Supporting Information for

Chiral N-Heterocyclic Carbene Catalyzed Enantioselective

Annulation of α,β -Unsaturated Aldehydes with 1,3-Dicarbonyls

Zhi-Qiang Zhu,^a Xing-Liang Zheng,^b Ning-Fei Jiang,^b Xiaolong Wan^a and Ji-Chang Xiao*^a

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, and School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China.

E-mail: jchxiao@mail.sioc.ac.cn

Table of Contents

1. General Methods	S2
2. General procedure	
3. Optimization of the Reaction Conditions for	NHC-Catalyzed
Enantioselective Annulation of Enals with 1,3-Dicarbo	nylsS3
4. Characterizations of the Products 3a-y	S4-S13
5. HPLC Analysis of the Products 3a-y	S14-S26
6. NMR Spectra for Available Products	\$27-\$47

General Methods. All reactions were carried out under nitrogen atmosphere. All the reagents used were purchased from commercial sources and used without further purification. THF and toluene were freshly distilled from sodium wire. ¹H, ¹³C NMR spectra were recorded in CDCl₃ on a spectrometer operating at 300 and 100 MHz, respectively. Chemical shifts are reported in parts per million relative to the appropriate standard: TMS for ¹H and ¹³C NMR spectra. High Resoultion Mass spectra were recorded on a Waters Micromass GCT instrument. The IR spectra were recorded on a Shimadzu IR-440 spectrometer. Column chromatography was carried out on silica gel (300-400 mm).

General Procedure for Chiral *N*-Heterocyclic Carbene Catalyzed Enantioselective Annulation of Ynals with 1,3-Dicarbonyls (G1)

Into an oven dried 10 mL vial was weighed catalyst **C3** (7.4 mg, 0.02 mmol) and 4 Å MS (200 mg). Followed by the addition of a solution of ynal (0.3 mmol), 1,3-dicarbonyl (0.2 mmol) in toluene (2 mL). After stirring at 40 °C for 8 h, the reaction mixture was filtrated, and the solvent was evaporated under reduced pressure at room temperature to afford a residue. Further purification by flash column chromatography on silica gel gave the final product (Hexane : EtOAc = 10 : 1 to 8:1).

General Procedure for Chiral *N*-Heterocyclic Carbene Catalyzed Enantioselective Annulation of Enals with 1,3-Dicarbonyls (G2)

Into an oven dried 10 mL vial was weighed catalyst **C3** (11 mg, 0.03 mmol), oxidant (122.6 mg, 0.3 mmol) and 4 Å MS (300 mg). Followed by the addition of a solution of enal (0.45 mmol), 1,3-dicarbonyl (0.3 mmol) in toluene (3 mL). After stirring at 40 °C for indicated time, the reaction mixture was filtrated, and the solvent was evaporated under reduced pressure at room temperature to afford a residue. Further purification by flash column chromatography on silica gel to give the product (Hexane : EtOAc = 10 : 1 to 8:1).

Table 1. Optimization of Reaction Conditions for Chiral NHC-CatalyzedEnantioselective Annulation of Enals with 1,3-Dicarbonyls^a

Entry	Conditions	$\operatorname{Yield}^{b}(\%)$	$\operatorname{Ee}^{c}(\%)$
1	A, DBU, THF, rt, 2 h	79	-4
2	B , DBU, THF, rt, 5 h		
3	C1 , DBU, THF, rt, 5 h	80	14
4	C2 , DBU, THF, rt, 5 h		
5	C3, DBU, THF, rt, 5 min	83	67
6	C3 , DBU, THF, 0 °C, 5 min	85	71
7	C3, NaH, THF, 0 °C, 5min	78	83
8	C3 , <i>t</i> -BuOK, THF, 0 °C, 5min	78	71
9	C3, NaH, THF, -20 °C, 30min,	81	80
10	C3 , NaH, Et_2O , 0 $^{\circ}C$, 5min	79	83
11	C3, NaH, toluene, 0 °C, 48 h	44	89
$12^{d,e}$	C3, 4Å MS, toluene, 40 °C, 10 h	83	98
$13^{d,f}$	C3 , toluene, 40 °C, 10 h	33	85

^{*a*} Performed on a 0.3 mmol scale in 3 ml solvent with 10 mol% of catalyst, 10 mol % of base, 1 equiv of **4a**, 1.5 equiv of **2a**, 1 equiv of **[O]**. ^{*b*} Isolated yield after chromatography. ^{*c*} Determined by HPLC analysis on a chiral column. ^{*d*} 1.5 equiv of **4a** and 1 equiv of **2a** were used. ^{*e*} 300 mg 4 Å MS was added instead of 10 mol% of base. ^{*f*} No base was used.

(*R*)-Ethyl 6-methyl-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carboxylate (**3a**)

According to **G1**: 81% yield, 98% ee (PA-2 column, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{major} = 20.6 min, t_{minor} = 24.6 min), $[\alpha]_{D}^{20} = -167.2^{\circ}$ (c = 1, CHCl₃). According to **G2** for 10 h: 83% yield, 98% ee. ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.09 (m, 5H), 4.26 (d, *J* = 7.3 Hz, 1 H), 4.12 (q, *J* = 7.3 Hz, 2 H), 2.95 (dd, *J* = 16.0, 7.3 Hz, 1 H), 2.81 (d, *J* = 16.0 Hz, 1 H), 2.47 (s, 3 H), 1.18 (t, *J* = 7.3 Hz, 3 H).

(R)-Ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate $(\mathbf{3b})$

According to **G1**: 67% yield, 92% ee (Sino-OD column, *n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{minor} = 12.2 min, t_{major} = 16.2 min), $[\alpha]_D^{20} = -124.0^{\circ}$ (c = 1, CHCl₃). According to **G2**, except that 1 equiv of ynal and 1.5 equiv of 3-oxobutanoate were used and the reaction was performed at room temperature for 66 h: 73% yield, 91% ee. ¹H NMR (300 MHz, CDCl₃) δ 7.06 (d, *J* = 8.7 Hz, 2 H), 6.82 (d, *J* = 8.7 Hz, 2 H), 4.21 (d, *J* = 7.3 Hz, 1 H), 4.13 (q, *J* = 7.0 Hz, 2 H), 3.76 (s, 3H), 2.92 (dd, *J* = 16.0, 7.3 Hz, 1 H), 2.78 (d, *J* = 16.0 Hz, 1 H), 2.46 (s, 3 H), 1.20 (t, *J* = 7.0 Hz, 3 H).

(*R*)-Ethyl 6-methyl-2-oxo-4-(p-tolyl)-3,4-dihydro-2H-pyran-5-carboxylate (**3c**)

According to **G1**: 82% yield, 97% ee (PA-2 column, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{major} = 20.5 min, t_{minor} = 26.4 min), $[\alpha]_D^{20} = -145.4^{\circ}$ (c = 1, CHCl₃), According to **G2** for 24 h: 77% yield, 92% ee. ¹H NMR (300 MHz, CDCl₃) δ 7.09 (d, J = 7.7 Hz, 2 H), 7.02 (d, J = 7.7 Hz, 2 H), 4.22 (d, J = 7.5 Hz, 1 H), 4.12 (q, J = 7.1 Hz, 2 H), 2.92 (dd, J = 16.0, 7.5 Hz, 1 H), 2.79 (d, J = 16.0 Hz, 1 H), 2.46 (s, 3

H), 2.29 (s, 3 H), 1.19 (t, *J* = 7.1 Hz, 3 H).

(*R*)-Ethyl 6-methyl-2-oxo-4-(m-tolyl)-3,4-dihydro-2H-pyran-5-carboxylate (**3d**)

According to **G1**: 87% yield, 95% ee. According to **G2** for 16 h: 87% yield, 97% ee (PA-2 column, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min, λ = 214 nm, t_{major} = 18.3 min, t_{minor} = 22.0 min), $[\alpha]_D^{20}$ = -160.7° (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.23-6.87 (m, 4 H), 4.22 (d, *J* = 7.3 Hz, 1 H), 4.13 (q, *J* = 7.1 Hz, 2 H), 2.94 (dd, *J* = 16.0, 7.5 Hz, 1 H), 2.80 (dd, *J* = 16.0, 2.1 Hz, 1 H), 2.48 (s, 3 H), 2.31 (s, 3 H), 1.20 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 166.0, 161.2, 140.7, 138.7, 128.9, 128.3, 127.3, 123.7, 110.1, 60.8, 37.8, 36.4, 21.5, 18.9, 14.1; IR (film): v = 2985, 2923, 2853, 1797, 1713, 1642, 1514, 1446, 1417, 1380, 1344, 1291, 1242, 1173, 1067, 1030, 965, 865, 816, 785, 733, 665, 593, 552, 507 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 274.1205; found, 274.1202.

(*R*)-Ethyl 6-methyl-2-oxo-4-(o-tolyl)-3,4-dihydro-2H-pyran-5-carboxylate (**3e**)

According to **G1**: 77% yield, 96% ee. According to **G2** for 18 h: 81% yield, 97% ee (PA-2 column, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min, λ = 214 nm, t_{major} = 25.6 min, t_{minor} = 31.2 min), $[\alpha]_D^{20}$ = -175.8° (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.21-6.90 (m, 4 H), 4.50 (d, *J* = 7.9 Hz, 1 H), 4.18-3.98 (m, 2 H), 2.92 (dd, *J* = 15.6, 7.9 Hz, 1 H), 2.66 (dd, *J* = 15.6, 2.0 Hz, 1 H), 2.51 (s, 3 H), 2.38 (s, 3 H), 1.14 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 165.9, 161.7, 138.4, 134.9, 131.0, 127.5, 126.8, 125.3, 110.1, 60.8, 35.3, 34.0, 19.2, 18.8, 14.0; IR (KBr): v = 3000, 2955, 1787, 1715, 1644, 1594, 1509, 1459, 1415, 1370, 1288, 1275, 1242, 1222, 1175, 1128, 1068, 835, 789, 734 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 274.1205; found, 274.1207.

(*R*)-Ethyl 4-(4-fluorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (**3f**)

According to **G1**: 66% yield, 96% ee (PA-2 column, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{major} = 22.3 min, t_{minor} = 27.8 min), $[\alpha]_D^{20} = -99.0^\circ$ (c = 1, CHCl₃). According to **G2**, except that the reaction was performed at room temperature for 48 h: 74% yield, 92% ee. ¹H NMR (300 MHz, CDCl₃) δ 7.16-6.91 (m, 4 H), 4.25 (d, *J* = 7.3 Hz, 1 H), 4.14 (q, *J* = 7.1 Hz, 2 H), 2.95 (dd, *J* = 16.0, 7.3 Hz, 1 H), 2.79 (d, *J* = 16.0 Hz, 1 H), 2.47 (s, 3 H), 1.20 (t, *J* = 7.1 Hz, 3 H).

(*S*)-Ethyl 4-(2-fluorophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (**3g**)

According to **G1**, except that 1 equiv of ynal and 1.5 equiv of 3-oxobutanoate were used: 74% yield, 92% ee. According to **G2** for 12 h: 85% yield, 97% ee (OD-H column, *n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{minor} = 10.0 min, t_{major} = 12.4 min), $[\alpha]_D^{20} = -151.7^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.29-6.95 (m, 4 H), 4.59 (d, J = 7.5 Hz, 1 H), 4.22-4.03 (m, 2 H), 2.95 (dd, J = 16.0, 7.5 Hz, 1 H), 2.84 (dd, J = 16.0, 2.3 Hz, 1 H), 2.51 (s, 3 H), 1.17 (t, J = 7.1 Hz, 3 H); ¹⁹F NMR (282 MHz, CDCl₃) δ -118.09-118.23 (m, 1 F); ¹³C NMR (101 MHz, CDCl₃) δ 1 6.7, 165.6, 162.3, 161.6, 159.1, 129.3, 129.2, 127.80, 127.76, 127.4, 127.2, 124.55, 124.52, 115.9, 115.7, 108.4, 60.8, 35.0, 31.48, 31.45, 29.7, 18.8, 14.0; IR (KBr): v = 3000, 2955, 1787, 1715, 1644, 1594, 1509, 1459, 1415, 1370, 1288, 1275, 1242, 1222, 1175, 1128, 1068, 835, 789, 734 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 278.0954; found, 278.0956.

(*R*)-Ethyl 4-(4-chlorophenyl)-2-oxo-6-phenyl-3,4-dihydro-2H-pyran-5-carboxylate (**3h**)

According to **G1**, except that the reaction was performed at room temperature for 48 h: 49% yield, 94% ee. According to **G2** for 12 h: 73% yield, 95% ee (OD-H column, *n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, λ = 214 nm, t_{minor} = 8.6 min, t_{major} = 15.6 min), $[\alpha]_D^{20}$ = -164.0° (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.27 (d, *J* = 8.5 Hz, 2 H), 7.08 (d, *J* = 8.5 Hz, 2 H), 4.24 (d, *J* = 7.6 Hz, 1 H), 4.14 (q, *J* = 7.1 Hz, 2 H), 2.95 (dd, *J* = 15.8, 7.6 Hz, 1 H), 2.79 (dd, *J* = 15.8, 2.1 Hz, 1 H), 2.48 (s, 3 H), 1.20 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 161.7, 139.2, 133.4, 129.2, 128.1, 109.7, 61.0, 37.4, 36.2, 18.9, 14.1; IR (KBr): v = 2982, 2927, 1789, 1714, 1649, 1492, 1412, 1370, 1287, 1243, 1174, 1117, 1075, 1031, 1015, 967, 825, 793, 672, 534 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 294.0659; found, 294.0664.

(*R*)-Ethyl 4-(4-bromophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (**3i**)

According to **G1**: 34% yield, 96% ee. According to **G2** for 12 h: 77% yield, 97% ee (OD-H column, *n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{minor} = 8.3 min, t_{major} = 15.7 min), $[\alpha]_{D}^{20} = -146.8^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, J = 8.7 Hz, 2 H), 7.02 (d, J = 8.7 Hz, 2 H), 4.22 (d, J = 7.5 Hz, 1 H), 4.14 (q, J = 7.1 Hz, 2 H), 2.95 (dd, J = 15.9, 7.5 Hz, 1 H), 2.78 (d, J = 15.9 Hz, 1 H), 2.48 (s, 3 H), 1.20 (t, J = 7.1 Hz, 3 H).

(*R*)-Ethyl 6-methyl-4-(naphthalen-1-yl)-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (**3j**)

According to **G1**: 81% yield, 92% ee (PA-2 column, *n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{major} = 10.4 min, t_{minor} = 12.0 min), $[\alpha]_{D}^{20} = -83.8^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, *J* = 7.8 Hz, 1 H), 7.89 (d, *J* = 7.8 Hz, 1 H), 7.76 (d, *J* = 8.2 Hz, 1 H), 7.63-7.46 (m, 2 H), 7.37 (t, *J* = 7.8 Hz, 1 H), 7.18 (d, *J* = 7.3 Hz, 1 H), 5.15 (d, *J* = 7.3 Hz, 1 H), 4.17-3.95 (m, 2 H), 3.07 (dd, *J* = 15.5, 7.3 Hz, 1 H), 2.95 (d, *J* = 15.5 Hz, 1 H), 2.58 (s, 3 H), 1.05 (t, *J* = 7.1 Hz, 3 H).

(S)-Ethyl 6-methyl-2-oxo-4-(thiophen-2-yl)-3,4-dihydro-2H-pyran-5-carboxylate (3k)

According to **G1**: 71% yield, 94% ee. According to **G2** for 16 h: 84% yield, 97% ee (OJ-H column, *n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{major} = 35.4 min, t_{minor} = 64.2 min), $[\alpha]_{D}^{20} = -118.8^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.16 (d, J = 5.0 Hz, 1 H), 6.94-6.87 (m, 1 H), 6.85-6.80 (m, 1 H), 4.53 (d, J = 7.2 Hz, 1 H), 4.23 (q, J = 7.1 Hz, 2 H), 3.06-2.87 (m, 2 H), 2.43 (s, 3 H), 1.28 (t, J = 7.1 Hz, 3 H).

(S)-Ethyl 4-butyl-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (31)

According to **G1**, except that the reaction was performed at room temperature for 48 h: 68% yield, 85% ee (PA-2 column, *n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, λ = 214 nm, t_{minor} = 7.8 min, t_{major} = 11.0 min), [α]_D²⁰ = -8.0° (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 4.32-4.15 (m, 2 H), 3.01-2.91 (m, 1 H), 2.70 (dd, *J* = 16.0, 1.8 Hz, 2 H), 2.58 (dd, *J* = 16.0, 6.6 Hz, 1 H), 2.34 (s, 3 H), 1.56-1.16 (m, 9 H), 0.88 (t, *J* = 6.7 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 1 67.3, 166.4, 160.2, 111.8, 60.7, 33.10, 33.07, 31.6, 28.5, 22.4, 18.8, 14.2, 13.8; IR (film): v = 3000, 2955, 1787, 1715, 1644, 1594, 1509, 1459, 1415, 1370, 1288, 1275, 1242, 1222, 1175, 1128, 1068, 835, 789, 734 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 240.1362; found, 240.1366.

(*R*)-Ethyl 4-cyclohexyl-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (**3m**)

According to **G1**, except that the reaction was performed at room temperature for 48 h: 52% yield, 85% ee (PC-2 column, *n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, λ = 214 nm, t_{minor} = 6.2 min, t_{major} = 6.6 min), $[\alpha]_{D}^{20}$ = -11.1° (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 4.36-4.12 (m, 2 H), 2.91-2.83 (m, 1 H), 2.78 (d, *J* = 16.5 Hz, 1 H),

2.51 (dd, J = 16.5, 7.4 Hz, 1 H), 2.34 (s, 3 H), 1.79-0.79 (m, 14 H); ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 166.7, 160.0, 110.6, 60.7, 41.4, 37.1, 30.8, 30.4, 29.0, 26.3, 26.2, 26.1, 18.8, 14.2; IR (KBr): v = 3000, 2955, 1787, 1715, 1644, 1594, 1509, 1459, 1415, 1370, 1288, 1275, 1242, 1222, 1175, 1128, 1068, 835, 789, 734 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 266.1518; found, 266.1521.

(*R*)-Methyl 6-methyl-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carboxylate (**3n**)

According to **G1**: 71% yield, 95% ee (Sino-AD column, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, $\lambda = 214$ nm, $t_{major} = 15.9$ min, $t_{minor} = 17.2$ min), $[\alpha]_{D}^{20} = -135.0^{\circ}$ (c = 1, CHCl₃). According to **G2** for 12 h: 67% yield, 94% ee. ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.09 (m, 5 H), 4.26 (d, J = 7.3 Hz, 1 H), 3.67 (s, 3 H), 2.94 (dd, J = 15.9, 7.3 Hz, 1 H), 2.82 (d, J = 15.9 Hz, 1 H), 2.48 (s, 3 H).

(*R*)-5-Acetyl-6-methyl-4-phenyl-3,4-dihydro-2H-pyran-2-one (**30**)

According to **G1**: 46% yield, 95% ee (Sino-OD column, *n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{minor} = 18.4 min, t_{major} = 22.8 min), $[\alpha]_D^{20} = -138.0^\circ$ (c = 1, CHCl₃). According to **G2** for 22 h: 58% yield, 95% ee. ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.03 (m, 5 H), 4.08 (d, *J* = 7.1 Hz, 1 H), 2.90 (dd, *J* = 15.7, 7.1 Hz, 1 H), 2.76 (dd, *J* = 15.7, 2.6 Hz, 1 H), 2.36 (s, 3 H), 2.05 (s, 3 H).

(*R*)-5-Benzoyl-6-methyl-4-phenyl-3,4-dihydro-2H-pyran-2-one (**3p**)

According to **G1**, except that the reaction was performed at room temperature for 48 h. 60% yield, 96% ee (PA-2 column, *n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, λ = 214 nm, t_{major} = 17.9 min, t_{minor} = 31.5 min), $[\alpha]_{D}^{20}$ = -26.7° (c = 1, CHCl₃). According to **G2** for 24 h: 62% yield, 90% ee. ¹H NMR (300 MHz, CDCl₃) δ 7.73-7.07 (m, 10 H), 4.32 (brs, 1 H), 3.07 (dd, *J* = 15.8, 7.0 Hz, 1 H), 2.92 (dd, *J* = 15.8, 3.4 Hz, 1 H),

1.89 (s, 3 H).

(*R*)-Ethyl 4-(4-cyanophenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (**3q**)

According to **G2** for 12 h: 37% yield, 96% ee (OD-H column, *n*-hexane/*i*-PrOH = 5/5, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{minor} = 9.9 min, t_{major} = 20.4 min), $[\alpha]_{D}^{20} = -189.0^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2 H), 7.27 (d, *J* = 8.2 Hz, 2 H), 4.32 (d, *J* = 7.7 Hz, 1 H), 4.14 (q, *J* = 7.1 Hz, 2 H), 3.01 (dd, *J* = 15.9, 7.7 Hz, 1 H), 2.81 (dd, *J* = 15.9, 2.0 Hz, 1 H), 2.50 (s, 3 H), 1.20 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 1 65.5, 165.2, 162.3, 146.1, 133.0, 127.6, 118.4, 111.7, 109.0, 61.1, 38.1, 35.8, 19.0, 14.1; IR (KBr): v = 2983, 2926, 2229, 1790, 1716, 1650, 1608, 1504, 1415, 1372, 1292, 1271, 1243, 1170, 1120, 1075, 1032, 966, 867, 848, 785, 560 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 285.1001; found, 285.1005.

(*R*)-Ethyl 6-methyl-2-oxo-4-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyran-5-carboxylate (**3r**)

According to **G2** for 12 h: 42% yield, 93% ee (OD-H column, *n*-hexane/*i*-PrOH = 5/5, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{minor} = 7.2 min, t_{major} = 13.5 min), $[\alpha]_{D}^{20} = -133.3^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, *J* = 7.9 Hz, 2 H), 7.27 (d, *J* = 7.9 Hz, 2 H), 4.33 (d, *J* = 7.8 Hz, 1 H), 4.14 (q, *J* = 7.0 Hz, 2 H), 3.00 (dd, *J* = 16.0, 7.8 Hz, 1 H), 2.82 (dd, *J* = 16.0, 1.9 Hz, 1 H), 2.50 (s, 3 H), 1.20 (t, *J* = 7.0 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 165.5, 162.0, 144. 8, 130.0 (q, *J* = 32.3 Hz), 127.1, 126.1 (q, *J* = 3.6 Hz), 124.0 (q, *J* = 276.4 Hz), 109.4, 61.0, 37.8, 36.0, 19.0, 14.0; IR (KBr): v = 2984, 2930, 1789, 1716, 1649, 1620, 1419, 1327, 1171, 1112, 1069, 1031, 847, 784 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 328.0922; found, 328.0923.

(*R*)-Ethyl 4-(4-(methoxycarbonyl)phenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5carboxylate (**3s**) According to **G2** for 12 h: 67% yield, 98% ee (OD-H column, *n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, λ = 214 nm, t_{minor} = 10.9 min, t_{major} = 27.2 min), $[\alpha]_{D}^{20}$ = -173.3° (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 2 H), 7.22 (d, *J* = 8.3 Hz, 2 H), 4.32 (d, *J* = 7.7 Hz, 1 H), 4.13 (q, *J* = 7.1 Hz, 2 H), 3.90 (s, 3 H), 2.99 (dd, *J* = 15.9, 7.7 Hz, 1 H), 2.82 (dd, *J* = 15.9, 2.1 Hz, 1 H), 2.50 (s, 3 H), 1.18 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 165.7, 165.6, 161.9, 145.9, 130.4, 129.6, 126.8, 109.4, 61.0, 52.1, 37.9, 36.0, 18.9, 14.1; IR (KBr): v = 2981, 2954, 2923, 1790, 1721, 1649, 1611, 1436, 1282, 1178, 1115, 1074, 1031, 963, 856, 772, 708 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 318.1103; found, 318.1109.

(*R*)-Ethyl 4-(4-acetylphenyl)-6-methyl-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (**3t**)

According to **G2** for 12 h: 72% yield, 96% ee (AD-H column, *n*-hexane/*i*-PrOH = 5/5, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{minor} = 10.1 min, t_{major} = 17.7 min), $[\alpha]_D^{20} = -180.7^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, J = 8.5 Hz, 2 H), 7.25 (d, J = 8.5 Hz, 2 H), 4.33 (d, J = 7.7 Hz, 1 H), 4.13 (q, J = 7.1 Hz, 2 H), 3.00 (dd, J = 15.8, 7.7 Hz, 1 H), 2.82 (dd, J = 15.8, 2.3 Hz, 1 H), 2.58 (s, 3 H), 2.50 (s, 3 H), 1.19 (t, J = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 165.7, 165.6, 161.9, 146.1, 136.5, 129.2, 127.0, 109.4, 61.0, 37.9, 36.0, 26.6, 19.0, 14.1; IR (KBr): v = 2983, 2926, 1788, 1716, 1685, 1650, 1607, 1414, 1361, 1296, 1270, 1173, 1117, 1074, 1031, 959, 866, 847, 830, 782, 598 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 302.1154; found, 302.1151.

(*R*)-Ethyl 6-methyl-4-(3-nitrophenyl)-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (**3u**)

According to **G2** for 24 h: 56% yield, 97% ee (OD-H column, *n*-hexane/*i*-PrOH = 5/5, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{minor} = 10.0 min, t_{major} = 19.9 min), $[\alpha]_D^{20} = -168.7^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 8.15-8.00 (m, 2 H), 7.54-7.43 (m, 2 H), 4.38 (d, *J* = 7.9 Hz, 1 H), 4.14 (q, *J* = 7.5 Hz, 2 H), 3.02 (dd, *J* = 16.0, 7.5 Hz, 1 H), 2.84 (dd, *J* = 16.0, 2.1 Hz, 1 H), 2.50 (s, 3 H), 1.19 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 1 65.5, 165.2, 162.6, 148.7, 142.9, 132.6, 130.2, 122.7, 122.1, 109.0, 61.2, 37.7, 36.0, 19.0, 14.1; IR (KBr): v = 2982, 2926, 1789, 1716, 1650, 1532, 1351, 1292, 1243, 1119, 1075, 1032, 862, 693 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 305.0899; found, 305.0901.

(*S*)-Ethyl 4,6-dimethyl-2-oxo-3,4-dihydro-2H-pyran-5-carboxylate (**3v**)

According to **G2**, except that the reaction was performed at room temperature for 66 h. 81% yield, 83% ee (PA-2 column, *n*-hexane/*i*-PrOH = 8/2, flow rate 0.7 mL/min, λ = 214 nm, t_{minor} = 13.5 min, t_{major} = 26.2 min), $[\alpha]_{D}^{20}$ = -18.3° (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 4.30-4.14 (m, 2 H), 3.12-2.99 (m, 1 H), 2.65 (dd, *J* = 15.7, 6.4 Hz, 1 H), 2.53 (dd, *J* = 15.6, 2.2 Hz, 1 H), 2.32 (s, 3 H), 1.30 (t, *J* = 7.2 Hz, 3 H), 1.09 (d, *J* = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 166.2, 160.2, 112.3, 60.7, 35.7, 27.1, 19.3, 18.8, 14.2; IR (film): v = 2980, 2930, 1790, 1714, 1650, 1462, 1382, 1349, 1297, 1250, 1133, 1082, 1009, 983, 925, 844, 779 cm⁻¹; HRMS (EI, m/z): calcd for [M]⁺, 198.0892; found, 198.0890.

(*R*)-Ethyl 6-ethyl-2-oxo-4-phenyl-3,4-dihydro-2H-pyran-5-carboxylate (**3w**)

According to **G2** for 22 h: 72% yield, 95% ee (Sino-AD column, *n*-hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, $\lambda = 214$ nm, $t_{major} = 16.9$ min, $t_{minor} = 18.8$ min), $[\alpha]_{D}^{20} = -151.1^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.08 (m, 5 H), 4.25 (dd, *J* = 7.3, 2.0 Hz, 1 H), 4.13 (q, *J* = 7.1 Hz, 2 H), 3.00-2.73 (m, 4 H), 1.28 (t, *J* = 7.3 Hz,

3 H), 1.19 (t, *J* = 7.1 Hz, 3 H).

(*R*)-Ethyl 2-oxo-4,6-diphenyl-3,4-dihydro-2H-pyran-5-carboxylate (**3x**)

According to **G2** for 24 h: 66% yield, 92% ee (PA-2 column, *n*-hexane/*i*-PrOH = 95/5, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{major} = 28.3 min, t_{minor} = 31.9 min), $[\alpha]_D^{20} = -70.0^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.20 (m, 10 H), 4.41 (dd, *J* = 7.6, 2.3 Hz, 1 H), 4.02-3.84 (m, 2 H), 3.11 (dd, *J* = 15.8, 7.6 Hz, 1 H), 2.94 (dd, *J* = 15.8, 2.3 Hz, 1 H), 0.87 (t, *J* = 7.2 Hz, 3 H) ; ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 166.0, 158.6, 140.0, 133.2, 130.2, 129.2, 128.7, 128.0, 127.8, 126.8, 111.8, 61.0, 38.9, 36.4, 13.5.

(*R*)-5-Benzoyl-4,6-diphenyl-3,4-dihydro-2H-pyran-2-one (**3y**)

According to **G2** for 24 h: 90% yield, 90% ee (PA-2 column, *n*-hexane/*i*-PrOH = 8/2, flow rate 0.7 mL/min, $\lambda = 214$ nm, t_{major} = 25.9 min, t_{minor} = 39.9 min), $[\alpha]_D^{20} = -9.3^{\circ}$ (c = 1, CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.04 (m, 15 H), 4.57 (dd, *J* = 7.7, 2.3 Hz, 1 H), 3.22 (dd, *J* = 16.0, 7.7 Hz, 1 H), 3.06 (dd, *J* = 16.0, 2.3 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 196.0, 166.7, 154.8, 139.8, 137.2, 132.6, 132.0, 130.3, 129.3, 129.0, 128.1, 128.0, 127.8, 126.9, 118.4, 40.4, 36.0.

HPLC spectra

Sino-OD column (*n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, λ = 214 nm)

PA-2 column (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min, λ = 214 nm)

PA-2 column (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min, λ = 214 nm)

PA-2 column (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min, λ = 214 nm)

PA-2 column (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.7 mL/min, λ = 214 nm)

OD-H column (*n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, λ = 214 nm)

OD-H column (*n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, λ = 214 nm)

OD-H column (*n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, λ = 214 nm)

OJ-H column (*n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, λ = 214 nm)

PA-2 column (*n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, λ = 214 nm)

PC-2 column (*n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, λ = 214 nm)

Sino-AD column (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 214 nm)

Sino-OD column (*n*-hexane/*i*-PrOH = 9/1, flow rate 0.7 mL/min, λ = 214 nm)

PA-2 column (*n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, λ = 214 nm)

OD-H column (*n*-hexane/*i*-PrOH = 5/5, flow rate 0.7 mL/min, λ = 214 nm)

OD-H column (*n*-hexane/*i*-PrOH = 5/5, flow rate 0.7 mL/min, λ = 214 nm)

OD-H column (*n*-hexane/*i*-PrOH = 7/3, flow rate 0.7 mL/min, λ = 214 nm)

AD-H column (*n*-hexane/*i*-PrOH = 5/5, flow rate 0.7 mL/min, λ = 214 nm)

OD-H column (*n*-hexane/*i*-PrOH = 5/5, flow rate 0.7 mL/min, λ = 214 nm)

PA-2 column (*n*-hexane/*i*-PrOH = 8/2, flow rate 0.7 mL/min, λ = 214 nm)

Sino-AD column (*n*-hexane/*i*-PrOH = 98/2, flow rate 0.5 mL/min, λ = 214 nm)

PA-2 column (*n*-hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, λ = 214 nm)

PA-2 column (*n*-hexane/*i*-PrOH = 8/2, flow rate 0.7 mL/min, λ = 214 nm)

¹H NMR of **3b**

¹H NMR of 3c

¹H NMR of **3d**

¹H NMR of **3e**

¹H NMR of **3g**

$\mathsf{P}_{\mathsf{r}} \mathsf{P}_{\mathsf{r}} \mathsf{P}$

¹⁹F NMR of **3g**

¹H NMR of **3i**

1 H NMR of **3**j

¹H NMR of **3k**

¹³C NMR of **3**l

1 H NMR of **3m**

¹³C NMR of **3m**

¹H NMR of **30**

¹H NMR of **3p**

¹H NMR of **3**q

¹H NMR of **3r**

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

¹³C NMR of **3r**

1 H NMR of **3s**

¹³C NMR of **3s**

¹H NMR of **3**t

 13 C NMR of **3t**

¹³C NMR of **3u**

¹H NMR of 3v

¹³C NMR of **3v**

¹H NMR of 3w

¹H NMR of 3x

¹H NMR of **3y**

