upon addition of 1 to 5 equiv. of Ce^{IV} into a deaerated aqueous solution of complex 1 (5 × 10⁻⁵ M), which reflects the species variation from Ru^{II} to Ru^{VI}.

Fig. S4 Cyclic voltammograms of complex **1** (1 mM, black curve) and $[Ru(bpy)_3]^{2+}$ (1 mM, red curve) in phosphate buffer (pH 6.8, 50 mM) solutions, which indicates the oxidation of **1** by photogenerated $[Ru(bpy)_3]^{3+}$ is thermodynamically favorable. Electrode: GC, scan rate:100 mV/s.

Control experiments in the absence of catalysts

Fig. S5 ¹H NMR spectrum of the resulted solution from chemical oxidation of cyclohexene (internal standard DMF (\blacksquare)). Reaction conditions: cyclohexene (0.1 mmol) and Ce^{IV} (0.4 mmol) in D₂O solution (1 mL) stirred for 3 h.

Fig. S6 ¹H NMR spectrum of the resulted solution from chemical oxidation of sodium *p*-styrene sulfate (sodium *p*-styrene sulfate (\bullet), sodium 4-formylbenzenesulfonate (\blacktriangle), sodium 4-(1,2-dihydroxyethyl)benzenesulfonate (\blacklozenge), internal standard DMF (\bullet)). Reaction conditions: sodium *p*-styrene sulfate (0.1 mmol) and Ce^{IV} (0.4 mmol) in D₂O solution (1 mL) stirred for 3 h.

Fig. S7 ¹H NMR spectrum of the residue extracted by DCM from resulted solution of photocatalytic oxidation of thioanisole (solvent CDCl₃, thioanisole (•), methyl phenyl sulfoxide (\blacktriangle)). Reaction conditions: [Ru(bpy)₃]Cl₂ (2 × 10⁻⁴ M), sulfide (2 × 10⁻² M),

and $[Co(NH_3)_5Cl]Cl_2 (2 \times 10^{-2} \text{ M})$ in 5 mL neutral phosphate buffer solution stirred for 5h under visible light illumination.

Catalytic oxidation

Fig. S8 ¹H NMR spectrum of the resulted solution from chemical oxidation of cyclohexene (adipic acid (\blacktriangle), internal standard DMF (\blacksquare)). Reaction conditions: complex **1** (0.001 mmol), cyclohexene (0.1 mmol) and Ce^{IV} (0.4 mmol) in D₂O solution (1 mL) stirred for 3 h.

Fig. S9 ¹H NMR spectrum of the resulted solution from chemical oxidation of sodium *p*-styrene sulfate (sodium 4-formylbenzenesulfonate (\blacktriangle)). Reaction conditions:

complex **1**(0.001 mmol), sodium *p*-styrene sulfate (0.1 mmol) and Ce^{IV} (0.4 mmol) in D₂O solution (1 mL) stirred for 3 h.

Fig. S10 ¹H NMR spectrum of the residue extracted by DCM from resulted solution of photocatalytic dehydrogenation of benzyl alcohol (solvent CDCl₃, benzyl alcohol (•), benzaldehyde (\blacktriangle)).Reaction conditions: complex **1** (4 × 10⁻⁵ M), [Ru(bpy)₃]Cl₂ (4 × 10⁻⁴ M), alcohol (2 × 10⁻² M), and [Co(NH₃)₅Cl]Cl₂ (2 × 10⁻² M) in 5 mL neutral phosphate buffer solution stirred for 5h under visible light illumination.

Fig. S11 ¹H NMR spectrum of the residue extracted by DCM from resulted solution

of photocatalytic oxidation of thioanisole (solvent CDCl₃, thioanisole (\bullet), methyl phenyl sulfoxide (\blacktriangle)). Reaction conditions: complex **1** (4 × 10⁻⁵ M), [Ru(bpy)₃]Cl₂ (4 × 10⁻⁴ M), sulfide (2 × 10⁻² M), and [Co(NH₃)₅Cl]Cl₂ (2 × 10⁻² M) in 5 mL neutral phosphate buffer solution stirred for 5h under visible light illumination.

References

- [1] J. P. Collin and J. P. Sauvage, Inorg. Chem., 1986, 25, 135.
- [2] M. S. Lowry, W. R. Hudson, R. A. Pascal, Jr., and S. Bernhard, J. Am. Chem. Soc., 2004, 126, 14129.
- [3] A. Winter, J. Hummel, N. Risch, J. Org. Chem., 2006, 71, 4862.
- [4] D. J. Wasylenko, C. Ganesamoorthy, B. D. Koivisto, M. A. Henerson and C. P. Berlinguette, *Inorg. Chem.*, 2010, 49, 2202.
- [5] Y. Hirai, T. Kojima, Y. Mizutani, Y. Shiota, K. Yoshizawa and S. Fukuzumi, Angew. Chem. Int. Ed., 2008, 47, 5772.
- [6] W. Chen, F. N. Rein and R. C. Rocha, Angew. Chem. Int. Ed., 2009, 48, 9672.