Supporting Information

Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide

Jian-Bin Lin, Rui-Biao Lin, Xiao-Ning Cheng, Jie-Peng Zhang and Xiao-Ming Chen

^a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China. E-mail: zhangjp7@mail.sysu.edu.cn.

^b Instrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou 510275, China.

Experiment Section

Materials and Methods. Hmim (99%, Alfa Aesar) and other commercially available reagents were used as received without further purification. Hmdpt (3-(3-methyl-2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole) was prepared according to a reported method. Powder X-ray diffraction (PXRD) patterns were recorded on a Bruker D8 Advance diffractometer (Cu-Kα). Gas sorption isotherms were measured on a volumetric adsorption apparatus (ASAP 2020M for N_2 , Bel-max for CO_2). Before the measurement, the samples were all activated under a dynamic vacuum up to 10^{-2} Pa at 180 °C for 5 hrs. All compounds synthesized by different methods were measured with the same equilibrium criterion.

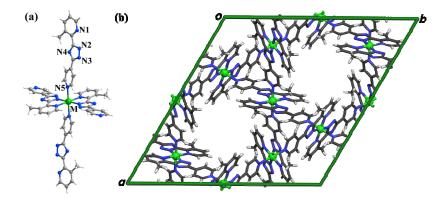
Syntheses of MAF-4: A mixture of ZnO (200 mg, 2.5 mmol) and Hmim (410 mg, 5.0 mmol) was grinded uniformly and then sealed in a 15-mL Teflon-lined autoclave and heated at 180°C for 12 hrs to give white powders (yield: 567 mg, ~100%). When the same vessel was naturally filled by a mixture of ZnO (2.44 g, 30 mmol) and Hmim (4.93 g, 60 mmol), a shaped material with an apparent density 0.46 g cm⁻³ was obtained.

Solvothermal synthesis of MAF-27: A mixture of MgCl₂·6H₂O (100 mg, 0.50 mmol), Hmdpt (240 mg, 1.0 mmol), ethanol (10 mL) and Et₃N (0.50 mL) was stirred continuously for 1 hr and then sealed in a 15-mL Teflon-lined autoclaves and heated at 160°C for 3 days, and then cooled by 5°C/hr to room temperature to give colorless crystals of MAF-27 (yield: 61 mg, 25 %), which was sometimes contaminated by some crystals of [Mg(mdpt)₂(H₂O)₂]·2H₂O.

Solvothermal synthesis of MAF-28: A mixture of Zn(NO₃)₂·6H₂O (80 mg, 0.25 mmol), Hmdpt (120 mg, 0.50 mmol), ethanol (4.0 mL) and DMF (0.20 mL) was sealed in a 15-mL Teflon-lined autoclaves and heated at 160°C for 3 days, and then cooled by 5°C/hr to room temperature to give colorless crystals (yield: 88 mg, 65 %).

Synthesis of MAF-27 and MAF-28 by OSFR: A mixture of $Mg(OH)_2$ (15 mg, 0.25 mmol) or $Zn(OH)_2$ (25 mg, 0.25 mmol) and Hmdpt (119 mg, 0.50 mmol) was grinded uniformly and then sealed in a glass tube and heated at 300° C for 16 hrs to give white powders (yield: 124 and 134 mg for MAF-27 and MAF-28, respectively, ~100%).

Single-crystal of $[Mg(mdpt)_2(H_2O)_2]\cdot 2H_2O$ can be also obtained by dissolving MAF-27 in 95% ethanol and then slowly evaporated in air for several weeks.


Crystal Structure Determination. Intensity data were collected on a Bruker Apex CCD area-detector diffractometer (Mo-K α). Absorption corrections were applied by using the multi-scan program SADABS. The structures were solved with direct method and refined with a full-matrix least-squares technique with the SHELXTL program package. Anisotropic thermal parameters were applied to all non-hydrogen atoms except the guest molecules. The organic hydrogen atoms were generated geometrically. The solvent molecules in the MAF-27 and MAF-28 are highly disordered and cannot be modeled, thus the SQUEEZE routine was applied to remove the contributions to the scattering from the solvent molecules.

- 1 E. J. Browne, Aust. J. Chem. 1975, 28, 2543.
- 2 G. M. Sheldrick, University Göttingen: Göttingen, Germany 2002.
- 3 Bruker Analytical Instrumentation: Madison, WI 2000.
- 4 A. L. Spek, J. Appl. Crystallogr. 2003, **36**, 7.

 Table S1. Crystallographic data.

Complex	MAF-27	MAF-28	$[Mg(mdpt)_2(H_2O)_2]\cdot 2H_2O$
Formula	$C_{26}H_{20}MgN_{10}$	$C_{26}H_{20}N_{10}Zn$	$C_{26}H_{28}MgN_{10}O_4$
Formula weight	496.83	537.89	568.89
Crystal system	Hexagonal	Hexagonal	Monoclinic
Space group	$R\overline{3}$	$R\overline{3}$	$P2_1/c$
a/Å	27.085(6)	27.214(9)	7.9467(5)
b/Å	27.085(6)	27.214(9)	11.6001(8)
c/Å	10.329(6)	10.206(6)	29.750(2)
eta / $^{ m o}$	120	120	92.9390(10)
<i>V</i> /Å ³	6562(4)	6546(5)	2738.8(3)
Z	9	9	4
$D_{\rm c}/{ m g~cm}^{-3}$	1.132	1.228	1.380
μ /mm ⁻¹	0.092	0.875	0.118
reflns coll.	8142	5258	15692
unique reflns	2572	2521	5373
$R_{ m int}$	0.1481	0.0656	0.0517
$R_1[I > 2 \sigma]^{[a]}$	0.0751	0.0680	0.0633
$wR_2[I > 2 \sigma]^{[b]}$	0.1265	0.1181	0.1619
R_1 (all data)	0.2207	0.1204	0.1010
wR_2 (all data)	0.1444	0.1300	0.1958
GOF	1.000	1.008	1.002
$\Delta \rho_{\text{min/max}}$ /e/Å ³	0.260/-0.266	0.836/-0.578	0.567/-0.518

 $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0| \cdot wR_2 = \left[\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\right]^{1/2}.$

Fig. S1 (a) Coordination environment of the M^{II} ion, and (b) the framework structure viewed along the *c*-axis of MAF-27/28.

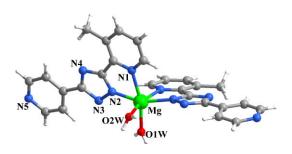
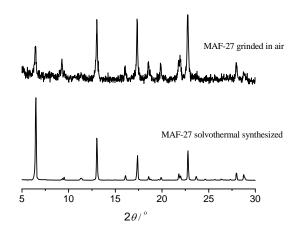
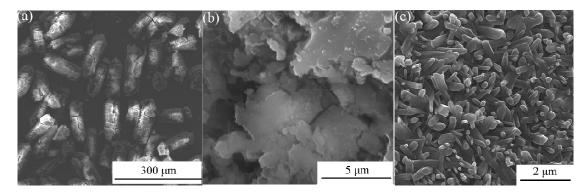




Fig. S2 Molecular structure of $[Mg(mdpt)_2(H_2O)_2]\cdot 2H_2O$.

Fig. S3 PXRD patterns of the solvothermally synthesized MAF-27 before and after grinded in air (crystallinity lowered).

Fig. S4 SEM images of MAF-27 obtained by solvothermal method: (a) before and (b) after grinding, and (c) by OSFR.

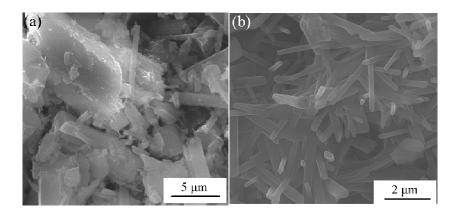
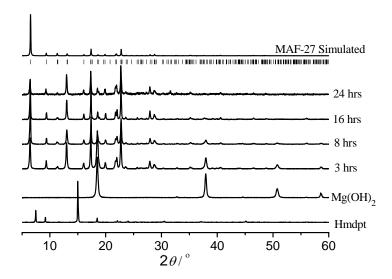
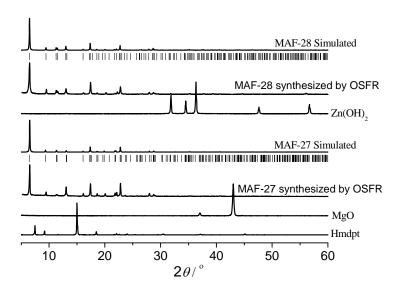




Fig. S5 SEM images of MAF-27 obtained by (a) solvothermal method, and (b) by OSFR.

Fig. S6 PXRD patterns of Hmdpt, Mg(OH)₂, the mixture of Hmdpt and Mg(OH)₂ after heated at 300 °C for different time, and simulated MAF-27.

Fig. S7 PXRD patterns of Hmdpt, MgO, MAF-27 synthesized by OSFR, simulated MAF-27, Zn(OH)₂, MAF-28 synthesized by OSFR, and simulated MAF-28.

Table S2. Indexing and refinement results of PXRD patterns of MAF-4, MAF-27 and 28 obtained by OSFR.

Complex	MAF-4	MAF-27	MAF-28
Space group	$I\overline{4}3m$	$R\overline{3}$	$R\overline{3}$
a/Å	16.909(4)	27.124(15)	26.082(12)
b/Å	16.909(4)	27.124(15)	26.082(12)
c/Å	16.909(4)	10.231(6)	9.705(4)
$R_{ m wp}$	6.27%	6.34%	7.08%
$R_{ m p}$	4.59%	4.67%	5.09%

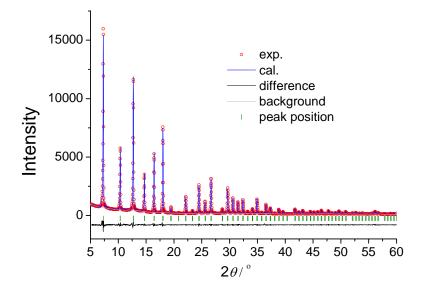


Fig. S8 Pawley fitting of PXRD pattern of MAF-4 obtained by OSFR.

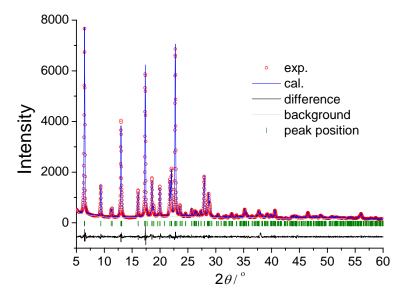


Fig. S9 Pawley fitting of PXRD pattern of MAF-27 obtained by OSFR.

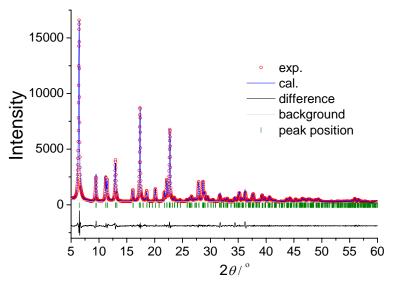


Fig. S10 Pawley fitting of PXRD pattern of MAF-28 obtained by OSFR.