Electronic Supplementary Information

UV Promoted Phenanthridine Syntheses from Oxime Carbonate Derived Iminyl Radicals

Roy T. McBurney, Alexandra M. Z. Slawin, Laura A. Smart, Yanping Yu

and John C. Walton

University of St. Andrews, School of Chemistry, EaStChem, St. Andrews, Fife KY16 9ST, UK

Table of Contents

General Experimental Section	S 3
Synthesis and Experimental Section	S5
Scheme S1: Synthesis of 3-methoxyphenanthridine derivatives	S5
Scheme S2: Synthesis of 3-methoxyphenanthridine 2 and nitrile 3	S 8
Table S1: Solvent screening results for the UV photolysis of 1	S 8
Scheme S3: Synthesis of 6-methylphenanthridine derivatives	S 8
Scheme S4: Synthesis of quinoline derivatives	S20
Scheme S5: Synthesis of isoquinoline derivatives	S24
Scheme S6: Synthesis of trispheridine	S28
Figure S1: The X-ray crystal structure of 1b	S 30
Table S2: Crystal data for 1b	S 30
Figure S2: The X-ray crystal structure of 5d	S 31
Table S3: Crystal data for 5d	S 31
Figure S3: The X-ray crystal structure of 4f	S32
Table S4: Crystal data for 4f	S32
Figure S4: The X-ray crystal structure of 10	S32
Table S5: Crystal data for 10	S33
References	S34
¹ H and ¹³ C NMR spectra of novel compounds	S35

General Experimental Section

All reagents and solvents were purchased from either Sigma Aldrich or Alfa Aesar and used without further purification. Toluene was distilled over sodium and dichloromethane distilled over calcium hydride. 4'-Methoxybiphenyl-2-carbaldehyde,¹ 2-acetyl-biphenyl oxime,² 2acetyl-3-bromofuran³ and 6-phenylbenzo[d][1,3]dioxole-5-carbaldehyde oxime² were prepared according to the literature procedures. Column chromatography was carried out using Silica 60A (particle size 40-63 µm, Silicycle, Canada) as the stationary phase, and TLC was performed on precoated silica gel plates (0.20 mm thick, Sil G UV₂₅₄, Macherey-Nagel, Germany) and observed under UV light. ¹H and ¹³C NMR spectra were recorded on Bruker AV II 400 and Bruker AV 300 instruments. Chemical shifts are reported in parts per million (ppm) from low to high frequency and referenced to the residual solvent resonance. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s = singlet, d = doublet, t = triplet, dd = double doublet, q = quartet, m =multiplet, b = broad. Melting points (M.p.) were determined using a Sanyo Gallenkamp apparatus and are reported uncorrected. Mass spectrometry was carried out by the services at the University of St Andrews and the EPSRC National Mass Spectrometry Service Centre, Swansea, UK.

EPR Spectroscopy

EPR spectra were obtained with a Bruker EMX 10/12 spectrometer fitted with a rectangular ER4122 SP resonant cavity and operating at 9.5 GHz with 100 kHz modulation. Stock solutions of each oxime carbonate (2 to 15 mg) and MAP (1 equiv wt/wt) in *tert*-butylbenzene or benzene (0.5 mL) were prepared and sonicated if necessary. An aliquot (0.2 mL), to which any additional reactant had been added, was placed in a 4 mm o.d. quartz tube, de-aerated by bubbling nitrogen for 15 min, and photolysed in the resonant cavity by unfiltered light from a 500 W super pressure mercury arc lamp. The majority of EPR spectra

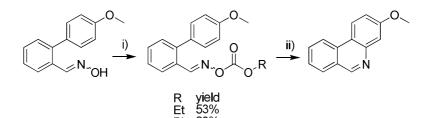
were recorded with 2.0 mW power, 0.8 G_{pp} modulation intensity and gain of *ca.* 10⁶. In all cases where spectra were obtained, hfs were assigned with the aid of computer simulations using the Bruker SimFonia and NIEHS Winsim2002 software packages. EPR signals were digitally filtered and double integrated using the Bruker WinEPR software.

Suzuki Coupling General Procedure

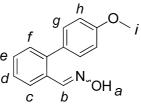
To a stirred solution of aryl bromide (1.0 equiv.) and aryl boronic acid (1.2 equiv.) in a toluene/ethanol (4:1, 0.1 M) mixture was added potassium carbonate (3.0 equiv.) and tetrakis(triphenylphosphine) palladium(II) (0.1 equiv.). The resulting suspension was heated at reflux under an atmosphere of Ar for 18 h. The solvent was removed under reduced pressure and the crude residue was redissolved in H₂O (100 mL) and extracted with EtOAc (3 \times 100 mL). The combined organic layers were washed with brine (100 mL) and dried over MgSO₄. The filtrate was concentrated under reduced pressure and purified by column chromatography (CH₂Cl₂ as eluent).

Oxime Formation General Procedure

To a stirred solution of carbonyl (1.0 equiv.) in EtOH (0.1 M) was added hydroxylamine hydrochloride (2.0 equiv.) and sodium acetate (2.0 equiv.). The resulting suspension was heated at reflux for 18 h. The solvent was removed under reduced pressure and the crude residue redissolved in H₂O (100 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and used without further purification.

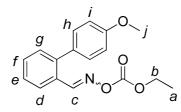

Oxime Carbonate Formation General Procedure

To a stirred solution of oxime (1.0 equiv.) in CH_2Cl_2 (0.1 M) was added ethyl chloroformate or phenyl chloroformate (1.0 equiv.) and pyridine (1.0 equiv.). The yellow solution was stirred at rt for 18 h. The reaction mixture was diluted with CH_2Cl_2 (100 mL) and washed with 1 M HCl, saturated aqueous NaHCO₃ (100 mL) and brine (100 mL). The organic layer was dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography (CH₂Cl₂ as eluent).

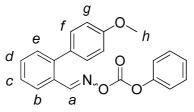

UV Cyclisation of Oxime Carbonate Derivatives General Procedure

A quartz tube was charged with oxime carbonate (1.0 equiv.), 4-methoxyacetophenone (MAP) (1 equiv. wt/wt) and benzotrifluoride (3 mL). The reaction mixture was degassed by bubbling Ar through the solution for 15 min. The solution was irradiated with UV light (400 W medium pressure Hg lamp) for 3 h. The solvent was removed under reduced pressure and the crude residue purified by column chromatography (CH₂Cl₂:EtOAc 9:1 as eluent).

Synthesis and Experimental Section

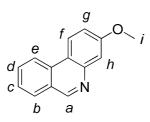

Scheme S1: Synthesis of 3-methoxyphenanthridine derivatives. Reagents and conditions: i) NH₂OH.HCl, NaOAc, EtOH, reflux, 18 h, 96%; ii) EtOCO₂Cl or PhOCO₂Cl, pyridine, CH₂Cl₂, rt, 18 h; iv) MAP, UV irradiation, 3 h.

4'-Methoxybiphenyl-2-carbaldehyde oxime

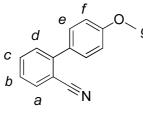

Prepared from 4'-methoxybiphenyl-2-carbaldehyde¹ (0.999 g, 4.71 mmol), hydroxylamine hydrochloride (0.655 g, 9.42 mmol) and sodium acetate (0.772 g, 9.47 mmol). Colourless oil (1.028 g, yield = 96%). ¹H NMR (400 MHz, CDCl₃, 294 K): δ = 3.86 (s, 3H, H_i), 6.98 (d, *J* =

8.8 Hz, 2H, H_h), 7.25 (d, J = 8.8 Hz, 2H, H_g), 7.32-7.38 (m, 2H, H_{d,f}), 7.43 (dd, J = 1.5 Hz, 7.5 Hz, 1H, H_e), 7.52 (br, 1H, H_a), 7.86 (d, J = 7.5 Hz, 1H, H_c), 8.12 (s, 1H, H_b); ¹³C NMR (100 MHz, CDCl₃, 295 K): $\delta = 55.4$, 113.8, 126.1, 127.3, 129.6, 129.7, 130.3, 130.9, 131.8, 141.9, 150.0, 159.2; LR-ESIMS: m/z = 250 [MNa]⁺; HR-ESIMS: m/z = 250.0848 (calcd. for C₁₄H₁₃NO₂Na, 250.0828).

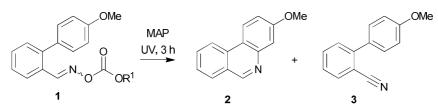
4'-Methoxybiphenyl-2-carbaldehyde O-ethoxycarbonyl oxime - 1a


Prepared from 4'-methoxybiphenyl-2-carbaldehyde oxime (0.470 g, 2.07 mmol), ethyl chloroformate (0.22 mL, 2.36 mmol) and pyridine (0.19 mL, 2.36 mmol). Tan coloured solid (0.372 g, 53%). M.p. = 67-69 °C; ¹H NMR (400 MHz, CDCl₃, 294 K): δ = 1.36 (t, *J* = 7.1 Hz, 3H, H_a), 3.86 (s, 3H, H_j), 4.34 (d, *J* = 7.1 Hz, 2H, H_b), 6.97 (d, *J* = 8.8 Hz, 2H, H_i), 7.22 (d, *J* = 8.8 Hz, 2H, H_h), 7.36-7.41 (m, 2H, H_{e,g}), 7.50 (dd, *J* = 1.4 Hz, 7.5 Hz, 1H, H_f), 8.10 (dd, *J* = 1.2 Hz, 7.8 Hz, 1H, H_d), 8.34 (s, 1H, H_c); ¹³C NMR (100 MHz, CDCl₃, 294 K): δ = 14.3, 55.4, 64.8, 114.0, 127.4, 127.4, 127.5, 130.3, 130.9, 131.2, 131.3, 143.2, 153.8, 155.4, 159.5; LR-ESIMS: m/z = 322 [MNa]⁺; HR-ESIMS: m/z = 322.1055 (calcd. for C₁₇H₁₇NO₄Na, 322.1055).

4'-Methoxybiphenyl-2-carbaldehyde O-phenoxycarbonyl oxime – 1b


Prepared from 4'-methoxybiphenyl-2-carbaldehyde oxime (0.470 g, 2.07 mmol), phenyl chloroformate (0.26 mL, 2.07 mmol) and pyridine (0.17 mL, 2.07 mmol). Tan coloured solid

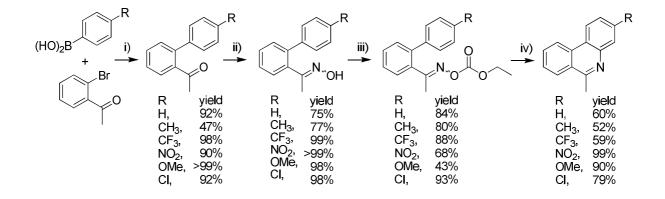
(0.598 g, 83%). M.p. = 105-107 °C; ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 3.88 (s, 3H, H_h), 7.01 (d, *J* = 8.8 Hz, 2H, H_g), 7.26 (m, 5H, H_{f,ArH}), 7.38-7.44 (m, 4H, H_{c,e,ArH}), 7.53 (dd, *J* = 1.4 Hz, 7.5 Hz, 1H, H_d), 8.13 (dd, *J* = 1.2 Hz, 8.8 Hz, 1H, H_b), 8.44 (s, 1H, H_a); ¹³C NMR (100 MHz, CDCl₃, 296 K): δ = 55.4, 114.1, 120.9, 126.3, 127.3, 127.4, 127.5, 129.6, 130.3, 130.9, 131.1, 131.5, 143.4, 150.9, 152.2, 156.2, 159.5; LR-ESIMS: *m*/*z* = 365 [M*NH*₄]⁺; HR-ESIMS: *m*/*z* = 365.1499 (calcd. for C₂₁H₂₁O₄N₂, 365.1496).


3-Methoxyphenanthridine - 2

¹H NMR spectrum was consistent with that reported in the literature.¹ ¹H NMR (400 MHz, CDCl₃, 295 K): $\delta = 4.00$ (s, 3H, H_i), 7.33 (dd, J = 2.7 Hz, 9.0 Hz, 1H, H_g), 7.61 (d, J = 2.7 Hz, 1H, H_h), 7.64 (d, J = 1.0 Hz, 7.1 Hz, 1H, H_d), 7.84 (dd, J = 1.3 Hz, 7.0 Hz, 1H, H_c), 8.03 (d, J = 8.0 Hz, 1H, H_e), 8.48 (d, J = 9.0 Hz, 1H, H_f), 8.52 (d, J = 8.1 Hz, 1H, H_b), 9.26 (s, 1H, H_a).

4'-Methoxybiphenyl-2-carbonitrile - 3

¹H NMR spectrum was consistent with that reported in the literature.⁴ ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 3.87 (s, 3H, H_g), 7.02 (d, *J* = 8.9 Hz, 2H, H_f), 7.40 (dd, *J* = 1.4 Hz, 7.7 Hz, 1H, H_c), 7.51 (m, 3H, H_{a,e}), 7.62 (dd, *J* = 1.4 Hz, 7.7 Hz, 1H, H_b), 7.74 (ddd, *J* = 05 Hz, 1.4 Hz, 7.7 Hz, 1H, H_d).



Scheme S2: Synthesis of 3-methoxyphenanthridine 2 and nitrile 3, see table S1 for conditions and results.

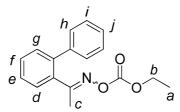
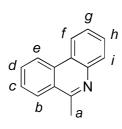
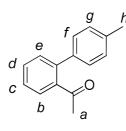

Entry	\mathbf{R}^1	Solvent	Yield of 2 (%)	Yield of $3(\%)$
1	Et	PhCF ₃	30	27
2	Ph	PhCF ₃	41	40
3	Ph	MeCN	40^a	45^a
4	Ph	DMF	41^a	36 ^{<i>a</i>}
5	Ph	tBuOH	75	20

Table S1: Solvent screening results for the UV photolysis of **1**.

^{*a* ¹}H NMR estimated yields using CH₂Br₂ as an internal standard.

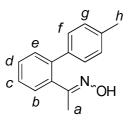

Scheme S3: Synthesis of substituted 6-methylphenanthridine derivatives. Reagents and conditions: i) Pd(PPh₃)₄, K₂CO₃, toluene, EtOH, reflux, 18 h, Ar; ii) NH₂OH.HCl, NaOAc, EtOH, reflux, 18 h; iii) EtOCO₂Cl, pyridine, CH₂Cl₂, rt, 18 h; iv) MAP, PhCF₃, UV irradiation, 3 h.

2-Acetyl-biphenyl O-ethoxycarbonyl oxime - 4a

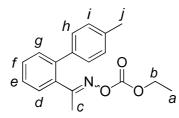

Prepared from 2-acetyl-biphenyl oxime² (0.600 g, 2.84 mmol), ethyl chloroformate (0.27 mL, 2.84 mmol) and pyridine (0.33 mL, 2.84 mmol). Yellow oil (0.683 g, yield = 84%). ¹H NMR

(400 MHz, CDCl₃, 295 K): $\delta = 1.38$ (t, J = 7.1 Hz, 3H, H_a), 1.76 (s, 3H, H_c), 4.35 (q, J = 7.1 Hz, 2H, H_b), 7.33-7.42 (m, 7H, H_{ArH}), 7.45-7.54 (m, 2H, H_{ArH}); ¹³C NMR (100 MHz, CDCl₃, 295 K): $\delta = 14.3$, 18.0, 64.7, 127.4, 127.7, 128.6, 128.9, 129.7, 129.9, 130.3, 134.9, 140.4, 140.6, 153.9, 166.7; LR-ESIMS: m/z = 306 [MNa]⁺; HR-ESIMS: m/z = 306.1109 (calcd. for C₁₇H₁₇NO₃Na, 306.1106).

6-Methylphenanthridine - 5a

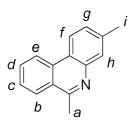

Prepared from 2-acetyl-biphenyl *O*-ethoxycarbonyl oxime (0.059 g, 0.021 mmol). Colourless solid (0.024 g, yield = 60%). ¹H and ¹³C NMR spectrum were consistent with those reported in the literature.² M.p. = 65 °C; ¹H NMR (300 MHz, CDCl₃, 296 K): δ = 3.09 (s, 3H, H_a), 7.64-7.76 (m, 3H, H_{d,g,h}), 7.87 (dd, *J* = 1.3 Hz, 7.7 Hz, 1H, H_c), 8.18 (d, *J* = 8.0 Hz, 1H, H_i), 8.25 (d, *J* = 8.2 Hz, 1H, H_e), 8.55 (d, *J* = 8.1 Hz, 1H, H_f), 8.65 (d, *J* = 8.3 Hz, 1H, H_b); ¹³C NMR (75 MHz, CDCl₃, 296 K): δ = 23.8, 122.4, 122.7, 124.2, 126.3, 126.7, 127.0, 127.7, 129.1, 129.8, 130.9, 133.0, 144.1, 159.3.

2-*p*-Tolylacetophenone

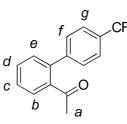

Prepared from *p*-tolylboronic acid (0.400 g, 3.00 mmol), 2'-bromoacetophenone (0.33 mL, 2.50 mmol), tetrakis(triphenylphosphine)palladium(II) (0.283 g, 0.25 mmol) and potassium carbonate (1.016 g, 7.40 mmol). Colourless oil (0.271 g, yield = 47%). ¹H and ¹³C NMR

spectra were consistent with those reported in the literature.⁵ ¹H NMR (400 MHz, CDCl₃, 296 K): $\delta = 2.01$ (s, 3H, H_a), 2.41 (s, 3H, H_h), 7.24 (s, 4H, H_{f,g}), 7.37-7.42 (m, 2H, H_{c,d}), 7.48-7.54 (m, 2H, H_{b,e}); ¹³C NMR (75 MHz, CDCl₃, 296 K): $\delta = 21.6$, 30.9, 127.6, 128.2, 129.2, 129.8, 130.6, 131.1, 138.2 (× 2), 140.9, 141.3, 205.6.

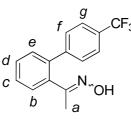
2-p-Tolylacetophenone oxime


Prepared from 2-*p*-tolylacetophenone (0.246 g, 1.20 mmol), hydroxylamine hydrochloride (0.163 g, 2.30 mmol) and sodium acetate (0.192 g, 2.30 mmol). Colourless oil (0.209 g, yield = 77%). Two isomers (1:4). ¹H NMR (400 MHz, CDCl₃, 296 K): $\delta = 1.70/1.76$ (s, 3H, H_a), 2.39 (s, 3H, H_h), 7.19-7.22 (m, 2H, H_g), 7.28-7.30 (m, 2H, H_f), 7.32-7.45 (m, 4H, H_{b,c,d,e}); ¹³C NMR (75 MHz, CDCl₃, 296 K): $\delta = 16.3$, 21.6, 127.6, 129.2, 129.4, 129.5, 129.6, 130.7, 137.1, 137.5, 138.4, 141.0, 160.0; LR-ESIMS: m/z = 248 [MNa]⁺; HR-ESIMS: m/z = 248.1048 (calcd. for C₁₅H₁₅NONa, 248.1051).

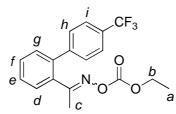
2-p-Tolylacetophenone O-ethoxycarbonyl oxime - 4b


Prepared from 2-*p*-tolylacetophenone oxime (0.142 g, 0.63 mmol), ethyl chloroformate (0.06 mL, 0.63 mmol) and pyridine (0.05 mL, 0.63 mmol). Colourless oil (0.150 g, yield = 80%). Two isomers (1:3). ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 1.39 (t, *J* = 7.1 Hz, 3H, H_a), 1.77/2.05 (s, 3H, H_c), 2.39/2.40 (s, 3H, H_j), 4.36 (q, *J* = 7.1 Hz, 2H, H_b), 7.21 (d, *J* = 7.8 Hz,

2H, H_i), 7.29-7.52 (m, 5H, H_{e,f,g,h}), 7.75 (m, 1H, H_d); ¹³C NMR (100 MHz, CDCl₃, 297 K): δ = 14.7, 18.4, 21.6, 65.1, 127.4, 127.6, 129.0, 129.2, 129.7, 130.1, 130.3, 130.6, 137.9, 141.0, 153.4, 167.3; LR-ESIMS: m/z = 320 [MNa]⁺; HR-ESIMS: m/z = 320.1256 (calcd. for C₁₈H₁₉NO₃Na, 320.1263).

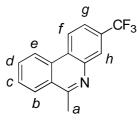

3,6-Dimethylphenanthridine – 5b

Prepared from 2-*p*-tolylacetophenone *O*-ethoxycarbonyl oxime (0.051 g, 0.172 mmol). Tan coloured solid (0.018 g, yield = 52%). M.p. = 89-91 °C; ¹H NMR (400 MHz, CDCl₃, 295 K): $\delta = 2.59$ (s, 3H, H_i), 3.04 (s, 3H, H_a), 7.45 (d, J = 8.3 Hz, 1H, H_g), 7.66 (m, 1H, H_d), 7.82 (m, 1H, H_c), 7.91 (s, 1H, H_h), 8.20 (dd, J = 0.4 Hz, 1H, H_e), 8.42 (d, J = 8.3 Hz, 1H, H_f), 8.59 (d, J = 8.3 Hz, 1H, H_b); ¹³C NMR (100 MHz, CDCl₃, 296 K): $\delta = 21.6$, 23.4, 121.4, 121.7, 122.1, 125.6, 126.5, 126.8, 128.0, 129.0, 130.4, 132.7, 138.8, 143.8, 158.9; LR-EIMS: m/z = 207 [M]⁺; HR-ESIMS: m/z = 207.1042 (calcd. for C₁₅H₁₃N, 207.1043).

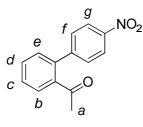

2-p-Trifluoromethylphenylacetophenone

Prepared from 4-trifluromethylphenylboronic acid (0.407 g, 2.14 mmol), 2'bromoacetophenone (0.356 g, 1.79 mmol), tetrakis(triphenylphosphine) palladium(II) (0.208 g, 0.18 mmol), and potassium carbonate (0.746 g, 5.40 mmol). Yellow oil (0.466 g, yield = 98%). ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 2.14 (s, 3H, H_a), 7.37 (dd, *J* = 1.0 Hz, 7.5 Hz, 1H, H_e), 7.44-7.60 (m, 3H, H_{d,g}), 7.55 (dd, J = 1.5 Hz, 7.5 Hz, 1H, H_c), 7.62 (dd, J = 1.2 Hz, 7.6 Hz, 1H, H_b), 7.69 (d, J = 8.0 Hz, 2H, H_g); ¹³C NMR (100 MHZ, CDCl₃, 295 K): $\delta = 30.4$, 125.5 (q, ³ $J_{CF} = 3.6$ Hz), 126.9 (q, ¹ $J_{CF} = 281.1$ Hz), 128.2 (× 2), 129.1, 129.9 (q, ² $J_{CF} = 33.0$ Hz), 130.5, 131.0, 139.2, 140.4, 144.6, 203.5; ¹⁹F NMR (400 MHz, CDCl₃, 295 K): $\delta = -62.96$ (CF₃); LR-EIMS: m/z = 264 [M]⁺: HR-MS: m/z = 264.0756 (calcd. for C₁₅H₁₁OF₃, 264.0757).

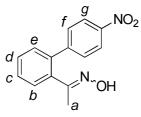
2-p-Trifluoromethylphenylacetophenone oxime


Prepared from 2-*p*-trifluoromethylphenylacetophenone (0.264 g, 3.4 mmol), hydroxylamine hydrochloride (0.473 g, 6.8 mmol) and sodium acetate (0.558 g, 6.8 mmol). Colourless oil (0.734 g, yield >99%). Two isomers 1:6.6. ¹H NMR (400 MHz, CDCl₃, 296 K): $\delta = 1.94/2.07$ (s, 3H, H_a), 7.30 (dd, J = 1.0 Hz, 7.2 Hz, 1H, H_b), 7.38 (d, J = 8.0 Hz, 2H, H_f), 7.42 (dd, J = 1.4 Hz, 7.5 Hz, 1H, H_e), 7.48 (m, 1H, H_c), 7.54 (m, 1H, H_d), 7.62 (d, J = 8.0 Hz, 2H, H_g); ¹³C NMR (100 MHz, CDCl₃, 296 K): $\delta = 30.8$, 126.0, 126.4, 128.6, 129.3, 129.5, 130.9, 131.4, 135.3, 138.9, 142.5, 145.0, 164.9; ¹⁹F NMR (400 MHz, CDCl₃, 296 K): $\delta = -63.0$ (CF₃).

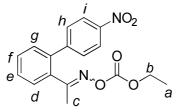
2-p-Trifluoromethylphenylacetophenone O-ethoxycarbonyl oxime – 4c


Prepared from 2-*p*-trifluoromethylphenylacetophenone oxime (0.466 g, 1.70 mmol), ethyl chloroformate (0.13 mL, 1.70 mmol) and pyridine (0.16 mL, 1.70 mmol). Colourless oil

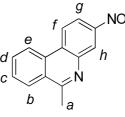
(0.528 g, yield = 88%). Two isomers 1:2.5. ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 1.29/1.39 (t, J = 7.1 Hz, 3H, H_a), 1.79/2.01 (s, 3H, H_c), 4.23/4.35 (q, J = 7.1 Hz, 2H, H_b), 7.37-7.57 (m, 6H, H_{ArH}), 7.63-7.70 (m, 2H, H_{ArH}); ¹³C NMR (100 MHz, CDCl₃, 295 K): δ = 14.3, 18.2, 64.8, 125.6 (q, ³J_{CF} = 3.5 Hz), 126.8 (q, ¹J_{CF} = 269.0 Hz), 128.3, 129.3, 129.7 (q, ²J_{CF} = 36.7 Hz), 129.8, 130.1, 130.2, 135.0, 139.0, 144.1, 153.8, 165.9; ¹⁹F NMR (400 MHz, CDCl₃, 295 K): δ = -63.0 (CF₃); LR-ESIMS: m/z = 352 [MH]⁺; HR-ESIMS: m/z = 352.1158 (calcd. for C₁₈H₁₇O₃NF₃, 352.1155).


6-Methyl-3-(trifluoromethyl)phenanthridine – 5c

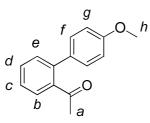
Prepared from 2-*p*-trifluoromethylphenylacetophenone *O*-ethoxycarbonyl oxime (0.059 g, 0.168 mmol). Colourless solid (0.026 g, yield = 59%). M.p. = 72 °C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 3.05 (s, 3H, H_a), 7.75-7.81 (m, 2H, H_{d,g}), 7.87-7.91 (m, 1H, H_c), 8.25 (dd, J = 0.7 Hz, 8.2 Hz, 1H, H_f), 8.38 (s, 1H, H_h), 8.59-8.63 (m 2H, H_{b,e}); ¹³C NMR (100 MHz, CDCl₃, 297 K): δ = 23.4, 122.2 (q, ³*J*_{CF} = 3.4 Hz), 122.7, 123.0, 124.2 (q, ¹*J*_{CF} = 272.2 Hz), 126.1, 126.5, 126.7, 126.9 (q, ³*J*_{CF} = 4.0 Hz), 128.5, 130.4, (q, ²*J*_{CF} = 32.6 Hz), 131.0, 131.7, 143.0, 160.5; ¹⁹F NMR (400 MHz, CDCl₃, 296 K): δ = -62.75 (CF₃); LR-EIMS: *m*/*z* = 261.0762 (calcd. for C₁₅H₁₀NF₃, 261.0760).


2-p-Nitrophenylacetophenone

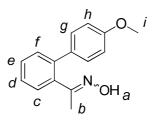
Prepared from 4-nitrophenylboronic acid (0.235 g, 1.41 mmol), 2'-bromoacetophenone (0.16 mL, 1.17 mmol), tetrakis(triphenylphosphine) palladium(II) (0.139 g, 0.12 mmol), and potassium carbonate (0.487 g, 3.52 mmol). Colourless solid (0.308 g, yield = 90%). M.p. = 95 °C; ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 2.26 (s, 3H, H_a), 7.36 (d, *J* = 7.5 Hz, 1H, H_b),7.47 (d, *J* = 8.7 Hz, 2H, H_f), 7.52 (m, 1H, H_d), 7.58 (m, 1H, H_c), 7.69 (d, *J* = 7.5 Hz, 1H, H_e), 8.28 (d, *J* = 8.7 Hz, 2H, H_g); ¹³C NMR (100 MHz, CDCl₃, 295 K): δ = 30.1, 123.7, 128.6, 128.7, 129.6, 130.5, 131.3, 133.1, 138.7, 139.7, 148.0, 202.4; LR-EIMS: *m*/*z* = 241 [M]⁺; HR-ESIMS: *m*/*z* = 241.0732 (calcd. for C₁₄H₁₁O₃N, 241.0733).


2-*p*-Nitrophenylacetophenone oxime

Prepared from 2-*p*-nitrophenylacetophenone (0.302 g, 1.25 mmol), hydroxylamine hydrochloride (0.174 g, 2.50 mmol) and sodium acetate (0.205 g, 2.50 mmol). Colourless oil (0.344 g, yield >99%). Two isomers 1:2.5. ¹H NMR (400 MHz, CDCl₃, 295 K): $\delta = 1.72/1.76$ (s, 3H, H_a), 7.29-7.33 (m, 2H, H_{c,d}), 7.37-7.42 (m, 2H, H_{b,e}), 7.47 (d, J = 8.9 Hz, 2H, H_g), 8.20 (d, J = 8.9 Hz, 2H, H_f); ¹³C NMR (100 MHz, CDCl₃, 295 K): $\delta = 16.1$, 123.6, 126.0, 127.8, 128.6, 129.0, 129.3, 129.4, 136.8, 147.1, 147.9, 158.0; LR-ESIMS: m/z = 256 [M]⁺.

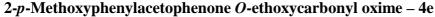


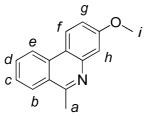
Prepared from 2-*p*-nitrophenylacetophenone oxime (0.335 g, 1.31 mmol), ethyl chloroformate (0.12 mL, 1.31 mmol) and pyridine (0.10 mL, 1.31 mmol). Tan coloured solid (0.279 g, yield = 68%); M.p. = 91-92°C; ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 1.38 (t, *J* = 7.1 Hz, 3H, H_a), 1.84 (s, 3H, H_c), 4.34 (q, *J* = 7.1 Hz, 2H, H_b), 7.40 (dd, *J* = 0.6 Hz, 7.1 Hz, 1H, H_g), 7.47 (dd, *J* 1.4 Hz, 6.7 Hz, 1H, H_e), 7.51-7.55 (m, 2H, H_{d,f}), 7.59 (d, *J* = 8.58 Hz, 2H, H_g), 8.28 (d, *J* = 8.8 Hz, 2H, H_f); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ = 14.7, 18.7, 65.3, 124.2, 129.2, 130.3 (× 2), 130.6 (× 2), 135.5, 138.6, 147.6, 147.7, 154.1, 165.7; LR-ASAPMS: *m*/*z* = 329 [M*H*]⁺; HR-ASAPMS: *m*/*z* = 329.1133 (calcd. for C₁₇H₁₇O₅N₂, 329.1132).


6-Methyl-3-nitrophenanthridine – 5d

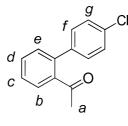
Prepared from 2-*p*-nitrophenylacetophenone *O*-ethoxycarbonyl oxime (0.088 g, 0.27 mmol). Tan coloured solid (0.058 g, yield = 99%). M.p. = 167 °C (dec.); ¹H NMR (400 MHz, CDCl₃, 300 K): δ = 3.09 (s, 3H, H_a), 7.85 (m, 1H, H_d), 7.95 (m, 1H, H_c), 8.30 (dd, *J* = 0.7 Hz, 8.2 Hz, 1H, H_e), 8.40 (dd, *J* = 2.4 Hz, 9.0 Hz, 1H, H_g), 8.65 (d, *J* = 9.0 Hz, 1H, H_f), 8.66 (d, *J* = 8.1 Hz, 1H, H_b), 8.96 (d, *J* = 2.4 Hz, 1H, H_h); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 25.5, 120.1, 123.2, 123.4, 125.2, 126.8, 126.9, 128.5, 129.4, 131.3, 131.4, 143.2, 147.5, 161.7; LR-EIMS: *m*/*z* = 238 [M]⁺; HR-ESIMS: *m*/*z* = 238.0737 (calcd. for C₁₄H₁₀O₂N₂, 238.0737).

2-*p*-Methoxyphenylacetophenone

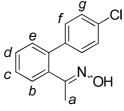

Prepared from 4-methoxyphenylboronic acid (0.396 g, 2.61 mmol), 2'-bromoacetophenone (0.3 mL, 2.17 mmol), tetrakis(triphenylphosphine) palladium(II) (0.254 g, 0.22 mmol), and potassium carbonate (0.899 g, 6.51 mmol). Colourless oil (0.573 g, yield >99%). ¹H NMR spectrum was consistent with that reported in the literature.⁶ ¹H NMR (400 MHz, CDCl₃, 295 K): $\delta = 2.01$ (s, 3H, H_a), 3.86 (s, 3H, H_h), 6.67 (d, J = 8.8 Hz, 2H, H_g), 7.27 (d, J = 8.8 Hz, 2H, H_f), 7.36-7.40 (m, 2H, H_{c,e}), 7.47-7.53 (m, 2H, H_{b,d}).


2-*p*-Methoxyphenylacetophenone oxime

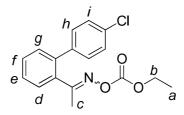
Prepared from 2-*p*-methoxyphenylacetophenone (0.573 g, 2.53 mmol), hydroxylamine hydrochloride (0.352 g, 5.06 mmol) and sodium acetate (0.415 g, 5.06 mmol). Colourless solid (0.601 g, yield = 98%). M.p. = 108-112 °C; Two isomers 1:3.45. ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 1.70/1.76 (s, 3H, H_b), 3.85 (s, 3H, H_i), 6.94 (d, *J* = 8.8 Hz, 2H, H_h), 7.30-7.45 (m, 6H, H_{ArH}), 8.22-8.62 (br, 1H, H_a); ¹³C NMR (100 MHz, CDCl₃, 300 K): δ = 16.3, 55.7, 114.2, 114.3, 127.4, 129.4, 129.6, 130.5, 130.6, 133.8, 137.1, 140.6, 159.5; LR-ESIMS: *m*/*z* = 242 [MH]⁺; HR-ESIMS: *m*/*z* = 242.1177 (calcd. for C₁₅H₁₆NO₂, 242.1176).



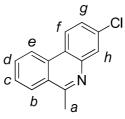
Prepared from 2-*p*-methoxyphenylacetophenone oxime (0.393 g, 1.63 mmol), ethyl chloroformate (0.15 mL, 1.63 mmol) and pyridine (0.13 mL, 1.63 mmol). Colourless oil (0.220 g, yield = 43%). ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 1.39 (t, *J* = 7.1 Hz, 3H, H_a), 1.78 (s, 3H, H_c), 3.85 (s, 3H, H_j), 4.36 (q, *J* = 7.1 Hz, 2H, H_b), 6.94 (d, *J* = 8.8 Hz, 2H, H_i), 7.32-7.38 (m, 4H, H_{ArH}), 7.44-7.51 (m, 2H, H_{ArH}); ¹³C NMR (100 MHz, CDCl₃, 295 K): δ = 14.3, 18.0, 55.3, 64.7, 114.1, 127.0, 129.7, 129.9, 130.1, 130.2, 132.8, 134.8, 140.2, 153.9, 159.3, 166.9; LR-ESIMS: *m*/*z* = 336 [MN*a*]⁺; HR-ESIMS: *m*/*z* = 336.1209 (calcd. for C₁₈H₁₉NO₄Na, 336.1212).


3-Methoxy-6-methylphenanthridine – 5e

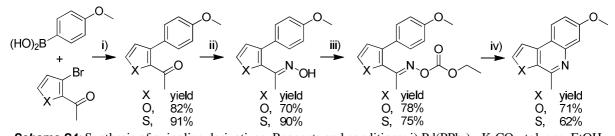
Prepared from 2-*p*-methoxyphenylacetophenone *O*-ethoxycarbonyl oxime (0.050 g, 0.16 mmol). Yellow oil (0.032 g, yield = 90%). ¹H NMR (300 MHz, CDCl₃, 300 K): δ = 3.02 (s, 3H, H_a), 3.97 (s, 3H, H_i), 7.24 (dd, *J* = 2.6 Hz, 9.0 Hz, 1H, H_g), 7.51 (d, *J* = 2.6 Hz, 1H, H_h), 7.60 (m, 1H, H_c), 7.78 (m, 1H, H_d), 8.17 (d, *J* = 8.2 Hz, 1H, H_b), 8.40 (d, *J* = 9.0 Hz, 1H, H_f), 8.49 (d, *J* = 8.3 Hz, 1H, H_e); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ = 23.8, 56.0, 109.7, 117.7, 118.2, 122.2, 123.6, 125.4, 126.6, 127.0, 131.0, 133.2, 145.7, 159.8, 160.5; LR-ESIMS: *m*/*z* = 224 [M*H*]⁺; HR-ESIMS: *m*/*z* = 224.1069 (calcd. for C₁₅H₁₄NO, 224.1075).


2-p-Chlorophenylacetophenone

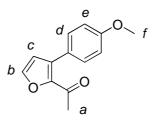
Prepared from 2'-bromoacetophenone (0.920 g, 4.60 mmol), 4-chlorophenylboronic acid (1.080 g, 6.89 mmol), tetrakis(triphenylphosphine) palladium(II) (0.797 g, 0.69 mmol), and potassium carbonate (2.861 g, 20.7 mmol). Yellow oil (0.980 g, yield = 92%). ¹H NMR (400 MHz, CDCl₃, 297 K): δ = 2.12 (s, 3H, H_a), 7.30 (d, *J* = 8.6 Hz, 2H, H_g), 7.38 (dd, *J* = 1.2 Hz, 7.6 Hz, 1H, H_e), 7.42-7.48 (m, 3H, H_{c,f}), 7.52-7.61 (m, 2H, H_{b,d}); ¹³C NMR (100 MHz, CDCl₃, 297 K): δ = 30.5, 98.7, 127.8, 128.1, 128.9, 130.1, 130.3, 130.9, 134.1, 139.3, 140.6, 204.2; LR-EIMS: *m*/*z* = 230 [M]⁺; HR-ESIMS: *m*/*z* = 230.0495 (calcd. for C₁₁H₁₄O³⁵Cl, 230.0493).


2-p-Chlorophenylacetophenone oxime

Prepared from 2-*p*-chlorophenylacetophenone (0.900 g, 3.90 mmol), hydroxylamine hydrochloride (0.540 g, 7.80 mmol) and sodium acetate (0.538 g, 7.80 mmol). White solid (0.950 g, yield = 98%). M.p. = 110-114 °C; Two isomers 1:3.25. ¹H NMR (400 MHz, CDCl₃, 297 K): $\delta = 1.74/1.79$ (s, 3H, H_a), 7.31-7.47 (m, 8H, H_{ArH}), 8.20-10.00 (br, 1H, H_a); ¹³C NMR (100 MHz, CDCl₃, 297 K): (major isomer) $\delta = 16.2$, 127.8, 128.7, 129.2, 129.3, 130.2, 130.3, 133.6, 136.7, 139.3, 139.4, 158.8; LR-EIMS: m/z = 246 [MH]⁺; HR-MS: m/z = 246.0683 (calcd. for C₁₄H₁₃ON³⁵Cl, 246.0680).

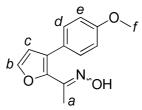

2-p-Chlorophenylacetophenone O-ethoxycarbonyl oxime - 4f

Prepared from 2-*p*-chlorophenylacetophenone oxime (0.800 g, 3.26 mmol), ethyl chloroformate (0.31 mL, 3.26 mmol) and pyridine (0.26 mL, 3.26 mmol). Yellow oil (0.970 g, yield = 93%). Two isomers 1:2.4. ¹H NMR (400 MHz, CDCl₃, 297 K): $\delta = 1.29/1.38$ (t, J = 7.1 Hz, 3H, H_a), 1.79/1.98 (s, 3H, H_c), 4.23/4.35 (q, J = 7.1 Hz, 2H, H_b), 7.21-7.28 (m, 1H, H_{ArH}), 7.33-7.51 (m, 7H, H_{ArH}); ¹³C NMR (100 MHz, CDCl₃, 297 K): (major isomer) $\delta = 14.3$, 18.1, 64.7, 127.8, 128.8, 129.7, 130.0, 130.1, 130.2, 133.9, 134.9, 138.9, 139.3, 153.8, 166.2; LR-ESIMS: m/z = 340 [MNa]⁺; HR-ESIMS: m/z = 340.0713 (calcd. for C₁₇H₁₆NO₃Na³⁵Cl, 340.0716).



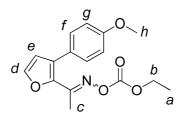
3-Chloro-6-methylphenanthridine – 5f

Prepared from 2-*p*-chlorophenylacetophenone *O*-ethoxycarbonyl oxime (0.053 g, 0.17 mmol). Colourless solid (0.030 g, yield = 79%). M.p. = 120-122 °C; ¹H NMR (300 MHz, CDCl₃, 297 K): δ = 3.02 (s, 3H, H_a), 7.55 (dd, *J* = 2.2 Hz, 8.8 Hz, 1H, H_g), 7.70 (m, 1H, H_c), 7.84 (m, 1H, H_d), 8.08 (d, *J* = 2.2 Hz, 1H, H_h), 8.20 (d, *J* = 7.6 Hz, 1H, H_b), 8.41 (d, *J* = 8.8 Hz, 1H, H_f), 8.53 (d, *J* = 8.2 Hz, 1H, H_e); ¹³C NMR (75 MHz, CDCl₃, 298 K): δ = 23.8, 122.6, 123.7, 126.2, 127.1, 127.3, 128.0, 129.0, 131.3, 132.5, 134.6, 144.7, 160.7 (× 2); LR-EIMS: *m*/*z* = 227 [M]⁺; HR-ESIMS: *m*/*z* = 227.0499 (calcd. for C₁₄H₁₀N³⁵Cl, 227.0496).

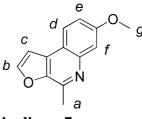


Scheme S4: Synthesis of quinoline derivatives. Reagents and conditions: i) Pd(PPh₃)₄, K₂CO₃, toluene, EtOH, reflux, 18 h, Ar; ii) NH₂OH.HCl, NaOAc, EtOH, reflux, 18 h; iii) EtOCO₂Cl, pyridine, CH₂Cl₂, rt, 18 h; iv) MAP, PhCF₃, UV irradiation, 3 h.

2-Acetyl-3-p-methoxyphenylfuran

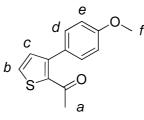

Prepared from 4-methoxyphenylboronic acid (0.202 g, 1.33 mmol), 2-acetyl-3-bromofuran³ (0.209 g, 1.11 mmol), tetrakis(triphenylphosphine) palladium(II) (0.127 g, 0.11 mmol) and potassium carbonate (0.460 g, 3.33 mmol). Yellow oil (0.233 g, yield = 91%). ¹H NMR (400 MHz, CDCl₃, 296 K): δ = 2.47 (s, 3H, H_a), 3.85 (s, 3H, H_f), 6.64 (d, *J* = 1.7 Hz, 1H, H_c), 6.94 (d, *J* = 8.9 Hz, 2H, H_e), 7.53 (d, *J* = 1.7 Hz, 1H, H_b), 7.63 (d, *J* = 8.9 Hz, 2H, H_d); %). ¹H NMR (100 MHz, CDCl₃, 296 K): δ = 27.7, 55.3, 113.6, 114.8, 124.1, 130.6, 133.3, 144.5, 147.0, 159.9, 188.0; LR-ESIMS: *m*/*z* = 239 [MN*a*]⁺; HR-ESIMS: *m*/*z* = 239.0692 (calcd. for C₁₃H₁₂O₃Na, 239.0684).

2-Acetyl-3-p-methoxyphenylfuran oxime

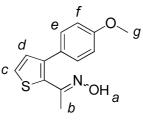

Prepared from 2-acetyl-3-*p*-methoxyphenylfuran (0.193 g, 0.89 mmol), hydroxylamine hydrochloride (0.124 g, 1.80 mmol) and sodium acetate (0.148 g, 1.80 mmol). Off-white

solid (0.186 g, yield = 90%). M.p. = 130-132 °C; ¹H NMR (400 MHz, CDCl₃, 296 K): δ = 2.08 (s, 3H, H_a), 3.83 (s, 3H, H_f), 6.50 (d, J = 1.8 Hz, 1H, H_c), 6.91 (d, J = 8.8 Hz, 2H, H_e), 7.37 (d, J = 8.8 Hz, 2H, H_d), 7.44 (d, J = 1.8 Hz, 1H, H_b); ¹³C NMR (75 MHz, CDCl₃, 296 K): δ = 12.8, 55.7, 114.1, 114.5, 120.9, 126.0, 126.2, 129.8, 130.5, 142.7, 150.3; LR-ESIMS: m/z = 254 [MNa]⁺; HR-ESIMS: m/z = 254.0787 (calcd. for C₁₃H₁₃NO₃Na, 254.0793).

2-Acetyl-3-p-methoxyphenylfuran O-ethoxycarbonyl oxime - 6a

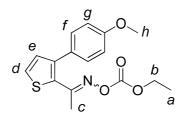

Prepared from 2-acetyl-3-*p*-methoxyphenylfuran oxime (0.179 g, 4.30 mmol), ethyl chloroformate (0.41 mL, 4.30 mmol) and pyridine (0.35 mL, 4.30 mmol). Colourless oil (0.178 g, yield = 75%). ¹H NMR (400 MHz, CDCl₃, 296 K): $\delta = 1.37$ (t, J = 7.1 Hz, 3H, H_a), 2.19 (s, 3H, H_c), 3.84 (s, 3H, H_h), 4.34 (q, J = 7.1 Hz, 2H, H_b), 6.56 (d, J = 1.8 Hz, 1H, H_e), 6.93 (d, J = 8.8 Hz, 2H, H_g), 7.48-7.52 (m, 3H, H_{d,f}); ¹³C NMR (100 MHz, CDCl₃, 296 K): $\delta = 14.3$, 14.3, 55.3, 64.8, 113.7, 114.5, 124.8, 129.1, 130.7, 142.3, 143.5, 153.6, 155.5, 159.5; LR-ESIMS: m/z = 326 [M]⁺; HR-ESIMS: m/z = 326.1016 (calcd. for C₁₆H₁₇NO₅Na, 326.1004).

7-Methoxy-4-methylfuro[2,3-c]quinoline – 7a

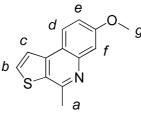

Prepared from 2-acetyl-3-*p*-methoxyphenylfuran *O*-ethoxycarbonyl oxime (0.052 g, 0.17 mmol). Colourless oil (0.026 g, yield = 71%). ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 2.90

(s, 3H, H_a), 3.95 (s, 3H, H_g), 7.19 (d, J = 2.0 Hz, 1H, H_c), 7.23 (dd, J = 2.5 Hz, 8.9 Hz, 1H, H_e), 7.53 (d, J = 2.5 Hz, 1H, H_f), 7.83 (d, J = 2.0 Hz, 1H, H_b), 7.95 (d, J = 8.9 Hz, 1H, H_d); ¹³C NMR (100 MHz, CDCl₃, 295 K): $\delta = 19.8$, 55.9, 105.8, 108.5, 117.6, 118.6, 124.7, 129.8, 145.9, 146.2, 147.4 (× 2), 159.6; LR-ESIMS: m/z = 214 [MH]⁺; HR-ESIMS: m/z = 214.0862 (calcd. for C₁₃H₁₂NO₂, 214.0868).

2-Acetyl-3-*p*-methoxyphenylthiophene

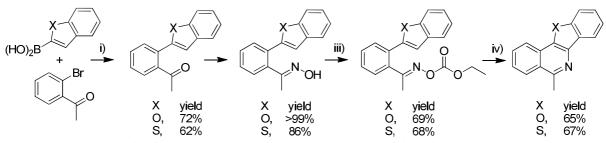

Prepared from 4-methoxyphenylboronic acid (0.180 g, 1.18 mmol), 2-acetyl-3bromothiophene (0.202 g, 1.00 mmol), tetrakis(triphenylphosphine) palladium(II) (0.116 g, 0.01 mmol) and potassium carbonate (0.415 g, 3.00 mmol). Yellow oil (0.192 g, yield = 82%). ¹H NMR (300 MHz, CDCl₃, 295 K): δ = 2.15 (s, 3H, H_a), 3.84 (s, 3H, H_f), 6.94 (d, *J* = 8.8 Hz, 2H, H_e), 7.02 (d, *J* = 5.0 Hz, 1H, H_c), 7.29 (d, *J* = 8.8 Hz, 2H, H_d), 7.52 (d, *J* = 5.0 Hz, 1H, H_b); ¹³C NMR (75 MHz, CDCl₃, 295 K): δ = 29.3, 55.3, 113.8, 128.6, 130.4, 130.9, 132.1, 139.5, 146.7, 159.7, 192.3; LR-ESIMS: *m*/*z* =233 [M]⁺; HR-ESIMS: *m*/*z* = 233.0639 (calcd. for C₁₃H₁₃O₂S, 233.0636).

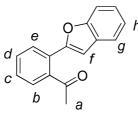
2-Acetyl-3-p-methoxyphenylthiophene oxime


Prepared from 2-acetyl-3-*p*-methoxyphenylthiophene (0.186 g, 0.80 mmol), hydroxylamine hydrochloride (0.111 g, 1.60 mmol) and sodium acetate (0.131 g, 1.60 mmol). Colourless oil

(0.138 g, yield = 70%). ¹H NMR (400 MHz, CDCl₃, 295 K): $\delta = 1.83$ (s, 3H, H_a), 3.76 (s, 3H, H_g), 6.85 (d, J = 8.2 Hz, 2H, H_f), 6.98 (d, J = 5.1 Hz, 1H, H_d), 7.17 (d, J = 5.1 Hz, 1H, H_c), 7.23 (d, J = 8.2 Hz, 2H, H_e), 8.70-9.70 (br, 1H, H_a); ¹³C NMR (100 MHz, CDCl₃, 295 K): $\delta = 15.1$, 55.3, 113.9, 114.0, 125.1, 128.8, 130.0, 130.5, 133.0, 153.4, 159.2; LR-ESIMS: m/z = 270 [MNa]⁺; HR-ESIMS: m/z = 270.0569 (calcd. for C₁₃H₁₃NO₂NaS, 270.0565).

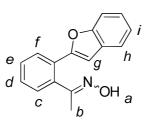
2-Acetyl-3-p-methoxyphenylthiophene O-ethoxycarbonyl oxime – 6b


Prepared from 2-acetyl-3-*p*-methoxyphenylthiophene oxime (0.138 g, 0.56 mmol), ethyl chloroformate (0.05 mL, 0.56 mmol) and pyridine (0.05 mL, 0.56 mmol). Colourless oil (0.140 g, yield = 78%). ¹H NMR (400 MHz, CDCl₃, 295 K): $\delta = 1.36$ (t, J = 7.1 Hz, 3H, H_a), 1.97 (s, 3H, H_c), 3.83 (s, 3H, H_h), 4.34 (q, J = 7.1 Hz, 2H, H_b), 6.91 (d, J = 8.7 Hz, 2H, H_g), 7.07 (d, J = 5.1 Hz, 1H, H_e), 7.28 (d, J = 8.7 Hz, 2H, H_f), 7.34 (d, J = 5.1 Hz, 1H, H_d); ¹³C NMR (100 MHz, CDCl₃, 295 K): $\delta = 14.3$, 17.0, 55.3, 64.8, 114.0, 126.8, 128.4, 130.0, 130.4, 130.5, 143.2, 153.6, 159.5, 160.4; LR-ESIMS: m/z = 230 [M]⁺; HR-ESIMS: m/z = 342.0770 (calcd. for C₁₆H₁₇NO₄Na, 342.0776).

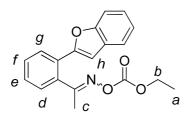

7-Methoxy-4-methylthieno[2,3-c]quinoline – 7b

Prepared from 2-acetyl-3-*p*-methoxyphenylthiophene *O*-ethoxycarbonyl oxime (0.056 g, 0.17 mmol). Colourless solid (0.025 g, yield = 62%). M.p. = 112 °C (dec.); ¹H NMR (300 MHz,

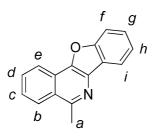
CDCl₃, 296 K): $\delta = 2.92$ (s, 3H, H_a), 3.97 (s, 3H, H_g), 7.24 (dd, J = 2.6 Hz, 8.9 Hz, 1H, H_e), 7.54 (d, J = 2.6 Hz, 1H, H_f), 7.78 (d, J = 5.3 Hz, 1H, H_c), 7.89 (d, J = 5.3 Hz, 1H, H_b), 8.11 (d, J = 8.9 Hz, 1H, H_d); ¹³C NMR (100 MHz, CDCl₃, 296 K): $\delta = 30.9$, 127.0, 127.2, 128.6, 128.8, 129.3, 129.9, 130.0, 130.2, 134.9, 137.5, 140.6, 166.9; LR-EIMS: m/z = 229 [M]⁺; HR-ESIMS: m/z = 229.0554 (calcd. for C₁₃H₁₁ONS, 229.0556).



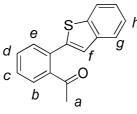
Scheme S5: Synthesis of isoquinoline derivatives. Reagents and conditions: i) Pd(PPh₃)₄, K₂CO₃, toluene, EtOH, reflux, 18 h, Ar; ii) NH₂OH.HCl, NaOAc, EtOH, reflux, 18 h; iii) EtOCO₂Cl, pyridine, CH₂Cl₂, rt, 18 h; iv) MAP, PhCF₃, UV irradiation, 3 h.


2-(Benzofuran-2-yl)acetophenone

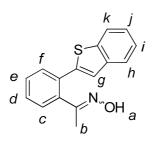
Prepared from 2-benzofuranylboronic acid (0.406 g, 2.51 mmol), 2'-acetophenone (0.28 mL, 2.10 mmol), tetrakis(triphenylphosphine) palladium(II) (0.243 g, 0.21 mmol), and potassium carbonate (0.869 g, 6.30 mmol). Colourless oil (0.352 g, yield = 72%). ¹H NMR (400 MHz, CDCl₃, 296 K): δ = 2.34 (s, 3H, H_a), 6.95 (d, *J* = 0.9 Hz, 1H, H_f), 7.25-7.34 (m, 2H, H_{d,j}), 7.44-7.55 (m, 4H, H_{c,g,h,i}), 7.61-7.63 (m, 1H, H_e), 7.74-7.77 (m, 1H, H_b); ¹³C NMR (100 MHz, CDCl₃, 296 K): δ = 30.1, 105.0, 111.4, 121.3, 123.3, 124.8, 127.3, 128.0, 128.5, 128.9, 129.0, 130.4, 140.4, 154.3, 155.2, 204.4; LR-EIMS: *m*/*z* = 236 [M]⁺; HR-ESIMS: *m*/*z* = 236.0834 (calcd. for C₁₆H₁₂O₂, 236.0832).


2-(Benzofuran-2-yl)acetophenone oxime

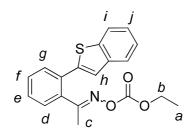
Prepared from 2-(benzofuran-2-yl)acetophenone (0.351 g, 1.50 mmol), hydroxylamine hydrochloride (0.207 g, 3.00 mmol) and sodium acetate (0.366 g, 3.00 mmol). Yellow oil (0.389 g, yield >99%). ¹H NMR (400 MHz, CDCl₃, 296 K): δ = 2.08 (s, 3H, H_b), 6.87 (d, J = 0.9 Hz, 1H, H_g), 7.22-7.27 (m, 2H, H_{i,j}), 7.37-7.42 (m, 2H, H_{e,h}), 7.45-7.54 (m, 2H, H_{k,d}), 7.60 (m, 1H, H_f), 7.87 (d, J =7.6 Hz, 1H, H_c); ¹³C NMR (100 MHz, CDCl₃, 296 K): δ = 15.8, 105.4, 111.3, 121.2, 123.0, 124.6, 126.1, 128.3, 128.5, 128.7, 129.0, 129.0, 129.5, 136.0, 154.3, 154.8; LR-ESIMS: m/z = 274 [MNa]⁺; HR-ESIMS: m/z = 274.0848 (calcd. for C₁₆H₁₃NO₂Na, 274.0844).


2-(Benzofuran-2-yl)acetophenone O-ethylcarbonyl oxime - 8a

Prepared from 2-(benzofuran-2-yl)acetophenone oxime (0.374 g, 1.50 mmol), ethyl chloroformate (0.12 mL, 1.50 mmol) and pyridine (0.14 mL, 1.50 mmol). Colourless oil (0.333 g, yield = 69%). ¹H NMR (400 MHz, CDCl₃, 295 K): $\delta = 1.42$ (t, J = 7.1 Hz, 3H, H_a), 2.18 (s, 3H, H_c), 4.39 (q, J = 7.1 Hz, 2H, H_b), 6.92 (s, 1H, H_h), 7.24-7.28 (m, 1H, H_f), 7.32 (dd, J = 1.3 Hz, 7.3 Hz, 1H, H_e), 7.40-7.55 (m, 4H, H_{ArH}), 7.61 (dd, J = 1.1 Hz, 7.7 Hz, 1H, H_g), 7.86 (dd, J = 1.0 Hz, 7.7 Hz, 1H, H_d); ¹³C NMR (100 MHz, CDCl₃, 295 K): $\delta = 14.8$, 18.4, 65.2, 106.1, 111.7, 121.7, 123.5, 125.2, 127.4, 128.7, 129.0, 129.2, 129.3, 130.2, 130.3, 134.4, 154.2, 155.3, 166.6; LR-EIMS: m/z = 278 [M]⁺.

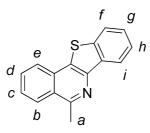

5-Methylbenzofuro[3,2-c]isoquinoline – 9a

Prepared from 2-(benzofuran-2-yl)acetophenone *O*-ethoxycarbonyl oxime (0.028 g, 0.087 mmol). Colourless oil (0.013 g, yield = 65%). ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 3.12 (s, 3H, H_a), 7.46 (m, 1H, H_c), 7.53 (m, 1H, H_d), 7.66-7.72 (m, 2H, H_{e,g}), 7.85 (m, 1H, H_h), 8.26-8.29 (m, 2H, H_{b,f}), 8.40 (d, *J* = 8.0 Hz, 1H, H_i); ¹³C NMR (100 MHz, CDCl₃, 296 K): δ = 22.8, 112.0, 120.3, 120.6, 123.4, 123.5, 124.2, 126.7, 126.9, 127.1, 129.8, 130.5, 155.1, 156.2, 169.6, 190.3; LR-EIMS: *m*/*z* = 233 [M]⁺; HR-ESIMS: *m*/*z* = 233.0836 (calcd. for C₁₆H₁₁ON, 233.0835).

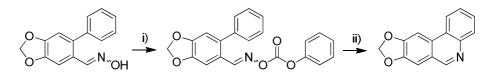

2-(Benzothiophen-2-yl)acetophenone

Prepared from benzo[b]thiophene-2-boronic acid (0.400)2.25 mmol). 2'g, bromoacetophenone (0.25 mL, 1.87 mmol), tetrakis(triphenylphosphine) palladium(II) (0.216 g, 0.19 mmol) and potassium carbonate (0.776 g, 5.61 mmol). Colourless oil (0.293 g, yield = 62%). ¹H NMR (400 MHz, CDCl₃, 296 K): $\delta = 2.22$ (s, 3H, H_a), 7.22 (d, J = 0.6 Hz, 1H, H_f), 7.34-7.42 (m, 2H, H_{c.d}), 7.43-7.59 (m, 4H, H_{e,h,i,i}), 7.77-7.80 (m, 1H, H_e), 7.85-7.87 (m, 1H, H_b); ¹³C NMR (100 MHz, CDCl₃, 296 K): δ = 30.4, 122.2, 123.9, 124.4, 124.8, 127.6, 128.3, 128.6, 130.6, 130.8, 132.3, 133.1, 140.2, 140.5, 141.7, 204.8; LR-EIMS: m/z = 252 [M]⁺; HR-ESIMS: m/z = 252.0605 (calcd. for C₁₆H₁₂OS, 252.0603).

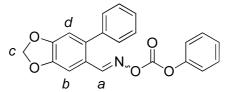
2-(Benzothiophen-2-yl)acetophenone oxime


Prepared from 2-(benzothiophen-2-yl)acetophenone (0.283 g, 1.10 mmol), hydroxylamine hydrochloride (0.156 g, 2.20 mmol) and sodium acetate (0.184 g, 2.20 mmol). Colourless oil (0.325 g, yield = 86%). Two isomers 1:3.25. ¹H NMR (400 MHz, CDCl₃, 296 K): δ = 1.94/1.98 (s, 3H, H_b), 7.31 (d, J = 05 Hz, 1H, H_g), 7.32-7.48 (m, 4H, H_{d.e.i,j}), 7.59 (d, J = 7.4 Hz, 1H, H_f), 7.64 (m, 1H, H_c), 7.79 (dd, J = 1.7 Hz, 6.9 Hz, 1H, H_k), 7.84 (dd, 1.4 Hz, 7.9 Hz, 1H, H_h), 7.94-8.19 (br, 1H, H_a); ¹³C NMR (100 MHz, CDCl₃, 296 K): δ = 15.9, 122.2, 124.4, 124.5, 126.0, 128.4, 128.5, 129.1, 129.5, 130.8, 133.1, 137.2, 140.2, 140.4, 142.3, 159.2; LR-ESIMS: m/z = 290.3 [MNa]⁺; HR-ESIMS: m/z = 290.0608 (calcd. for C₁₆H₁₃NONaS, 290.0616).

2-(Benzothiophen-2-yl)acetophenone O-ethoxycarbonyl oxime - 8b

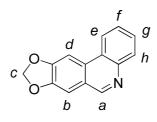

Prepared from 2-(benzothiophen-2-yl)acetophenone oxime (0.306 g, 1.15 mmol), ethyl chloroformate (0.11 mL, 1.15 mmol) and pyridine (0.09 mL, 1.15 mmol). Colourless oil (0.267 g, yield = 68%). Two isomers 1:1.3. ¹H NMR (400 MHz, CDCl₃, 296 K): δ = 1.39/1.40 (t, J = 7.1 Hz, 3H, H_a), 2.01/2.40 (s, 3H, H_c), 4.36/4.38 (q, J = 7.1 Hz, 2H, H_b), 7.32 (d, J = 0.5 Hz, 1H, H_h), 7.34-7.44 (m, 3H, H_{e,j,k}), 7.47-7.52 (m, 1H, H_f), 7.59 (dd, J = 1.2 Hz, 7.7 Hz, 1H, H_g), 7.74 (dd, J = 1.4 Hz, 8.0 Hz, 1H, H_d), 7.79 (d, J = 6.6 Hz, 1H, H_l), 7.84

(dd, J = 0.5 Hz, 7.1 Hz, 1H, H_i); ¹³C NMR (100 MHz, CDCl₃, 296 K): $\delta = 14.3$, 17.9, 64.8, 122.2, 123.9, 124.3, 124.6, 124.6, 127.0, 128.6, 129.9, 130.8, 133.2, 135.4, 140.2, 140.4, 141.6, 153.9, 166.3; LR-ESIMS: m/z = 362 [MNa]⁺; HR-ESIMS: m/z = 362.0838 (calcd. for C₁₉H₁₇NO₃NaS, 362.0827).

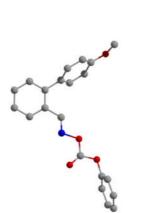


5-Methylbenzo[4,5]thieno[3,2-c]isoquinoline - 9b

Prepared from 2-(benzothiophen-2-yl)acetophenone *O*-ethoxycarbonyl oxime (0.051 g, 0.15 mmol). Colourless oil (0.025 g, yield = 67%). ¹H NMR (400 MHz, CDCl₃, 296 K): δ = 3.13(s, 3H, H_a), 7.51-7.58 (m, 2H, H_{c,d}), 7.65-7.70 (m, 1H, H_h), 7.79-7.83 (m, 1H, H_g), 7.94 (d, *J* = 7.1 Hz, 1H, H_e), 8.09 (d, *J* = 8.2 Hz, 1H, H_f), 8.27 (d, *J* = 8.4 Hz, 1H, H_i), 8.54 (d, *J* = 7.1 Hz, 1H, H_b); ¹³C NMR (125 MHz, CDCl₃, 294 K): δ = 22.7, 122.7, 122.8, 124.2, 124.9, 126.0 (×2), 127.0, 127.1 (× 2), 128.1, 130.5, 130.6, 131.7, 156.5 (× 2).



Scheme S6: Synthesis of trispheridine from 6-phenylbenzo[*d*][1,3]dioxole-5-carbaldehyde oxime.² Reagents and conditions: i) PhOCO₂Cl, pyridine, CH₂Cl₂, rt, 18 h, 66%; ii) MAP, *t*-BuOH, UV irradiation, 3 h, 49%.


6-Phenylbenzo[d][1,3]dioxole-5-carbaldehyde O-phenoxycarbonyl oxime – 10

Prepared from 6-phenylbenzo[*d*][1,3]dioxole-5-carbaldehyde oxime² (0.257 g, 1.07 mmol), phenyl chloroformate (0.13 mL, 1.07 mmol) and pyridine (0.08 mL, 1.07 mmol). Colourless solid (0.254 g, yield = 66%). M.p. = 115-117 °C; ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 6.07 (s, 2H, H_c), 6.83 (s, 1H, H_d), 7.22-7.29 (m, 5H, H_{ArH}), 7.37-7.47 (m, 5H, H_{ArH}), 7.62 (s, 1H, H_b), 8.29 (s, 1H, H_a); ¹³C NMR (100 MHz, CDCl₃, 295 K): δ = 53.9, 102.4, 106.5, 110.5, 121.4, 126.7, 128.4, 129.0, 130.0, 130.2, 139.0, 140.4, 148.0, 151.0, 151.3, 152.6, 155.9; LR-ESIMS: m/z = 384 [MNa]⁺; HR-ESIMS: m/z = 384.0859 (calcd. for C₂₁H₁₅NO₅Na, 384.0848).

Trispheridine - 11

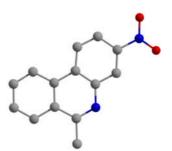
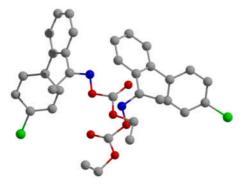

Prepared from 6-phenylbenzo[*d*][1,3]dioxole-5-carbaldehyde *O*-phenoxycarbonyl oxime (0.049 mg, 0.136 mmol). Colourless solid (0.015 g, yield = 49%). ¹H and ¹³C NMR spectra were consistent with those reported in the literature.² M.p. = 130-132 °C; ¹H NMR (400 MHz, CDCl₃, 295 K): δ = 6.17 (s, 2H, H_c), 7.34 (s, 1H, H_d), 7.61-7.71 (m, 2H, H_{f,g}), 7.92 (s, 1H, H_b), 8.14 (dd, *J* = 1.1 Hz, 8.2 Hz, 1H, H_e), 8.38 (dd, *J* = 1.2 Hz, 8.1 Hz, 1H, H_h), 9.09 (s, 1H, H_a); ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 100.0, 101.9, 105.5, 122.0, 123.1, 124.3, 126.7, 128.0, 130.1, 130.3, 144.1, 148.2, 151.5, 151.8.

Figure S1: The X-ray crystal structure of **1b**.


Table S2: Crystal data Identification code	a and structure refinement for 1b).
Empirical formula	$C_{21}H_{17}NO_4$	
Formula weight	347.36	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 8.5885(19) Å	$\alpha = 90^{\circ}$.
	b = 13.388(3) Å	$\beta = 90^{\circ}$.
	c = 15.162(4) Å	$\gamma = 90^{\circ}$.
Volume	1743.4(7) Å ³	1 50 .
Z	4	
Density (calculated)	1.323 Mg/m^3	
Absorption coefficient	0.092 mm ⁻¹	
F(000)	728	
Crystal size	$0.20 \ge 0.20 \ge 0.10 \text{ mm}^3$	
Theta range for data collection	2.03 to 25.33°.	
Index ranges	$-8 \le h \le 10, -16 \le k \le 13, -17 \le l \le 18$	
Reflections collected	11104	
Independent reflections	3181 [R(int) = 0.0433]	
Completeness to theta = 25.00°	99.9 %	
Absorption correction	Multiscan	
Max. and min. transmission	1.000 and 0.851	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3181 / 0 / 236	
Goodness-of-fit on F ²	0.987	
Final R indices [I>2sigma(I)]	R1 = 0.0373, wR2 = 0.0751	
R indices (all data)	R1 = 0.0441, $wR2 = 0.0795$	
Absolute structure parameter	0.0(9)	
Largest diff. peak and hole	0.147 and -0.182 e.Å ⁻³	

S30

Figure S2: The X-ray crystal structure of **5d**.

Table S3: Crystal data and structure refinement for 5d.			
Identification code	5d		
Empirical formula	$C_{14}H_{10}N_2O_2$		
Formula weight	238.24		
Temperature	173(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P2(1)/n		
Unit cell dimensions	a = 4.469(3) Å	$\alpha = 90^{\circ}$.	
	b = 13.268(10) Å	$\beta = 96.36(2)^{\circ}$.	
	c = 18.459(16) Å	$\gamma = 90^{\circ}$.	
Volume	1087.8(15) Å ³		
Z	4		
Density (calculated)	1.455 Mg/m ³		
Absorption coefficient	0.816 mm ⁻¹		
F(000)	496		
Crystal size	0.10 x 0.03 x 0.03 mm ³		
Theta range for data collection	4.11 to 68.25°.		
Index ranges	$-5 \le h \le 5, -15 \le k \le 15, -22 \le l \le 22$		
Reflections collected	13762		
Independent reflections	1978 [R(int) = 0.1630]		
Completeness to theta = 67.00°	99.7 %		
Absorption correction	Multiscan		
Max. and min. transmission	1.000 and 0.516		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1978 / 0 / 165		
Goodness-of-fit on F ²	1.244		
Final R indices [I>2sigma(I)]	R1 = 0.1223, wR2 = 0.3345		
R indices (all data)	R1 = 0.1570, wR2 = 0.3712		
Extinction coefficient	0.028(9)		
Largest diff. peak and hole	$0.382 \text{ and } -0.384 \text{ e.}\text{Å}^{-3}$		

Figure S3: The X-ray crystal structure of **4f**.

Identification code	a and structure refinement for 4f 4f		
Empirical formula	C ₁₇ H ₁₆ ClNO ₃		
Formula weight	317.76		
Temperature	173(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	C2		
Unit cell dimensions	a = 24.039(14) Å	$\alpha = 90^{\circ}$.	
	b = 7.017(5) Å	$\beta = 95.759(14)^{\circ}$.	
	c = 19.280(12) Å	$\gamma = 90^{\circ}$.	
Volume	3236(4) Å ³		
Z	8		
Density (calculated)	1.305 Mg/m ³		
Absorption coefficient	2.191 mm ⁻¹		
F(000)	1328		
Crystal size	0.12 x 0.02 x 0.02 mm ³		
Theta range for data collection	2.30 to 68.08°.		
Index ranges	$-28 \le h \le 28, -8 \le k \le 8, -22 \le l \le 22$		
Reflections collected	20550		
Independent reflections	5616 [R(int) = 0.2075]		
Completeness to theta = 67.00°	99.6 %		
Absorption correction	Multiscan		
Max. and min. transmission	1.000 and 0.756		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	5616 / 1 / 400		
Goodness-of-fit on F ²	1.203		
Final R indices [I>2sigma(I)]	R1 = 0.1423, wR2 = 0.3619		
R indices (all data)	R1 = 0.1656, wR2 = 0.3976		
Absolute structure parameter	0.09(5)		
Extinction coefficient	0.0053(8)		
Largest diff. peak and hole	0.723 and -0.600 e.Å ⁻³		

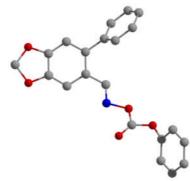
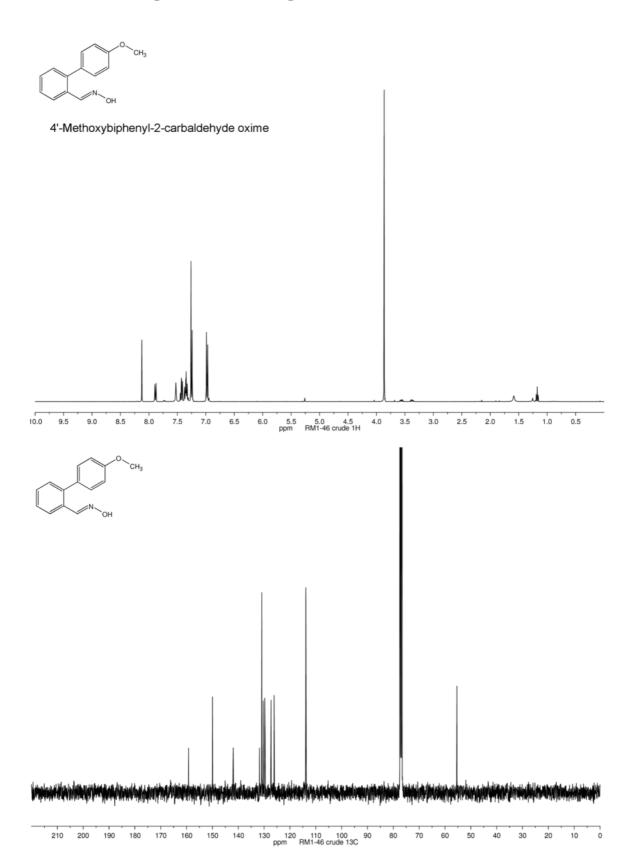
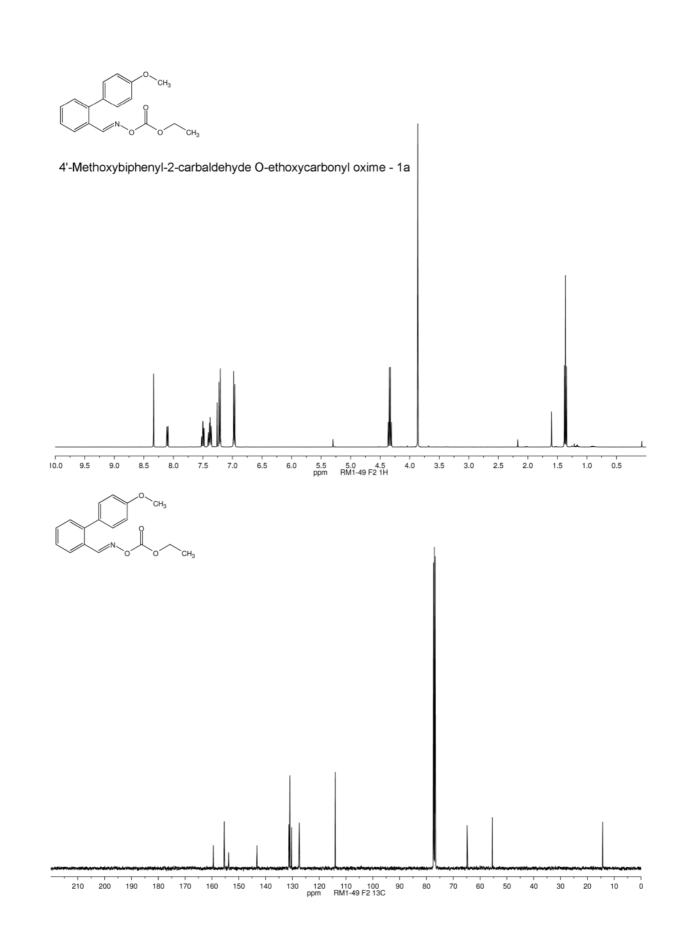


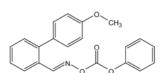
Figure S4: The X-ray crystal structure of 10.

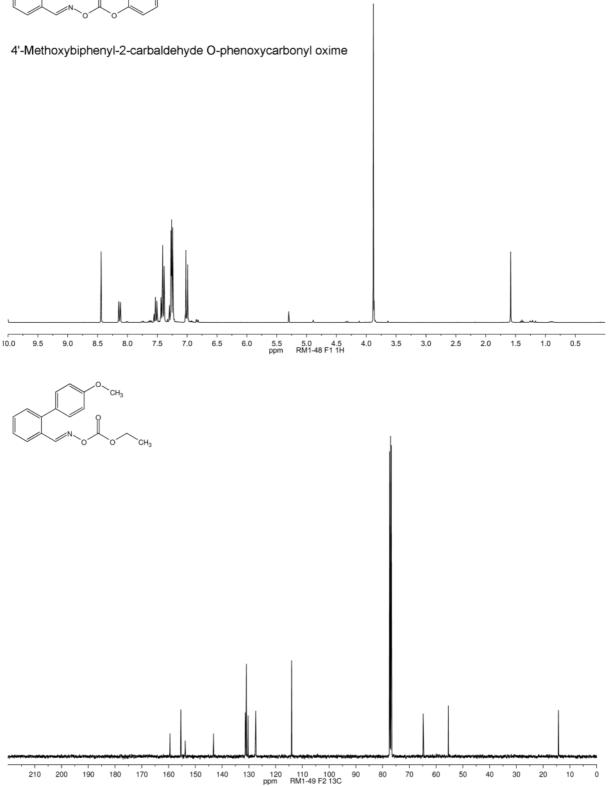
Table S5: Crystal data and structure refinement for 10.

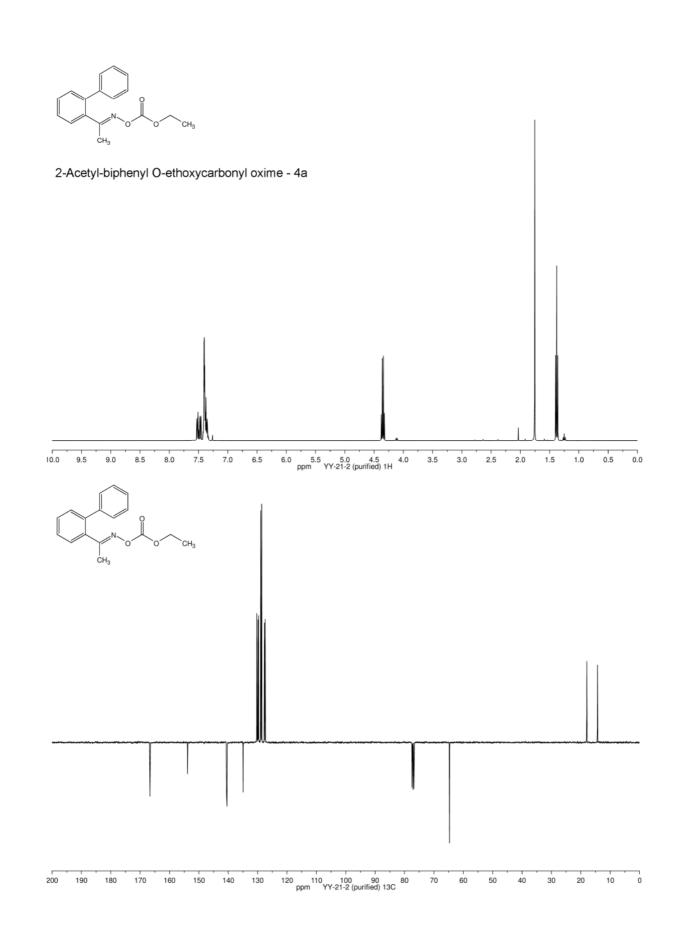

Identification code	10	
Empirical formula	C ₂₁ H ₁₅ NO ₅	
Formula weight	361.34	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.119(8) Å	$\alpha = 97.856(18)^{\circ}.$
	b = 9.581(7) Å	$\beta = 96.761(13)^{\circ}.$
	c = 10.232(8) Å	$\gamma = 104.70(2)^{\circ}$.
Volume	845.7(12) Å ³	
Z	2	
Density (calculated)	1.419 Mg/m ³	
Absorption coefficient	0.102 mm ⁻¹	
F(000)	376	
Crystal size	$0.10 \ge 0.10 \ge 0.10 = 0.10 = 0.10$	
Theta range for data collection	2.23 to 25.32°.	
Index ranges	$-10 \le h \le 10, -9 \le k \le 11, -12$	$\leq l \leq 10$
Reflections collected	5292	
Independent reflections	2969 [R(int) = 0.0681]	
Completeness to theta = 25.00°	96.8 %	
Absorption correction	Multiscan	
Max. and min. transmission	1.000 and 0.8540	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	2969 / 0 / 244	
Goodness-of-fit on F ²	1.067	
Final R indices [I>2sigma(I)]	R1 = 0.0783, wR2 = 0.1996	
R indices (all data)	R1 = 0.0858, wR2 = 0.2115	
Largest diff. peak and hole	0.633 and -0.543 e.Å ⁻³	

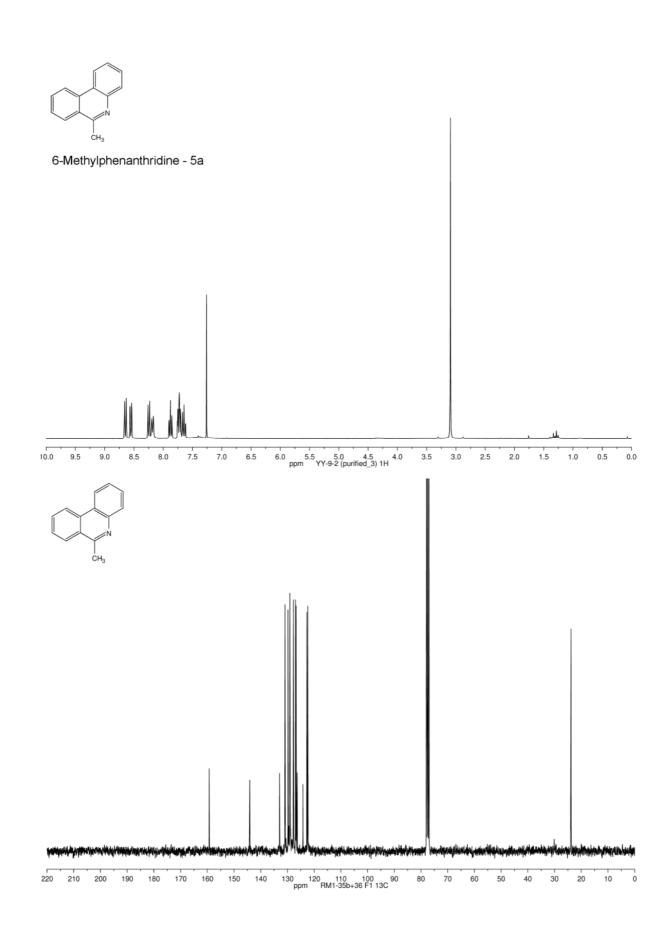
References

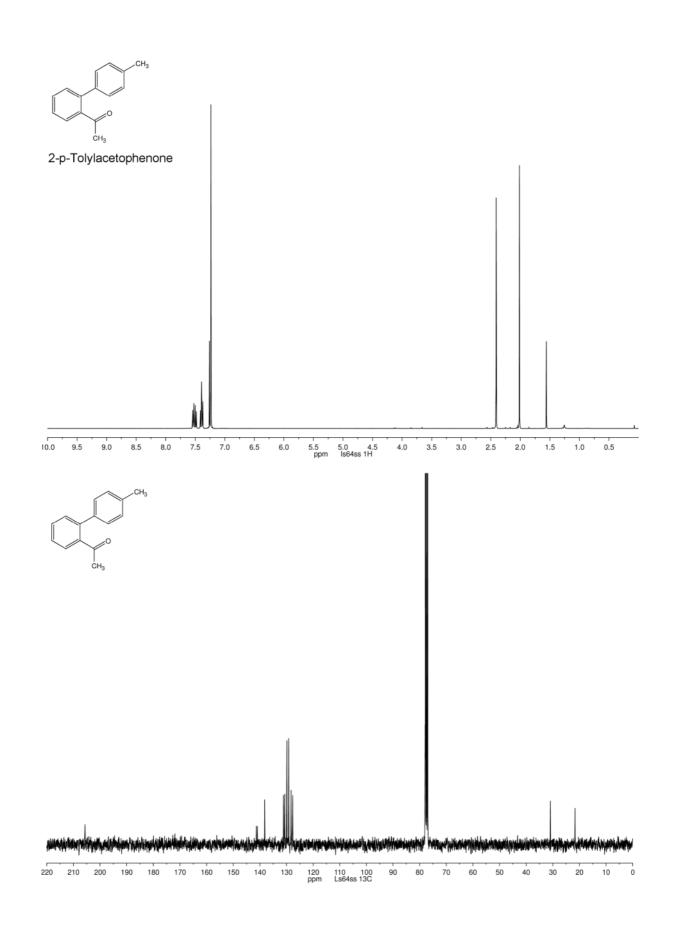

- 1. F. Portela-Cubillo, J. S. Scott and J. C. Walton, J. Org Chem. 2008, 73, 5558.
- F. Portela-Cubillo, J. Lymer, E. M. Scanlan, J. S. Scott and J. C. Walton, *Tetrahedron*, 2008, 64, 11908.
- S. C. Pelly, C. J. Parkinson, W. A. L. van Otterlo and C. B. de Koning, *J. Org. Chem.*, 2005, **70**, 10474.
- 4. P. Anbarasan, H. Neumann and M. Beller, *Chem. Eur. J.*, 2010, **16**, 4725.
- 5. J. Goossen, N. Rodríguez and C. Linder J. Am. Chem. Soc., 2008, **130**, 15248.
- 6. B. H. Lipshutz, T. Butler and E. Swift, *Org. Lett.*, 2008, **10**, 697.

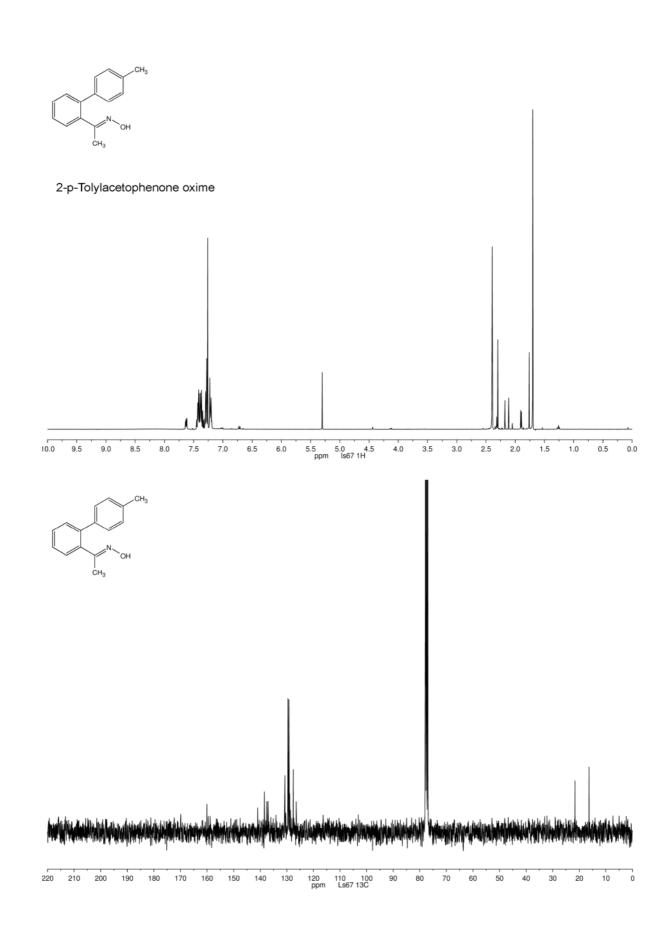

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

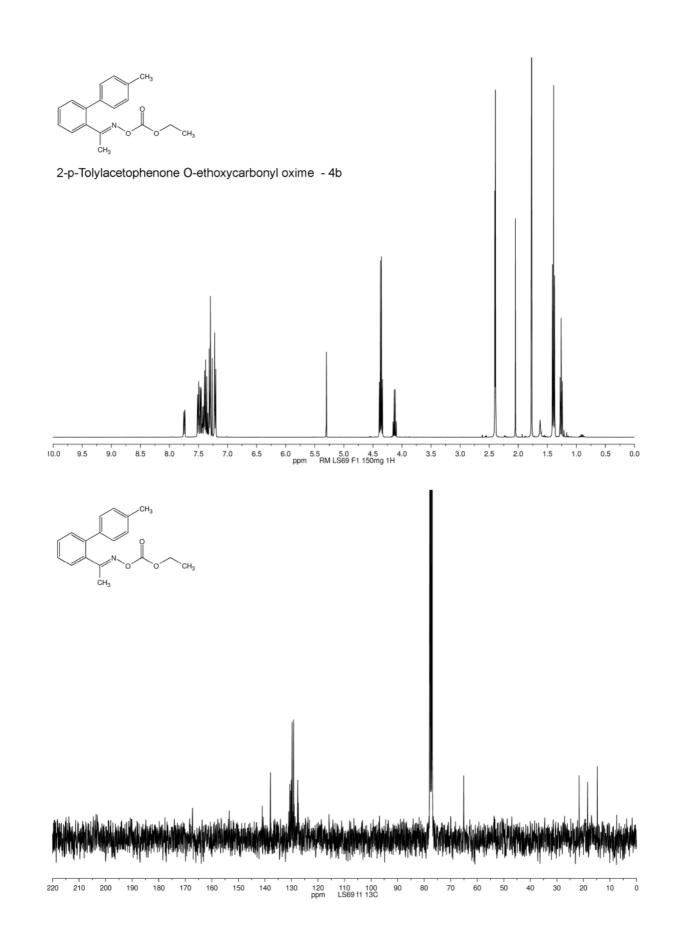

¹H and ¹³C NMR spectra of novel compounds

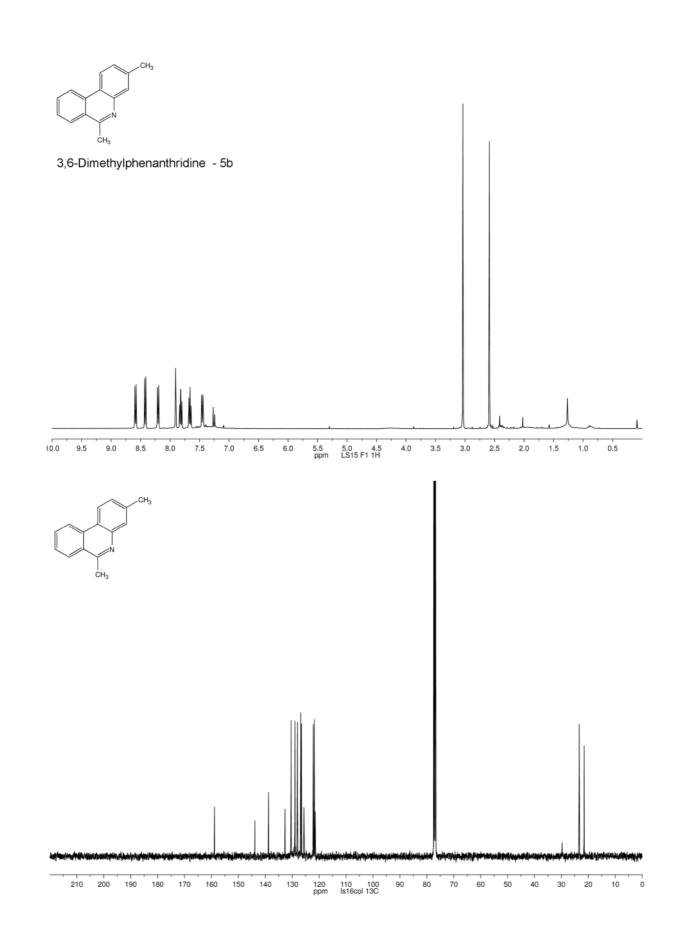

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

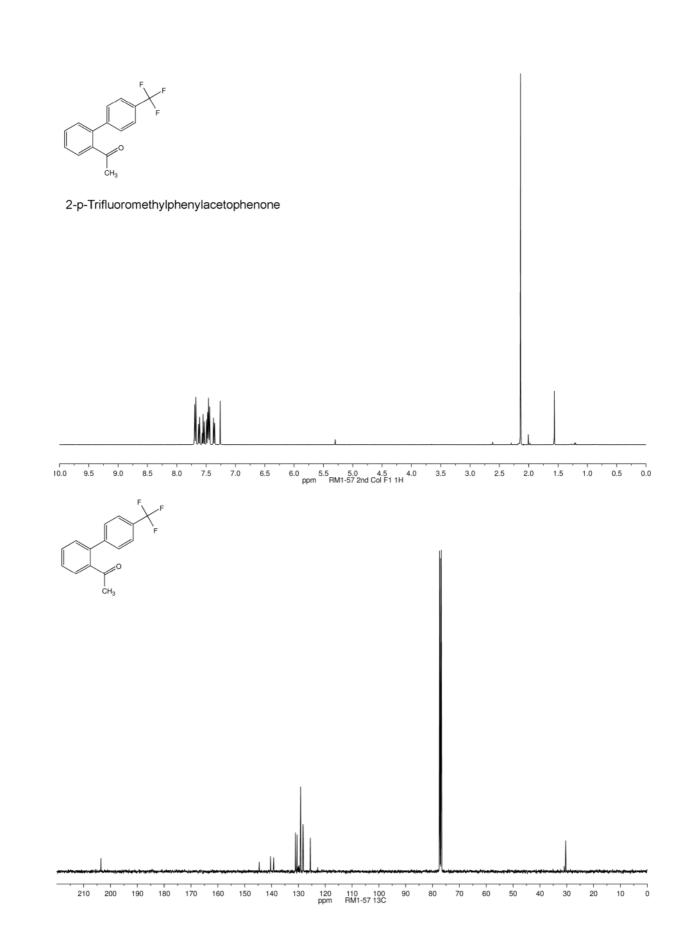


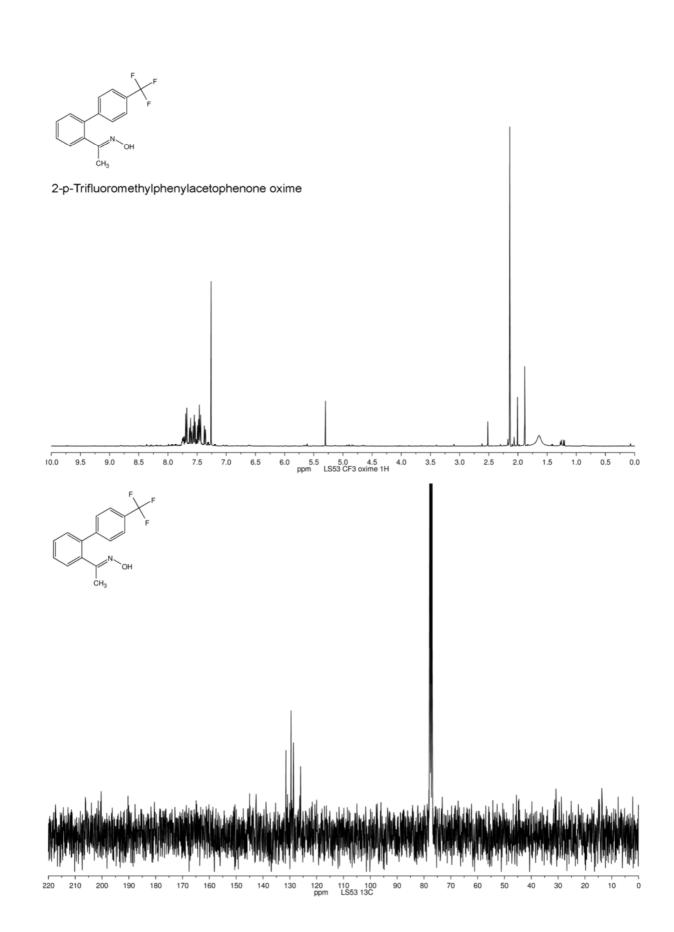


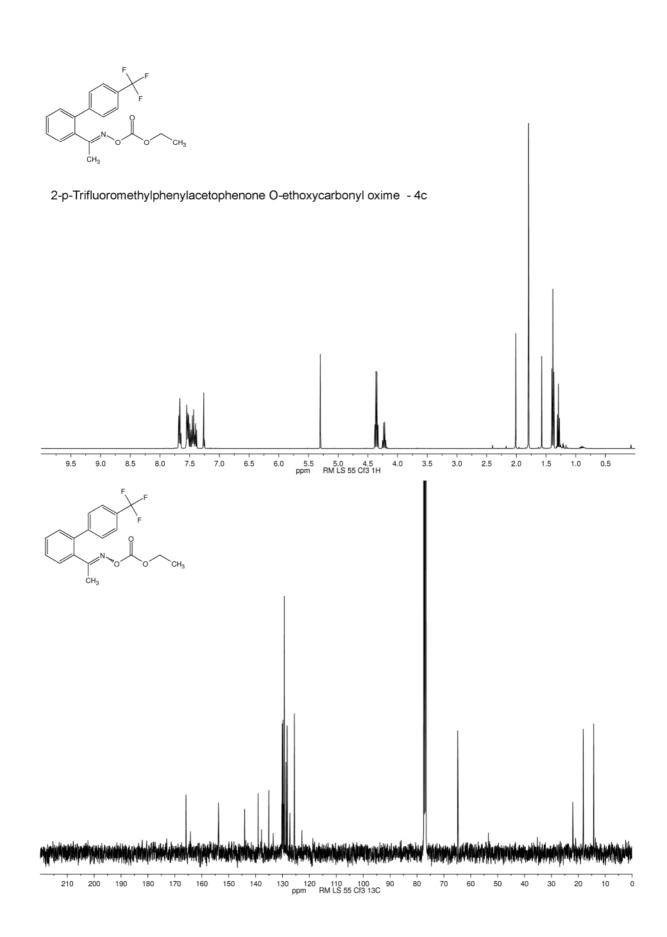


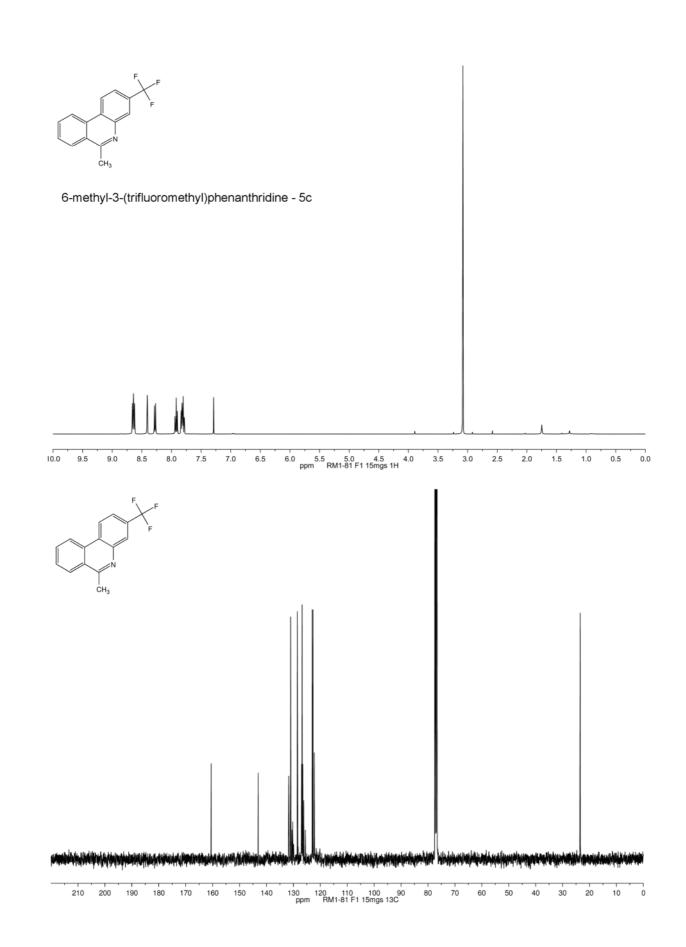


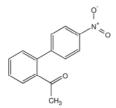


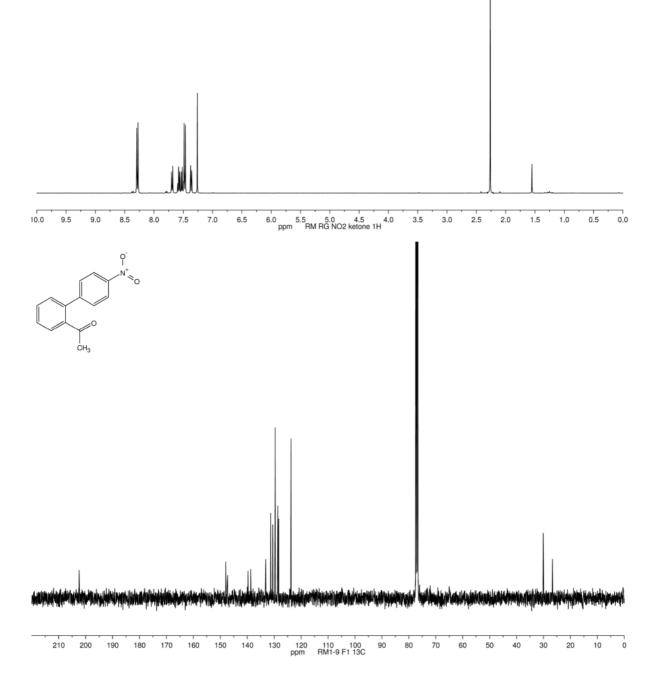


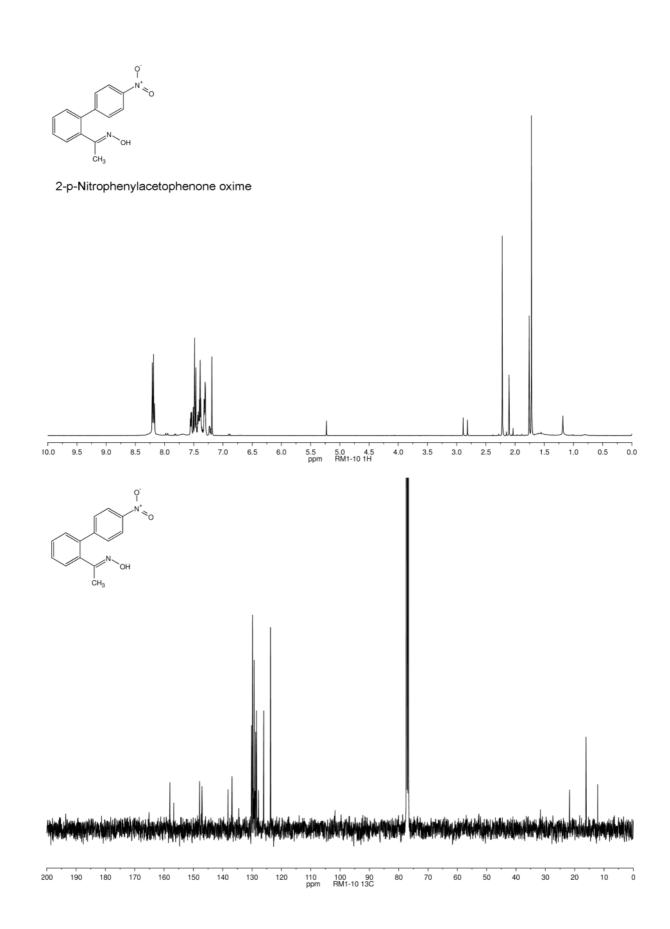


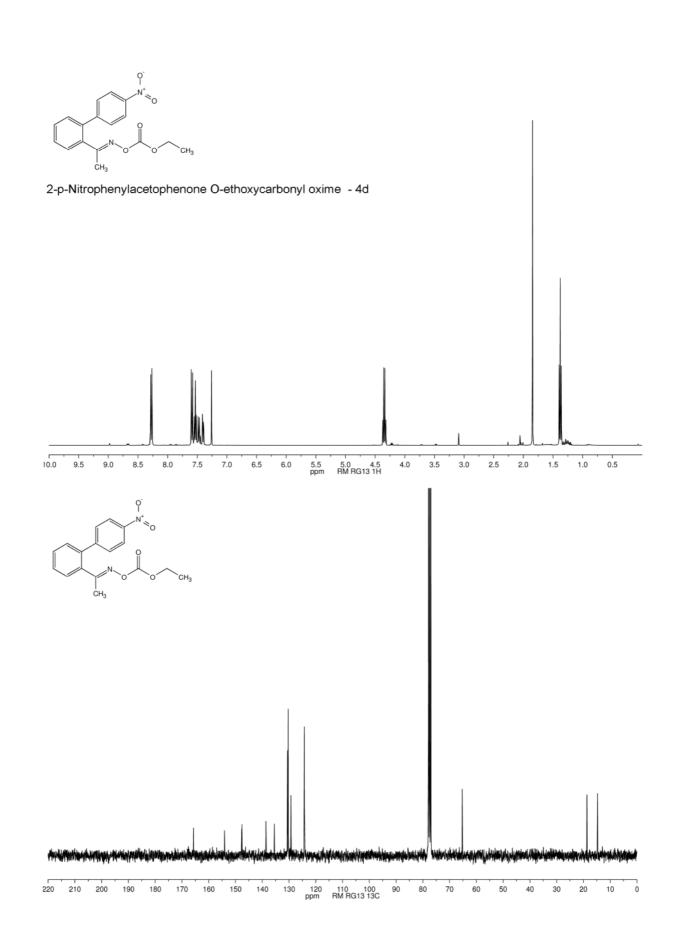


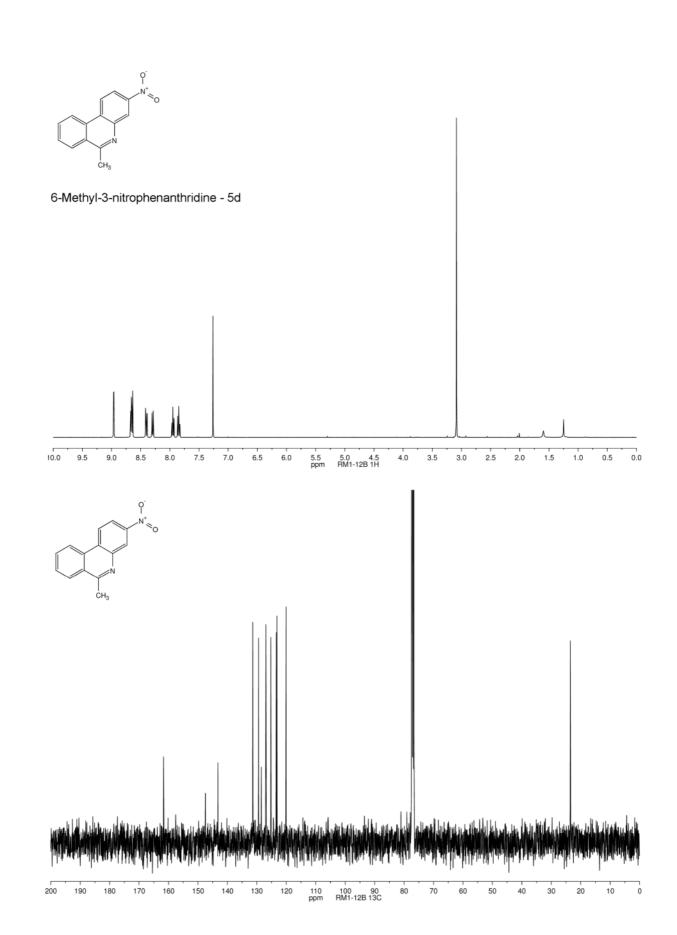


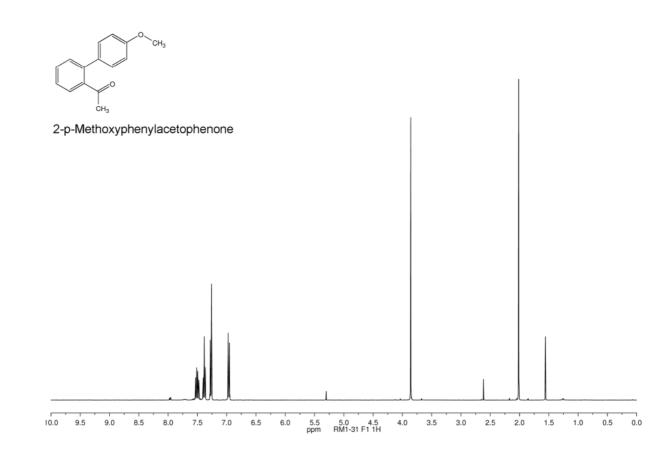


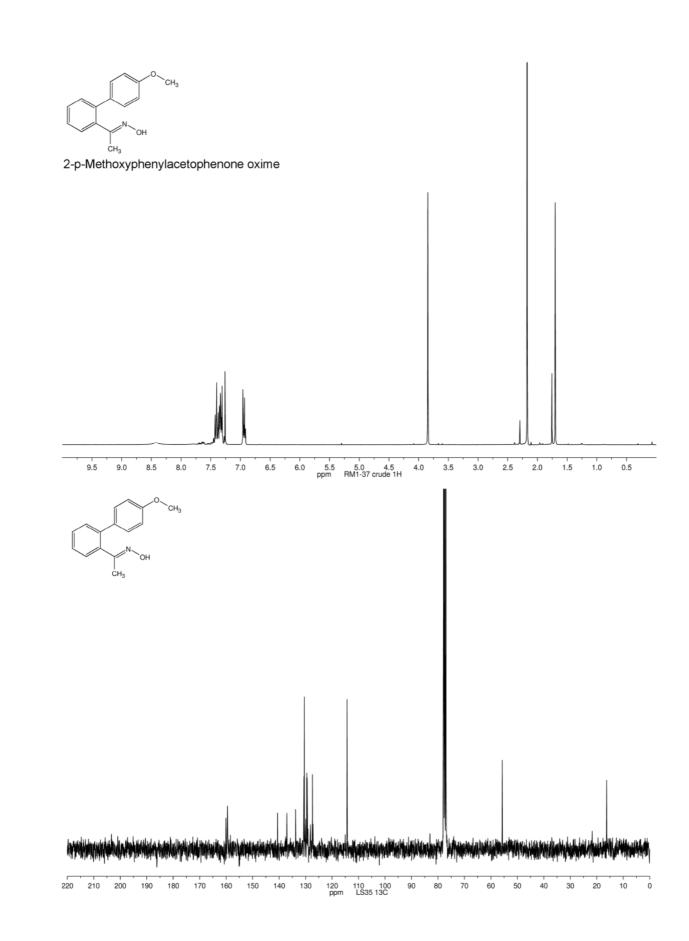


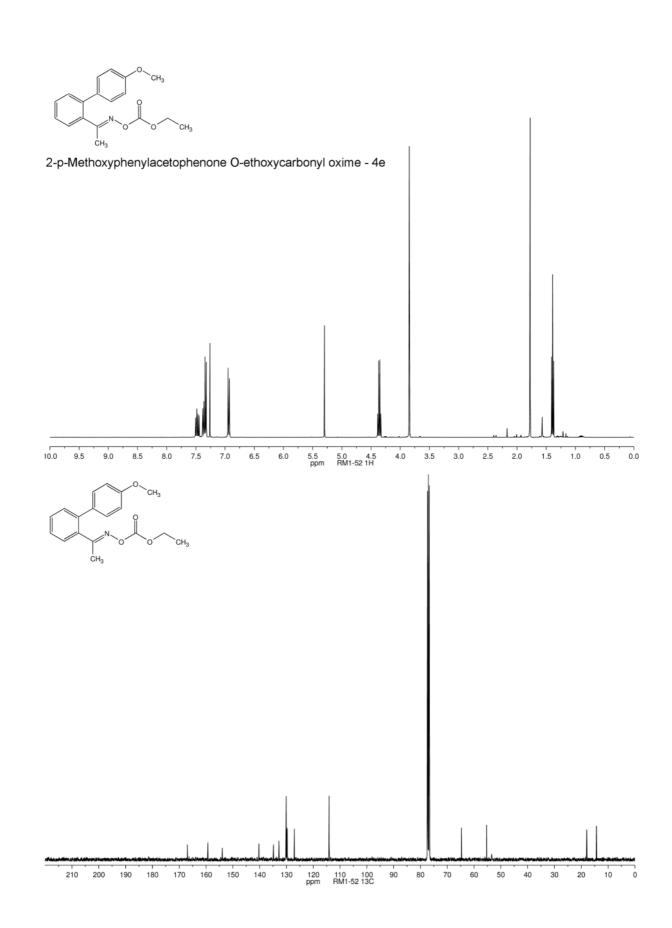


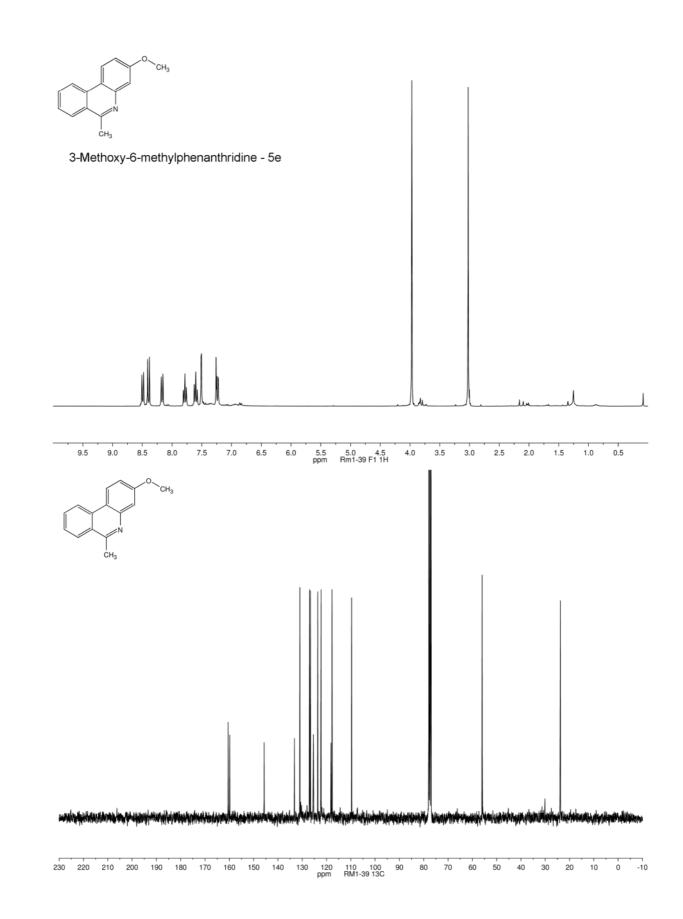


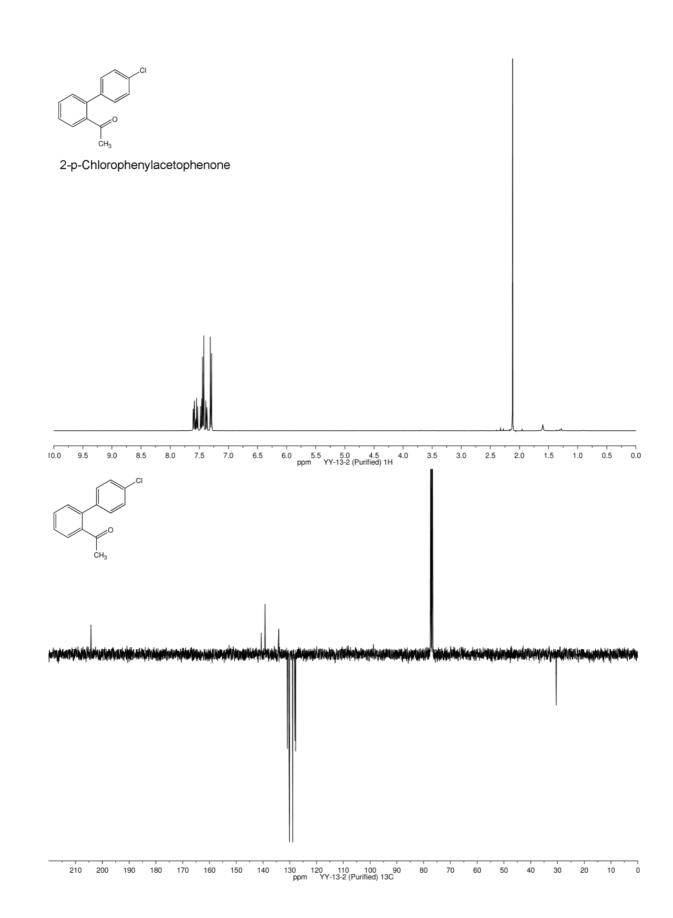


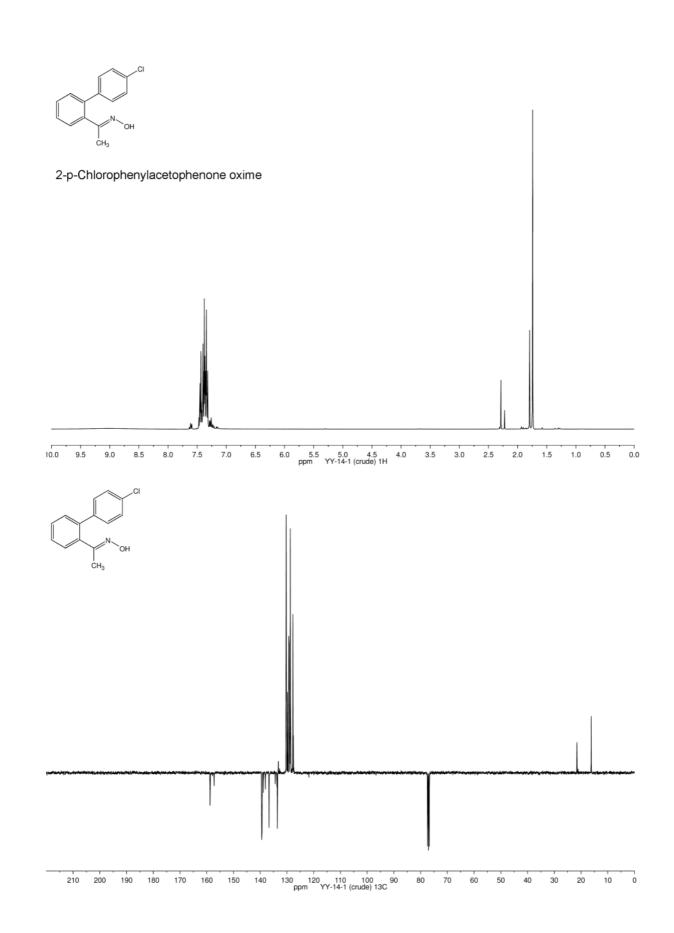

2-p-Nitrophenylacetophenone

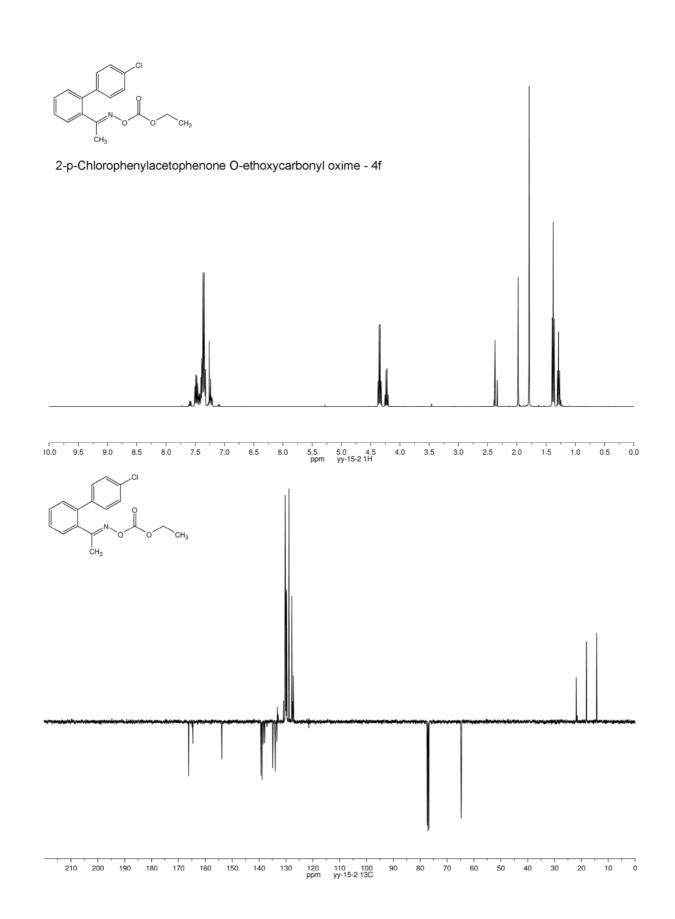


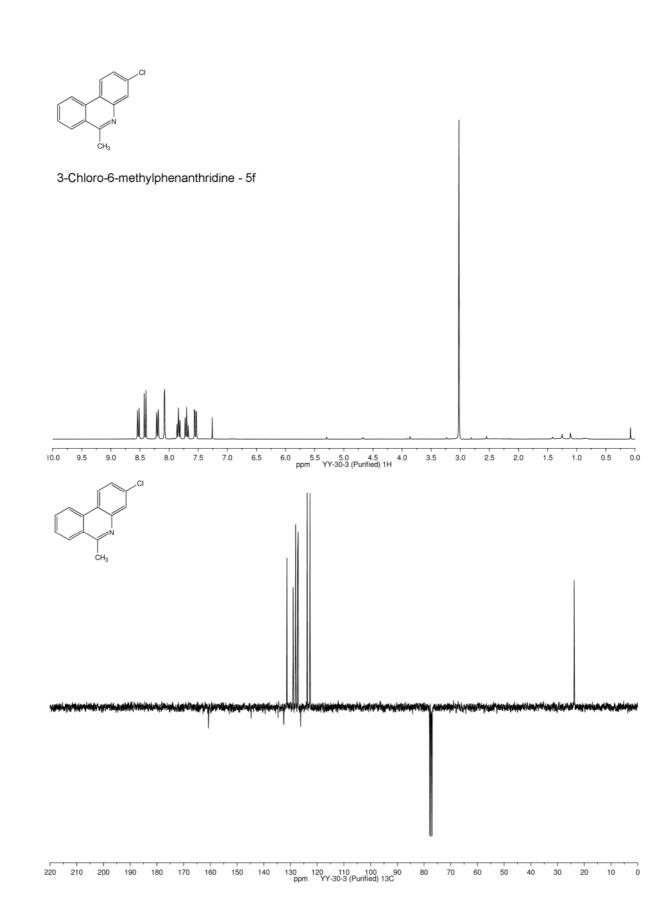


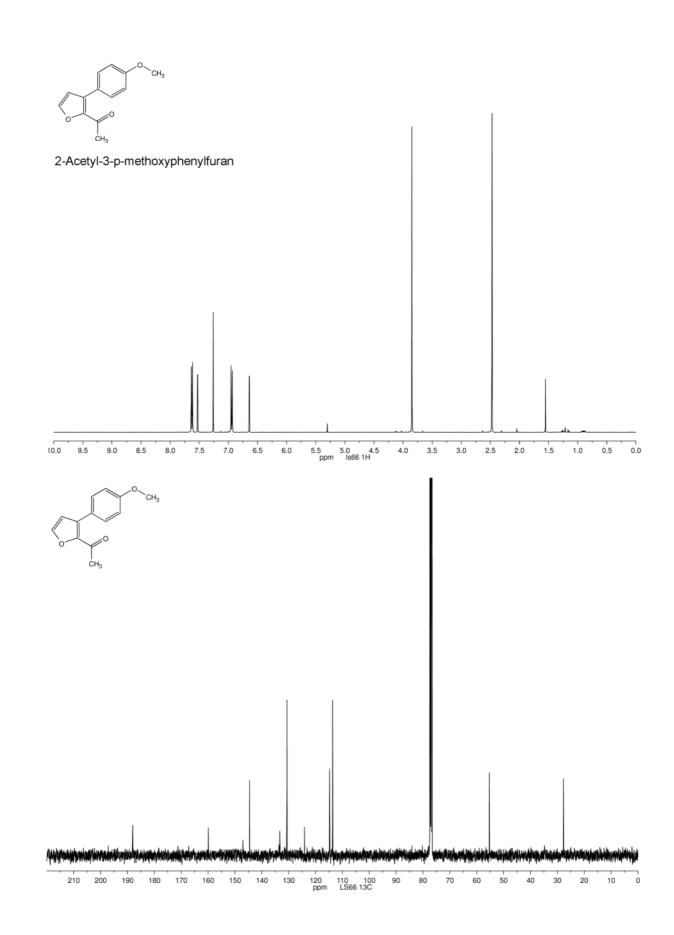


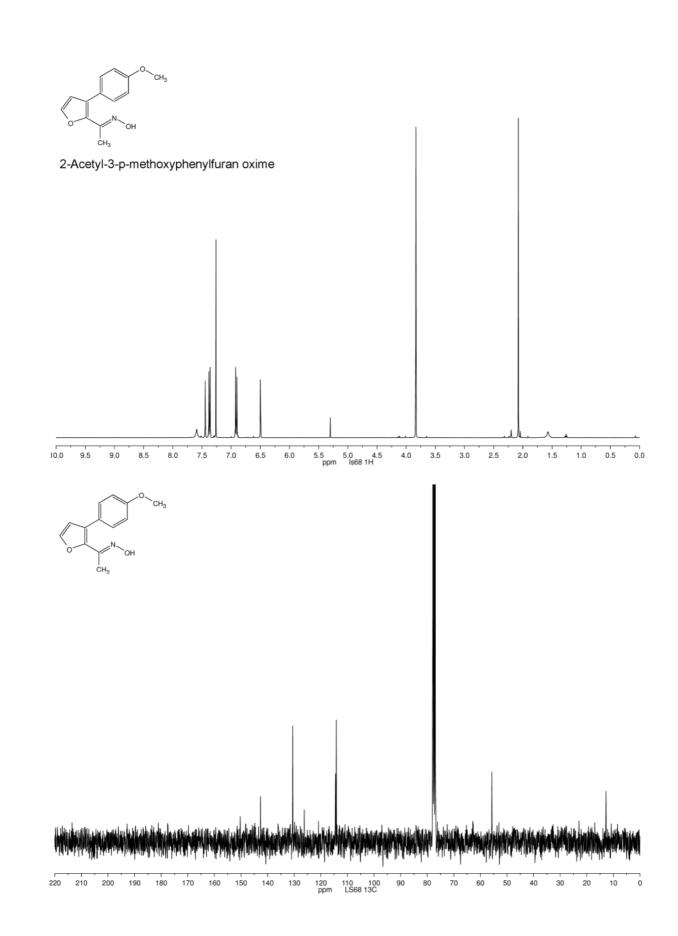


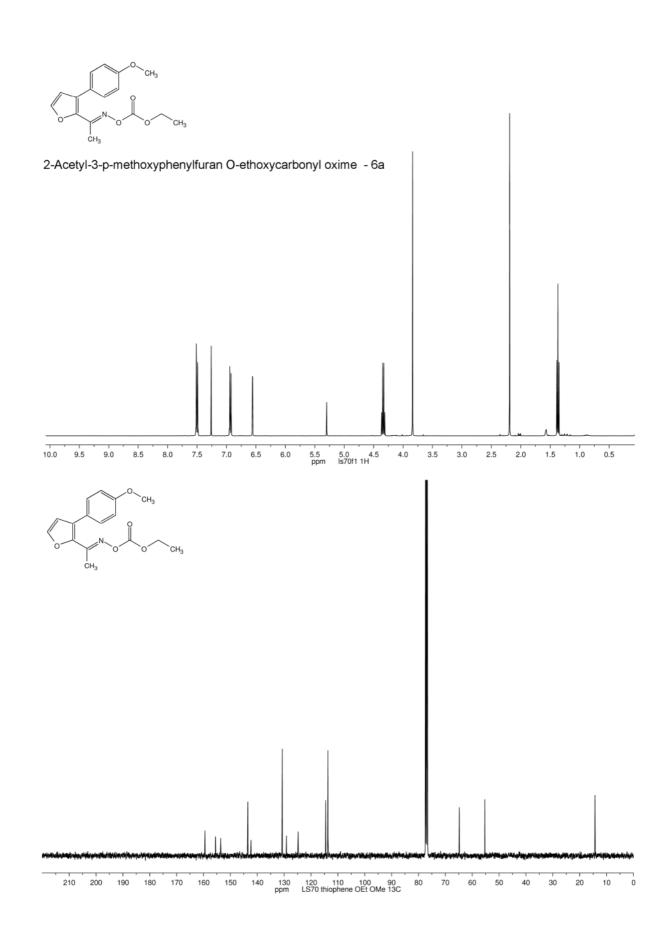


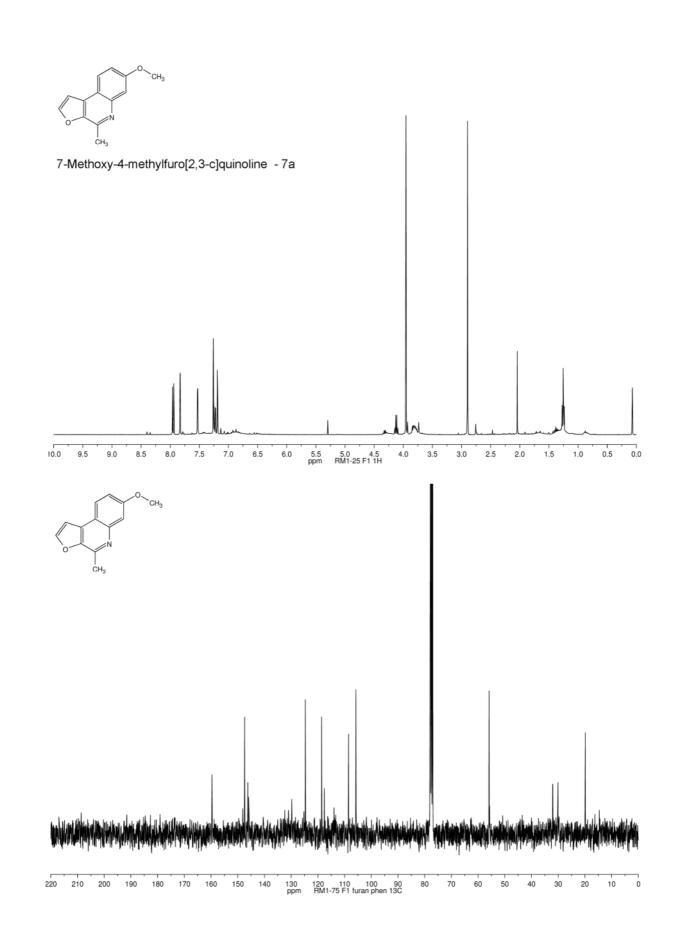


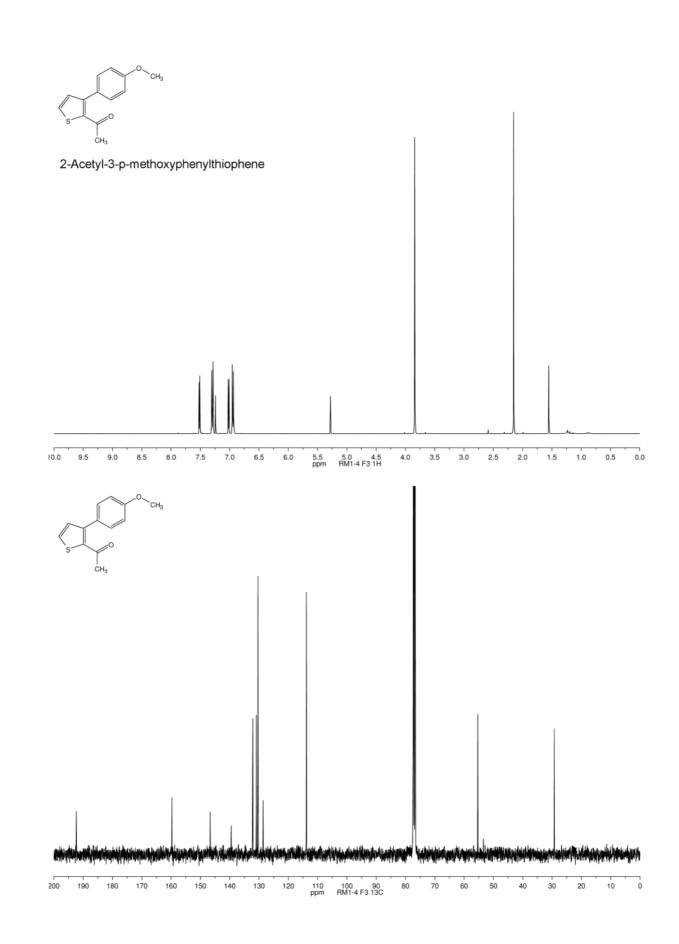


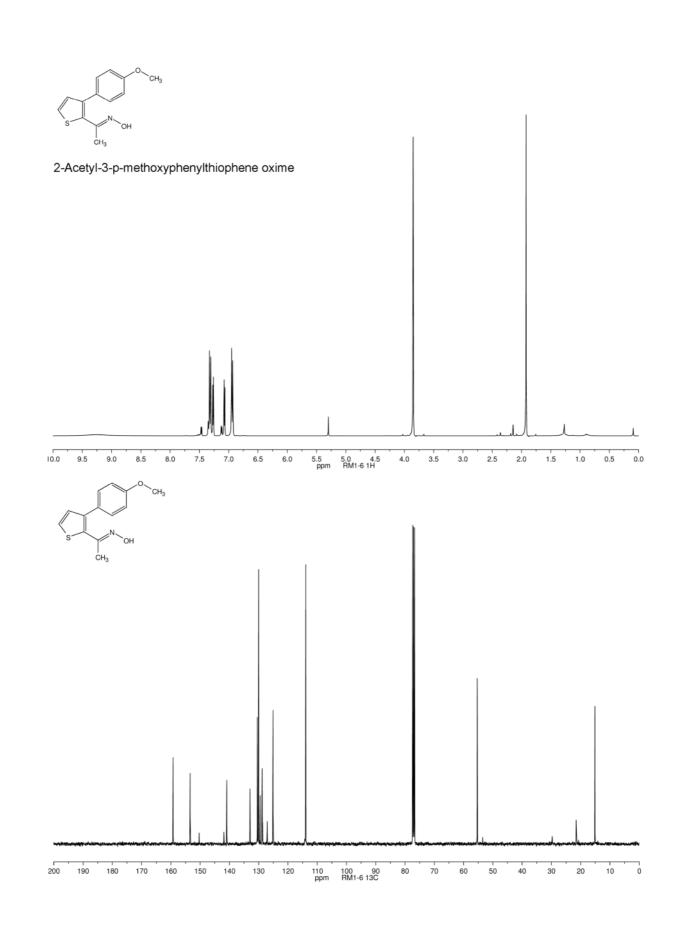


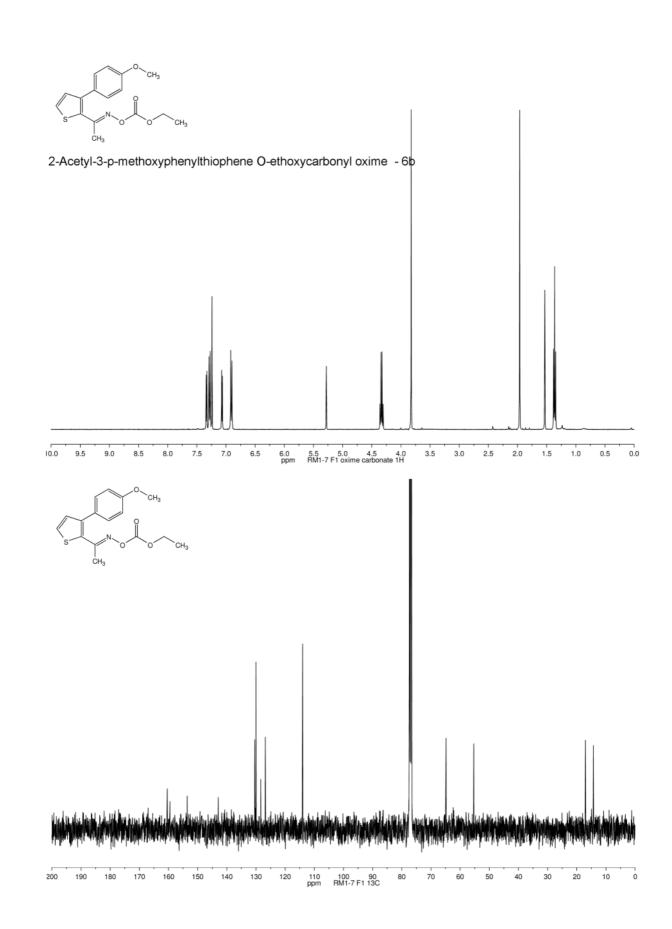


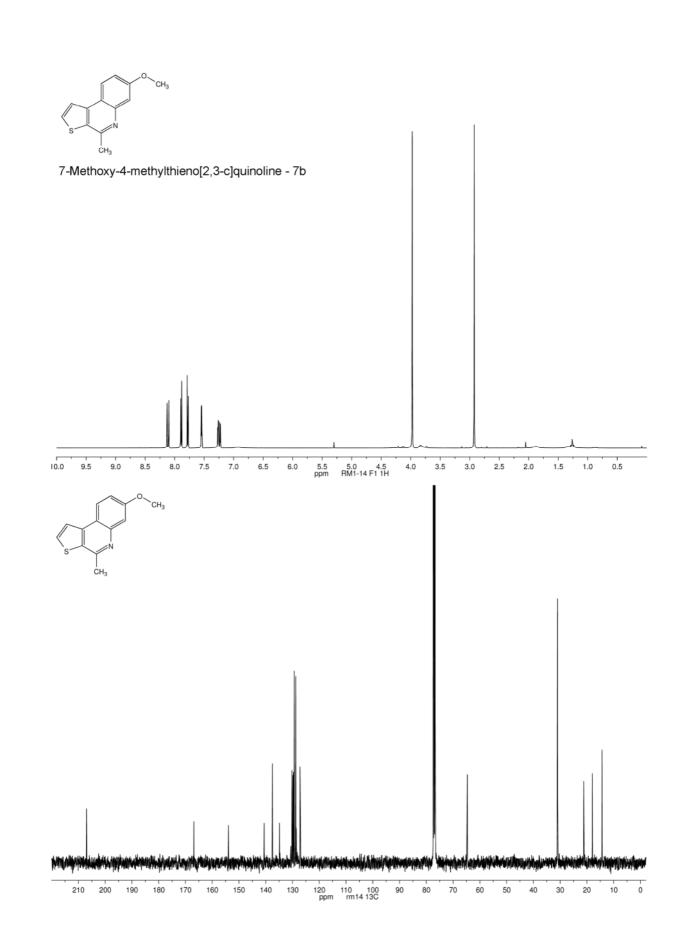


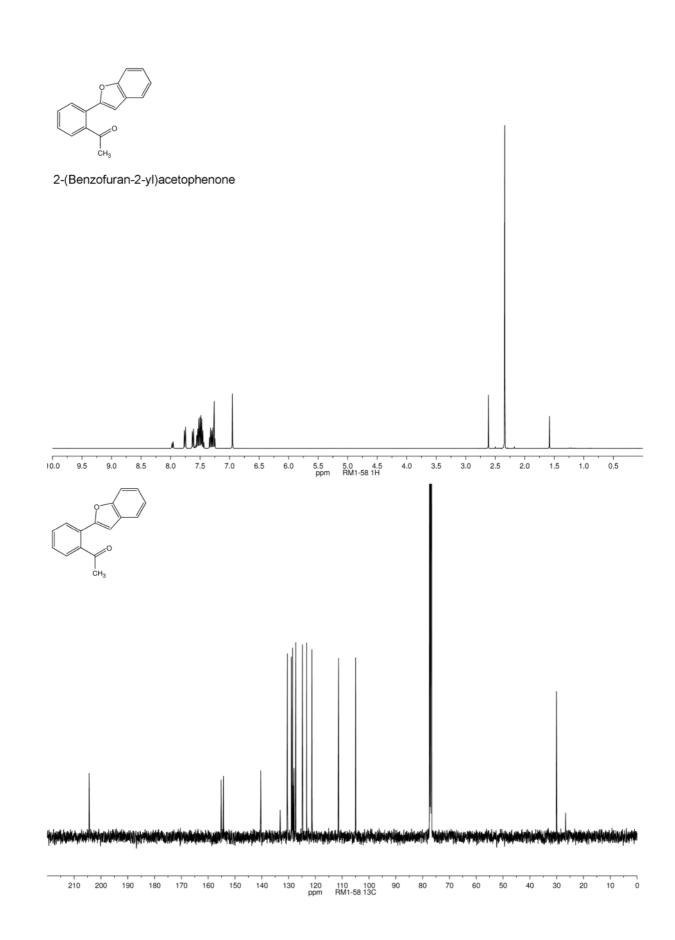


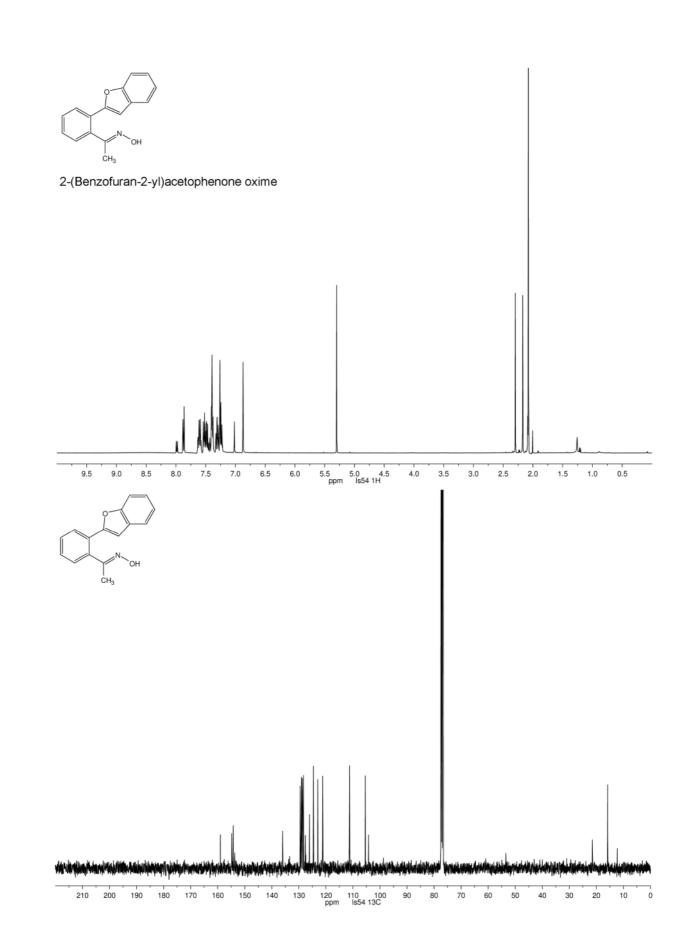


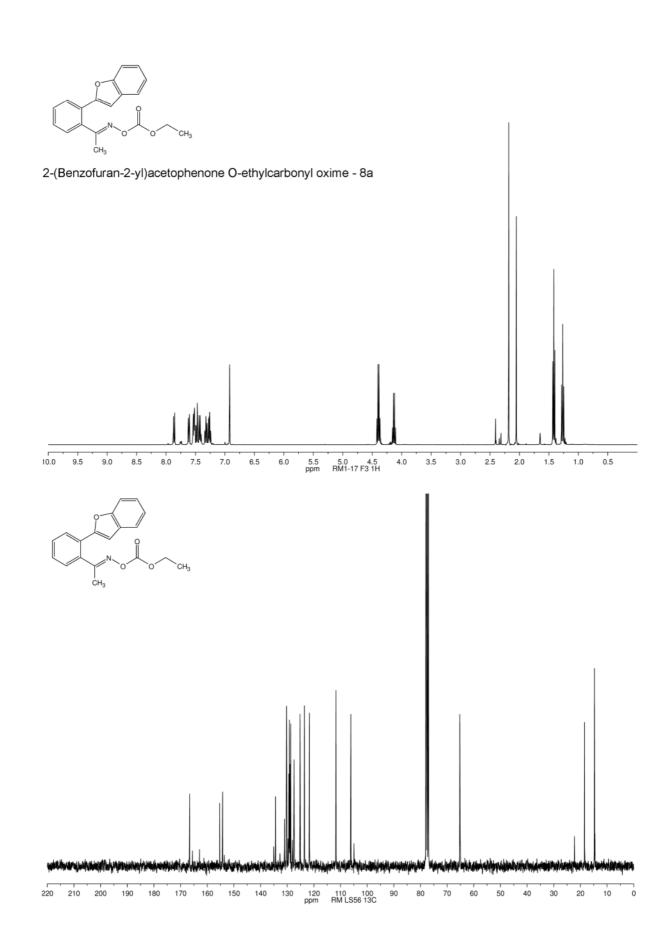


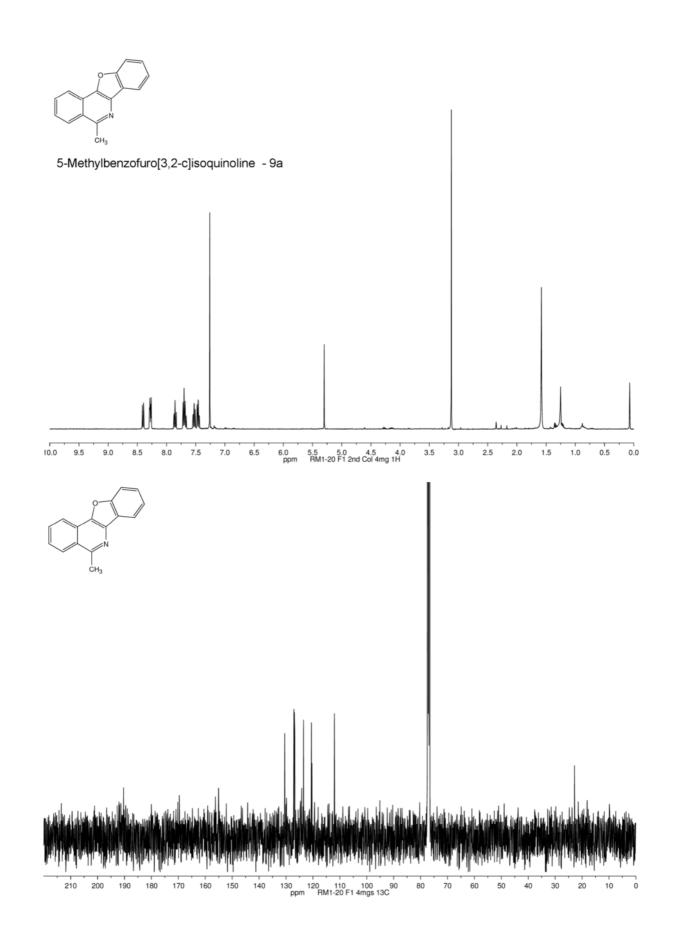


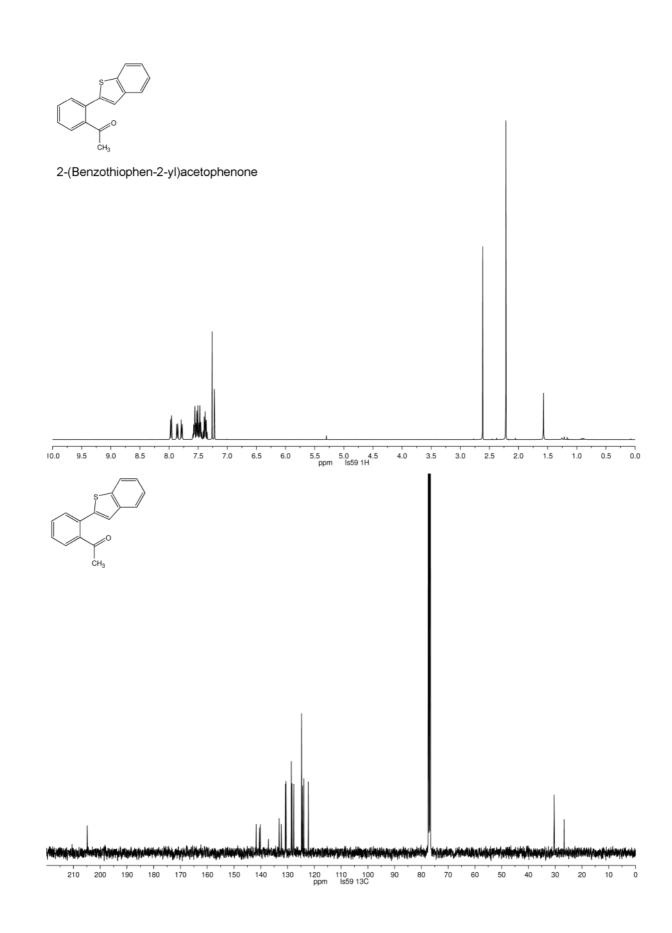


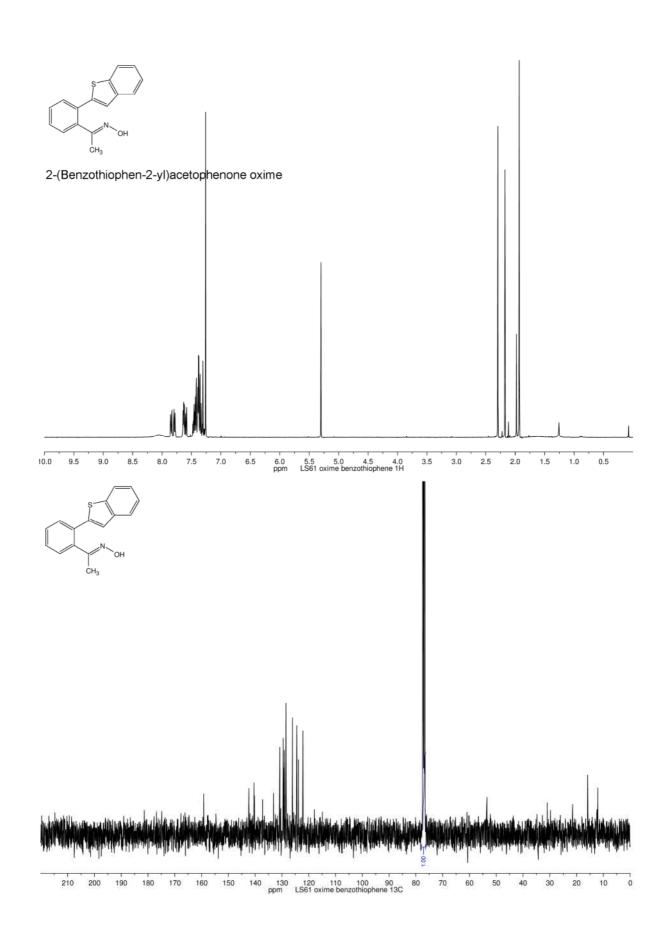


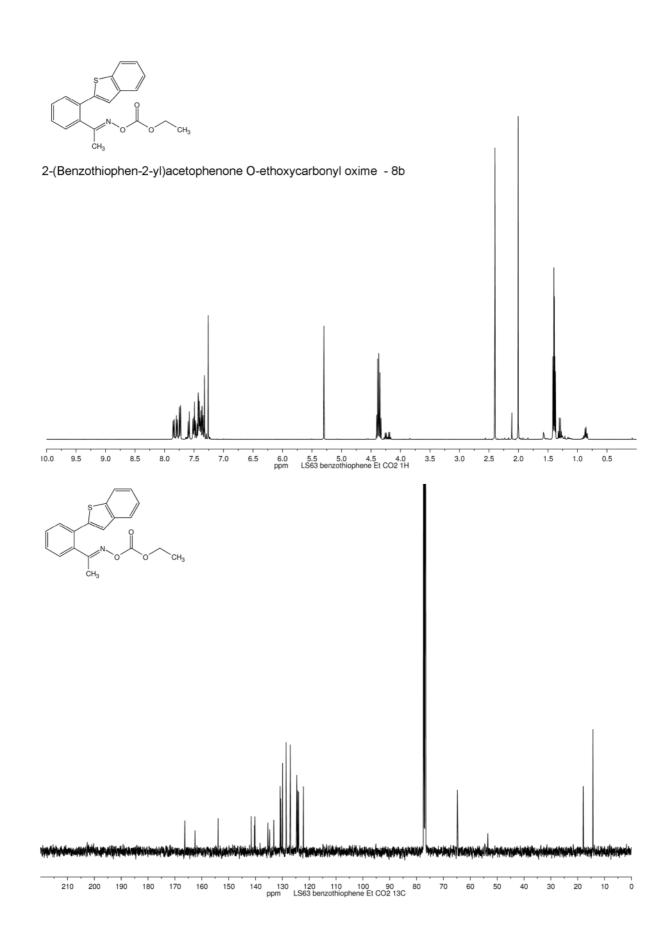


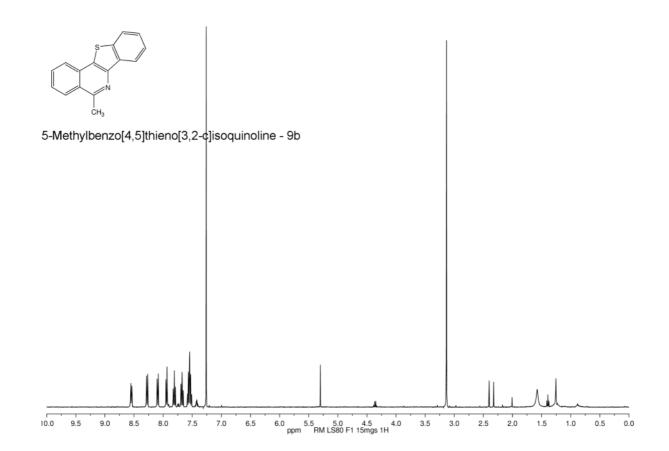


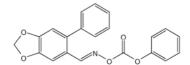


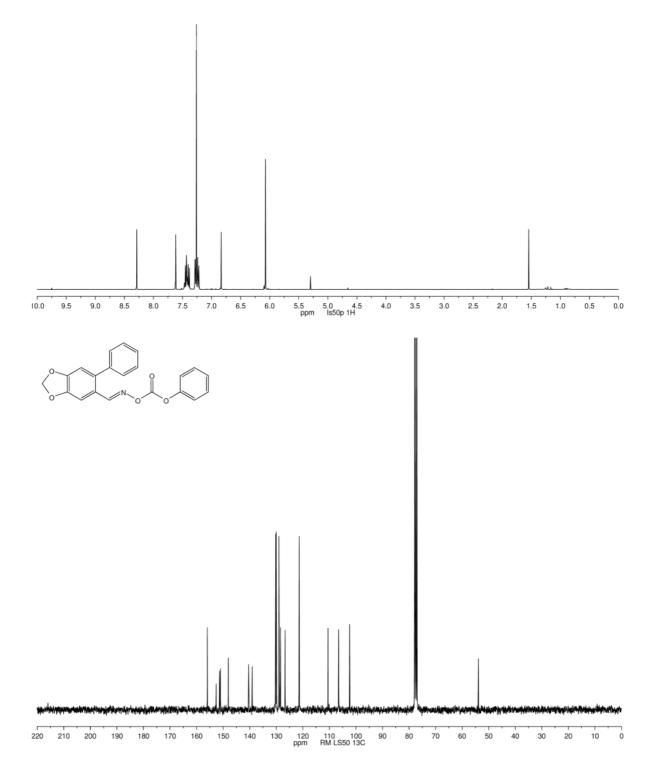


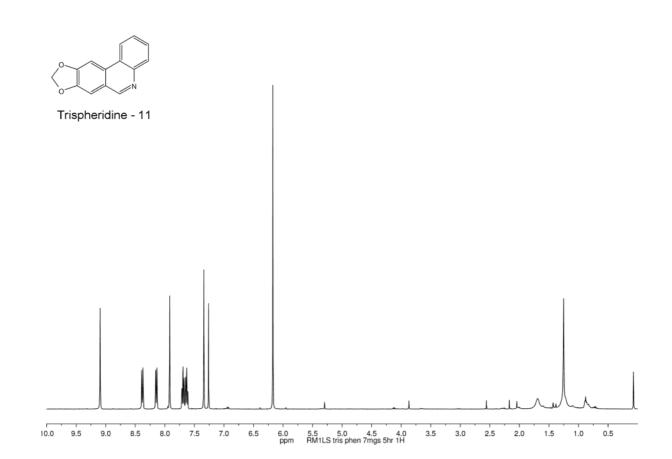












6-Phenylbenzo[d][1,3]dioxole-5-carbaldehyde O-phenoxy oxime - 10

