Electronic Supplementary Information (ESI)

Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole, and thiophene building blocks

Zujin Zhao,^{*ab*} Chunmei Deng,^{*a*} Shuming Chen,^{*c*} Jacky W. Y. Lam,^{*a*} Wei Qin,^{*a*} Ping Lu,^{*d*} Zhiming Wang,^{*d*} Hoi Sing Kwok,^{*c*} Yuguang Ma,^{*d*} Huayu Qiu^{*b*} and Ben Zhong Tang*^{*a*}

 ^a Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
^b College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
^c Center for Display Research, HKUST
^d State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012,

China

Experimental

General

THF was distilled from sodium benzophenone ketyl under dry nitrogen immediately prior to use. Compound 1^1 , 2^1 , 3^2 , 5^2 , 7^2 , and 8^2 were prepared according to the literature methods. All other chemicals and regents were purchased from Aldrich and used as received without further purification. ¹H and ¹³C NMR spectra were measured on a Bruker AV 300 spectrometer in deuterated chloroform using tetramethylsilane (TMS; $\delta = 0$) as internal reference. UV spectra were measured on a Milton Roy Spectronic 3000 Array spectrophotometer. Photoluminescence was recorded on a Perkin-Elmer LS 55 spectrofluorometer. High resolution mass spectra were recorded on a GCT premier CAB048 mass spectrometer operating in a MALDT-TOF mode. Thermogravimetric analysis was carried on a TA TGA Q5000 under dry nitrogen at a heating rate of 10 °C/min. Thermal transitions were investigated by differential scanning calorimetry using a TA DSC Q1000 under dry nitrogen at a heating rate of 10 °C/min. The ground-state geometries were optimized using the density functional (DFT) with B3LYP hybrid functional at the basis set level of 6-31G (d). All the calculations were performed using Gaussian 03 package.

Device fabrication

The devices were fabricated on 80 nm-ITO coated glass with a sheet resistance of $25\Omega/\Box$. Prior to load into the pretreatment chamber, the ITO-coated glasses were soaked in ultrasonic detergent for 30 min, followed by spraying with de-ionized water for 10 min, soaking in ultrasonic de-ionized water for 30 min, and oven-baking for 1 h. The cleaned samples were treated by perfluoromethane (CF_4) plasma with a power of 100 W, gas flow of 50 sccm, and pressure of 0.2 Torr for 10 s in the pretreatment chamber. The samples were transferred to the organic chamber with a base pressure of 7×10^{-7} Torr for the deposition of N,N-bis(1-naphthyl)-N,N-diphenylbenzidine (NPB), emitter, 2,2',2''-(1,3,5-benzinetriyl)tris(1-phenyl-1-H-benzimidazole) (TPBi), and tris(8-hydroxyquinolinolato)aluminum (Alq₃), which served as holetransporting, light-emitting, hole-blocking, and electron-transporting layers, respectively. The samples were then transferred to the metal chamber for cathode deposition which composed of lithium fluoride (LiF) capped with aluminum (Al). The light-emitting area was 4 mm². The current density-voltage characteristics of the devices were measured by a HP4145B semiconductor parameter analyzer. The forward direction photons emitted from the devices were detected by a calibrated UDT PIN-25D silicon photodiode. The luminance and external quantum efficiencies of the devices were inferred from the photocurrent of the photodiode. The electroluminescence spectra were obtained by a PR650 spectrophotometer. All measurements were carried out under air at room temperature without device encapsulation.

Synthesis

Compound 6^2 and 8^2 were prepared according to the literature methods. Their characterization data are given below.

4,7-Bis(5-bromo-2-thienyl)benzo-2,1,3-thiadiazole (**6**): ¹H NMR (300 MHz, CDCl₃), δ (TMS, ppm): 7.81 (d, 2H, *J* = 3.9 Hz), 7.80 (s, 2H), 7.16 (d, 2H, *J* = 4.2 Hz). ¹³C NMR (75 MHz, CDCl₃), δ (TMS, ppm): 152.5, 140.9, 131.1, 127.7, 125.8, 125.4, 115.1. HRMS: *m/z* 457.8054 (M⁺, calcd 457.8039).

4-Bromo-7-(5-bromo-2-thienyl)benzo-2,1,3-thiadiazole (8): ¹H NMR (300 MHz, CDCl₃), δ (TMS, ppm): 7.85 (d, 1H, *J* = 7.5 Hz), 7.79 (d, 1H, *J* = 3.9 Hz), 7.65 (d, 1H, *J* = 7.8 Hz), 7.15 (d, 1H, *J* = 3.9 Hz). ¹³C NMR (75 MHz, CDCl₃), δ (TMS, ppm): 154.4, 152.2, 140.5, 132.9, 131.5, 128.4, 126.9, 126.0, 115.8, 113.5. HRMS: *m/z* 375.8160 (M⁺, calcd 375.8162).

4,7-Bis[4-(1,2,2-triphenylvinyl)phenyl]benzo-2,1,3-thiadiazole (BTPETD): A mixture of **3** (0.29 g, 1 mmol), **2** (0.82 g, 2.2 mmol), Pd(PPh₃)₄ (0.11 g, 0.1 mmol), and potassium carbonate (1.1 g, 8 mmol) in 100 mL of toluene/ethanol/water mixture (8/1/1 v/v/v) was heated to reflux for 12 h under nitrogen. After filtration and solvent evaporation, the residue was purified by silica-gel column chromatography using hexane/dichloromethane mixture as eluent. Greenish yellow solid of BTPET was obtained in 86% yield (0.68 g). ¹H NMR (300 MHz, CDCl₃), δ (TMS, ppm): 7.77 (d, 4H, *J* = 8.4 Hz), 7.72 (s, 2H), 7.20–7.04 (m, 34H). ¹³C NMR (75 MHz, CDCl₃), δ (TMS, ppm): 154.7, 144.5, 144.4, 144.3, 142.2, 141.2, 135.9, 133.3, 132.3, 132.2, 132.1, 129.0, 128.6, 128.5, 128.4, 128.3, 127.3, 127.2. HRMS: *m/z* 796.2905 (M⁺, calcd 796.2912).

Compound BTPETTD and BTPEBTTD are prepared by an analogous method as described for BTPETD. **4-[4-(1,2,2-Triphenylvinyl)phenyl]-7-{5-[4-(1,2,2-triphenylvinyl)phenyl]-2-thienyl}benzo-2,1,3 thiadiazole (BTPETTD)**: Orange-red solid; yield 75%. ¹H NMR (300 MHz, CDCl₃), δ (TMS, ppm): 8.08 (d, 1H, J = 3.6 Hz), 7.89 (d, 1H, J = 7.2 Hz), 7.77 (d, 2H, J = 8.7 Hz), 7.70 (d, 1H, J = 7.8 Hz), 7.45 (d, 2H, J = 8.1 Hz), 7.36 (d, 1H, J = 3.9 Hz), 7.20–7.04 (m, 34H). ¹³C NMR (75 MHz, CDCl₃), δ (TMS, ppm): 153.4, 146.1, 144.5, 144.4, 144.3, 144.2, 144.1, 142.2, 142.0, 141.2, 141.0, 139.1, 135.8, 132.9, 132.6, 132.3, 132.2, 132.0, 129.3, 129.0, 128.5, 128.4, 128.3, 127.2, 126.8, 126.0, 125.6, 124.5. HRMS: m/z 878.2714 (M⁺, calcd 878.2789). **4,7-Bis{5-(4-[1,2,2-triphenylvinyl)phenyl]-2-thienyl}benzo-2,1,3-thiadiazole** (**BTPEBTTD**): Red solid; yield 72%. ¹H NMR (300 MHz, CDCl₃), δ (TMS, ppm): 8.08 (d, 2H, J = 3.9 Hz), 7.86 (s, 2H), 7.45 (d, 4H, J = 8.1 Hz), 7.35 (d, 2H, J = 3.6 Hz), 7.13–7.05 (m, 34H). ¹³C NMR (75 MHz, CDCl₃), δ (TMS, ppm): 153.3, 146.1, 144.3, 144.2, 144.1, 142.1, 141.0, 139.1, 132.7, 132.6, 132.0, 129.3, 128.5, 128.4, 127.2, 126.4, 125.9, 125.6, 124.7, 124.6. HRMS: m/z 960.2673 (M⁺, calcd 960.2667).

Scheme S1. Synthetic routes to the TPE-substituted heterocyclics.

Fig. S1. (A) Change in luminance and current density with voltage and (B) current efficiency versus current density curves of multilayer EL devices of BTPETD, BTPETTD, and BTPEBTTD.

References

- Z. Zhao, S. Chen, J. W. Y. Lam, P. Lu, Y. Zhong, K. S. Wong, H. S. Kwok and B. Z. Tang, *Chem. Commun.*, 2010, 46, 2221.
- Y. Zhou, Q. He, Y. Yang, H. Zhong, C. He, G. Sang, W. Liu, C. Yang, F. Bai and Y. Li, *Adv. Funct. Mater.*, 2008, 18, 3299.