Iridium-Catalysed Condensation of Alcohols and Amines as a Method for Aminosugar Synthesis

Ian Cumpstey,*^{a,b} Santosh Agrawal,^a K. Eszter Borbas,^a and Belén Martín-Matute*^a

^aDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden E-mail: belen@organ.su.se

> ^bICSN–CNRS, 91198 Gif-sur-Yvette CEDEX, France E-mail: ian.cumpstey@sjc.oxon.org

Electronic Supplementary Information

Contents:

1. General information	S2
2. Optimisation of reaction conditions	S2
3. General procedures for the $[Cp*IrCl_2]_2$ catalysed alkylation reaction	S3
4. Characterisation data of products	S3
5. ¹ H and ¹³ C NMR Spectra	S10
6. References	S34

1.General Information

All reactions were carried out under a dry argon atmosphere – running the reactions under nitrogen gave unsatisfactory results - in flame-dried glassware. The sealable tubes used were Biotage microwave vials (5 mL). Reagents were of analytical grade, obtained from commercial suppliers and used without further purification. Carbohydrate alcohols and amines used as starting materials have been prepared before in the literature $(\alpha - Man - 1; \beta - Glc - 4; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha - Glc - 12; \alpha - Man - 6; \alpha$ 10;⁵ α -*Glc*-13;⁶ α -*Man*-15;⁷ β -*Glc*-18⁸), except for β -*Man*-5, which was prepared from methyl 3azido-4,6-O-benzylidene-3-deoxy- β -D-glucopyranoside² by the following sequence: triflation of OH-2, displacement of triflate by lithium benzoate, methanolysis of the 2-O-benzoyl group and hydrogenolysis of the 3-azide over palladium. Anhydrous toluene was obtained using a VAC solvent purifier system. Products were isolated using flash column chromatography carried out on 60 Å (40–60 μm) silica gel. ¹H, COSY, and HSQC NMR spectra were recorded at 400 MHz, and ¹³C spectra at 100 MHz, on a Bruker Avance 400 spectrometer; ¹H NMR spectra at 500 MHz were recorded on a Bruker Avance 500 spectrometer. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ ($\delta_{\rm H}$ 7.26; $\delta_{\rm C}$ 77.00) or in MeOD ($\delta_{\rm H}$ 3.32; $\delta_{\rm C}$ 47.56) as internal reference; coupling constants (J) are given in Hz. High resolution mass spectra (HRMS) were recorded on a Bruker MicroTOF ESI-TOF mass spectrometer. Optical rotations were recorded on a Perkin–Elmer 241 polarimeter with a path length of 1 dm.

Table 1: Alkylation of amine α -*Man*-1 with cyclohexanol (2a).^a NH₂ OMe [Cp*IrCl₂] 'n Solvent, 120 °C, 24 h BnO BnO ΌBn ÖBn ÔВп 2a α-<u>Man</u>-1 α**-Man-3** Entry Solvent [Cp*IrCl₂]₂ NaHCO₃ α -Man-3^b (%) (mol%)(mol%)25 1 Water 5 _ 5 85 2 Toluene 25 3 3 Toluene 90 4 Toluene 1 90 5 Toluene 0.5 34

2. Optimisation of reaction conditions

^aA mixture of α -*Man*-1 (46 mg, 0.1 mmol), cyclohexanol (**2a**, 53 µL, 0.5 mmol) and [Cp*IrCl₂]₂ in water or toluene (0.5 mL), with or without NaHCO₃ was heated at 120 °C for 24 h under Ar. ^b Isolated yield.

3. General procedures for the [Cp*IrCl₂]₂ catalysed alkylation reaction

General procedure for alkylation of *O*-protected or partially *O*-protected aminosugars with alcohols (Method A; Scheme 1 and 2)

A flame-dried sealable tube equipped with a magnetic stirrer bar was charged with aminosugar (0.1 mmol) and $[Cp*IrCl_2]_2$ (1 mol%). The tube was sealed and flushed with argon, then alcohol (0.5 mmol) (0.3 mmol for Scheme 1) and dry toluene (0.5 mL) were added. The reaction mixture was stirred under an argon atmosphere at 120 °C. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was concentrated *in vacuo* and the product was isolated by flash column chromatography with the appropriate eluent.

General procedure for alkylation of an *O*-unprotected aminosugar with alcohols (Method B; Scheme 3)

A flame-dried sealable tube equipped with a magnetic stirrer bar was charged with aminosugar (0.1 mmol) and $[Cp*IrCl_2]_2$ (1 mol%). The tube was sealed and flushed with argon, then alcohol (250 μ L) was added. The reaction mixture was stirred under an argon atmosphere at 120 °C. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was concentrated *in vacuo* and the product was isolated by flash column chromatography with the appropriate eluent.

General procedure for amination of sugar alcohols (Method C; Schemes 4 and 5)

A flame-dried sealable tube equipped with a magnetic stirrer bar was charged with aminosugar (0.1 mmol), sugar alcohol (0.3 mmol), $[Cp*IrCl_2]_2$ (3 mol%) and Cs_2CO_3 (25 mol%). The tube was sealed and flushed with argon, then dry toluene (0.5 mL) was added. The reaction mixture was stirred under an argon atmosphere at 120 °C. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was concentrated *in vacuo* and the product was isolated by flash column chromatography with the appropriate eluent.

4. Characterisation data of products

Methyl 6-amino-2,3,4-tri-O-benzyl-6-N-cyclohexyl-6-deoxy-α-D-mannopyranoside (α-Man-3)

The title compound was synthesised from methyl 6-amino-2,3,4-tri-*O*-benzyl-6-deoxy- α -D-mannopyranoside α -*Man*-1 (46 mg, 0.10 mmol) and cyclohexanol (**2a**, 53 µL, 0.50 mmol) according to general synthetic method A. The product α -*Man*-3 was isolated by flash column chromatography (pentane–EtOAc–MeOH, 5:4:1) as a yellow oil (49 mg, 90%); $[\alpha]_D^{23} = +29.6$ (*c*, 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.40-7.29$ (m, 15 H, Ar-H), 4.96 (d, *J* = 11.2 Hz, 1 H, PhCH<u>H</u>'), 4.79, 4.72 (2 × d, *J* = 12.4 Hz, 2 H, PhC<u>H</u>₂), 4.70 (d, *J*_{1,2} = 1.7 Hz, 1 H, H-1), 4.67–4.64 (m, 3 H, PhC<u>H</u>₂, PhC<u>H</u>H'), 3.90 (dd, *J*_{2,3} = 3.0 Hz, *J*_{3,4} = 8.7 Hz, 1 H, H-3), 3.85–3.76 (m, 3 H, H-2, H-4, H-5), 3.34 (s, 3 H, OCH₃), 3.07 (dd, *J*_{5,6'} = 2.8 Hz, *J*_{6,6'} = 12.1 Hz, 1 H, H-6'), 2.79 (dd, *J*_{5,6} = 7.4 Hz, *J*_{6,6'} = 12.1 Hz, 1 H, H-6), 2.47 (m, 1 H, C<u>H</u>NH), 1.89–1.80 (m, 2 H, cyclohexyl-H), 1.79–1.27 (m, 2 H, cyclohexyl-H), 1.64 (m, 1 H, cyclohexyl-H), 1.28–1.17 (m, 5 H, cyclohexyl-H); ¹³C NMR (100 MHz, CDCl₃): δ = 138.9, 138.4, 138.2 (3 x Ar-C), 128.4, 128.4, 128.1, 127.9, 127.7, 127.6, 127.6, (Ar-C), 99.2 (C-1), 75.0, 72.9, 72.2 (3 x PhCH₂), 80.2, 77.0, 74.6, 69.8 (C-2, C-3, C-4, C-5), 56.8 (CHNH), 55.2 (OCH3), 47.4 (C-6), 32.3, 32.1, 25.8, 24.9, 24.1 (cyclohexyl-C); HRMS–ESI calcd. for C₃₄H₄₄NO₅ (MH⁺) 546.3214; found 546.3214.

Methyl 3-amino-4,6-O-benzylidene-3-N-cyclohexyl-3-deoxy-β-D-glucopyranoside (β-Glc-7a)

The title compound was synthesised from methyl 3-amino-4,6-*O*-benzylidene-3-deoxy- β -D-glucopyranoside β -*Glc*-4 (28 mg, 0.10 mmol) and cyclohexanol (**2a**, 53 µL, 0.50 mmol) according to general synthetic method A. The product β -*Glc*-**7a** was isolated by flash column chromatography (pentane–EtOAc–MeOH, 5:4:1) as a white solid (31 mg, 86%); m.p. 172–173 °C; $[\alpha]_D^{23} = -41.5$ (*c*, 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.50-7.37$ (m, 5 H, Ar-H), 5.57 (s, 1H, PhC<u>H</u>), 4.38-4.34 (m, 2H, H-1, H-6'), 3.80 (at, J = 10.2 Hz, 1 H, H-6), 3.60 (s, 3H, OCH3), 3.52-3.48 (m, 2 H, H-5, H-4), 3.32 (dd, $J_{1,2} = 7.9$ Hz, $J_{2,3} = 9.6$ Hz, 1 H, H-2), 2.98 (at, J = 9.6 Hz, 1 H, H-3), 2.90 (m, 1 H, CHNH), 2.47 (br s, 2 H, OH, NH), 2.06-1.93 (m, 2 H, cyclohexyl-H), 1.79-1.72 (m, 2 H, cyclohexyl-H), 1.59 (m, 1 H, cyclohexyl-H), 1.31–1.03 (m, 5 H, cyclohexyl-H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.3$ (Ar-C), 128.9, 128.2, 125.8 (Ar-C), 104.8 (C-1), 101.1 (Ph<u>C</u>H), 73.3 (C-2), 68.8 (C-6), 81.8, 68.0 (C-4, C-5), 59.3 (C-3), 57.3 (OCH₃), 55.1 (CHNH), 34.8, 33.7, 25.9, 25.2,

24.9 (cyclohexyl-C); HRMS-ESI calcd for $C_{20}H_{29}NNaO_5$ (MNa⁺) 386.1949; found 386.1938.

Methyl 3-amino-4,6-*O*-benzylidene-3-*N*-benzyl-3-deoxy-β-D-glucopyranoside (β-*Glc*-7b)

The title compound was synthesised from methyl 3-amino-4,6-*O*-benzylidene-3-deoxy- β -D-glucopyranoside β -*Glc*-**7b** (28 mg, 0.10 mmol) and benzyl alcohol (**2b**, 52 µL, 0.50 mmol) according to general synthetic method A. The product β -*Glc*-**7c** was isolated by flash column chromatography (pentane–EtOAc–MeOH, 5:4:1) as a white solid (35 mg, 94%); m.p. 165–166 °C; $[\alpha]_D^{23} = -29.3$ (*c*, 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.53-7.24$ (m, 10 H, Ar-H), 5.58 (s, 1 H, C<u>H</u>Ph), 4.38–4.35 (m, 2 H, H-1, H-6'), 4.13, 4.00 (2 × d, *J* = 13.1 Hz, 2 H, NHC<u>H</u>₂Ph), 3.81 (at, *J* = 10.2 Hz, 1 H, H-6), 3.63 (at obs, *J* = 9.3 Hz, 1 H, H-4), 3.60 (s, 3 H, OCH₃), 3.52 (m, 1 H, H-5), 3.42 (dd, *J*_{1,2} = 7.7 Hz, *J*_{2,3} = 9.7 Hz, 1 H, H-2), 2.97 (at, *J* = 9.7 Hz, 1 H, H-3); ¹³C NMR (100 MHz, CDCl₃): $\delta = 140.4$, 137.3 (2 × Ar-C), 129.0, 128.5, 128.3, 128.2, 127.0, 126.0 (Ar-CH), 104.7 (C-1), 101.5 (Ph<u>C</u>H), 81.5 (C-4), 73.2 (C-2), 68.8 (C-6), 67.7 (C-5), 61.0 (C-3), 57.4 (OCH₃), 52.2 (CH₂NH); HRMS–ESI calcd for C₂₁H₂₆NO₅ (MH⁺) 372.1805; found 372.1813.

Methyl 3-amino-4,6-*O*-benzylidene-3-*N*-cyclohexyl-3-deoxy-β-D-mannopyranoside (β-*Man*-8)

The title compound was synthesised from methyl 3-amino-4,6-*O*-benzylidene-3-deoxy- β -D-mannopyranoside β -*Man*-**5** (28 mg, 0.10 mmol) and cyclohexanol (**2a**, 53 µL, 0.50 mmol) according to general synthetic method A. The product β -*Man*-**8** was isolated by flash column chromatography (pentane–EtOAc–MeOH, 5:4:1) as a white solid (33 mg, 90%); m.p. 162–164 °C; $[\alpha]_D^{23} = -73.8$ (*c*, 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.50-7.38$ (m, 5 H, Ar-H), 5.54 (s, 1 H, C<u>H</u>Ph), 4.53 (d, $J_{1,2} = 1.2$ Hz, 1 H, H-1), 4.35 (dd, $J_{5,6'} = 5.0$ Hz, $J_{6,6'} = 10.5$ Hz, 1 H, H-6'), 3.96 (dd, $J_{1,2} = 1.0$ Hz, $J_{2,3} = 3.3$ Hz, 1 H, H-2), 3.86 (at, J = 10.3 Hz, 1 H, H-6), 3.73 (at, J = 9.6 Hz, 1 H, H-4), 3.60 (s, 3 H, OCH₃), 3.48 (m, 1 H, H-5), 3.11 (dd, $J_{2,3} = 3.4$ Hz, $J_{3,4} = 9.8$ Hz, 1 H, H-3), 2.54 (m, 1 H, NHC<u>H</u>), 1.99 –1.78 (m, 2 H, cyclohexyl-H), 1.76–1.62 (m, 5 H, OH, NH, cyclohexyl-H), 1.30–1.03 (m, 5 H, cyclohexyl-H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.4$ (Ar-C), 129.0, 128.3, 126.0, (Ar-CH), 102.2 (C-1), 101.8 (Ph<u>C</u>H), 77.4 (C-4), 68.8 (C-2), 67.9 (C-5), 67.8 (C-6), 57.5 (C-3), 57.3 (OCH₃), 53.7, 34.8, 33.3, 25.8, 25.3, 25.0 (cyclohexyl-C), HRMS–ESI calcd for C₂₀H₃₀NO₅ (MH⁺) 364.2118; found 364.2125.

Methyl 3-amino-4,6-*O***-benzylidene-3-***N***-cyclohexyl-3-deoxy-α-D-mannopyranoside (α-***Man-9***) The title compound was synthesised from methyl 3-amino-4,6-***O***-benzylidene-3-deoxy-α-Dmannopyranoside α-***Man-6* **(28 mg, 0.10 mmol) and cyclohexanol (2a**, 53 µL, 0.50 mmol) according to general synthetic method A. The product α-*Man-***9a** was isolated by flash column chromatography (pentane–EtOAc–MeOH, 5:4:1) as a white solid (28 mg, 78%); m.p. 163–165 °C; $[\alpha]_D^{23} = -48.5$ (*c*, 1.0 in CHCl₃) ¹H NMR (400 MHz, CDCl₃): $\delta = 7.50-7.38$ (m, 5 H, Ar-H), 5.57 (s, 1 H, PhC<u>H</u>), 4.81 (d, *J*_{1,2} = 1.0 Hz, 1 H, H-1), 4.29 (dd, *J*_{5,6}· = 3.0 Hz, *J*_{6,6}· = 8.8 Hz, 1 H, H-6'), 3.93–3.80 (m, 4 H, H-2, H-4, H-5, H-6), 3.42 (s, 3 H, OCH₃), 3.36 (dd, *J*_{2,3} = 3.3 Hz, *J*_{3,4} = 9.6 Hz, 1 H, H-3), 2.96 (br s, 2 H, OH, NH), 2.64 (m, 1 H, NHC<u>H</u>), 2.08–1.91 (m, 2 H, cyclohexyl-H), 1.76–1.60 (m, 3 H, cyclohexyl-H), 1.31–1.80 (m, 5 H, cyclohexyl-H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.4$ (Ar-C), 129.0, 128.2, 126.1 (Ar-CH), 101.9 (C-1), 100.5 (Ph<u>C</u>H), 76.8, 69.0, 67.9 (C-2, C-4, C-5), 67.8 (C-6), 63.1 (C-3), 55.1 (OCH₃), 54.7, 32.7, 25.6, 25.1, 24.9 (cyclohexyl-C); HRMS–ESI calcd for C₂₀H₃₀NO₅ (MH⁺) 364.2118; found 364.2123.

Methyl 6-amino-6-N-cyclohexyl-6-deoxy-α-D-mannopyranoside (α-Man-11a)

The title compound was synthesised from methyl 6-amino-6-deoxy- α -D-mannopyranoside α -*Man*-**10** (19 mg, 0.10 mmol) and cyclohexanol (**2a**, 250 µL) according to general synthetic method B. The product α -*Man*-**11a** was isolated by flash column chromatography (CHCl₃–MeOH–NH₃ (aq), 4:6:0.2) as a yellow oil (24 mg, 87%); $[\alpha]_D^{23}$ = +57 (*c*, 1.0 in CHCl₃); ¹H NMR (400 MHz, CD₃OD): δ = 4.64 (d, $J_{1,2}$ = 1.6 Hz, 1 H, H-1), 3.80 (dd, $J_{1,2}$ = 1.7 Hz, $J_{2,3}$ = 3.4 Hz, 1 H, H-2), 3.66 (dd, $J_{2,3}$ = 3.4 Hz, $J_{3,4}$ = 9.3 Hz, 1 H, H-3), 3.60 (m, 1 H, H-5), 3.50 (at, J = 9.5 Hz, 1 H, H-4), 3.39 (s, 3 H, OCH₃), 3.08 (dd, $J_{5,6}$ = 3.2 Hz, $J_{6,6}$ = 12.2 Hz, 1 H, H-6'), 2.78 (dd, $J_{5,6}$ = 8.1 Hz, $J_{6,6}$ = 12.2 Hz, 1 H, H-6), 2.53 (m, 1 H, C<u>H</u>NH), 1.96–1.93 (m, 2 H, cyclohexyl-H), 1.80–1.77 (m, 2 H, cyclohexyl-H), 1.69-1.66 (m, 1 H, cyclohexyl-H), 1.37–1.09 (m, 5 H, cyclohexyl-H); ¹³C NMR (100 MHz, CD₃OD): δ = 101.5 (C-1), 70.9 (C-3), 70.6 (C-2), 70.4 (C-5), 69.5 (C-4), 56.5 (CHNH), 54.1 (OCH₃), 47.5 (C-6), 32.3, 32.2, 25.7, 24.7, 24.7 (cyclohexyl-C),; HRMS–ESI calcd for C₁₃H₂₆NO₅ (MH⁺) 276.1805; found 276.1804.

Methyl 6-amino-6-*N*-cyclopentyl-6-deoxy-α-D-mannopyranoside (α-*Man*-11c)

The title compound was synthesised from methyl 6-amino-6-deoxy- α -D-mannopyranoside α -*Man*-**10** (19 mg, 0.10 mmol) and cyclopentanol (**2c**, 250 µL) according to general synthetic method B.

The product α -*Man*-11c was isolated by flash column chromatography (CHCl₃–MeOH–NH₃ (aq), 4:6:0.2) as a yellow oil (16 mg, 62%); $[\alpha]_D^{23} = +41.4$ (*c*, 0.5 in CHCl₃); ¹H NMR (400 MHz, CD₃OD): $\delta = 4.63$ (d, $J_{1,2} = 1.6$ Hz, 1 H, H-1), 3.79 (dd, $J_{1,2} = 1.7$ Hz, $J_{2,3} = 3.4$ Hz, 1 H, H-2), 3.68–3.60 (m, 2 H, H-3, H-5), 3.50 (at, J = 9.5 Hz, 1 H, H-4), 3.39 (s, 3 H, OCH₃), 3.14 (m, 1 H, NHC<u>H</u>), 3.01 (dd, $J_{5,6'} = 3.2$ Hz, $J_{6,6'} = 12.2$ Hz, 1 H, H-6'), 2.78 (dd, $J_{5,6} = 8.1$ Hz, $J_{6,6'} = 12.2$ Hz, 1 H, H-6), 1.97–1.89 (m, 2 H, cyclopentyl-H), 1.76–1.72 (m, 2 H, cyclopentyl-H), 1.62–1.57 (m, 2 H, cyclopentyl-H), 1.43–1.37 (m, 2 H, cyclopentyl-H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 101.5$ (C-1), 70.9 (C-3), 70.6 (C-2), 70.3 (C-5), 69.4 (C-4), 59.3 (CHNH), 54.1 (OCH₃), 49.3 (C-6), 31.8, 31.7, 23.6 (cyclopentyl-C),; HRMS–ESI calcd for C₁₂H₂₃NNaO₅ (MNa⁺) 284.1468; found 284.1469.

Methyl 6-amino-6-deoxy-6-di-*N*,*N*-(*n*-pentyl)-α-D-mannopyranoside (α-Man-11d)

The title compound was synthesised from methyl 6-amino-6-deoxy- α -D-mannopyranoside α -*Man*-**10** (19 mg, 0.10 mmol) and *n*-pentanol (**2d**, 250 µL) according to general synthetic method B. The product α -*Man*-**11d** was isolated by flash column chromatography (CHCl₃–MeOH–NH₃ (aq), 4:6:0.2) as a yellow oil (27 mg, 82%); $[\alpha]_D^{23} = +12.9$ (*c*, 1.0 in CHCl₃); ¹H NMR (400 MHz, CD₃OD): $\delta = 4.61$ (d, $J_{1,2} = 1.6$ Hz, 1 H, H-1), 3.77 (dd, $J_{1,2} = 1.7$ Hz, $J_{2,3} = 3.4$ Hz, 1 H, H-2), 3.68–3.62 (m, 2 H, H-3, H-5), 3.53 (at, J = 9.3 Hz, 1 H, H-4), 3.41 (s, 3 H, OCH₃), 2.96 (dd, $J_{5,6'} = 5.2$ Hz, $J_{6,6'} = 13.4$ Hz, 1 H, H-6'), 2.72–2.48 (m, 5 H, $2 \times CH_2$, H-6), 1.62–1.46 (m, 4 H, $2 \times CH_2$), 1.42–1.26 (m, 8 H, $4 \times CH_2$), 0.94 (t, J = 7.0 Hz, 6 H, $2 \times CH_3$), ¹³C NMR (100 MHz, CD₃OD): $\delta = 101.6$ (C-1), 71.0, 70.7, 70.3 (C-2, C-3, C-5), 68.5 (C-4), 56.4 (C-6), 54.6 (N(CH₂)₂), 54.3 (OCH₃), 29.4, 25.9, 22.2, 13.0 (pentyl-C); HRMS–ESI calcd for C₁₇H₃₆NO₅ (MH⁺) 334.2588; found 334.2573.

Bis(methyl 2,3,4-tri-O-benzyl-6-deoxy-α-D-glucopyranosid-6-yl)amine (Glc,Glc-14)^[9]

The title compound was synthesised from methyl 6-amino-2,3,4-tri-*O*-benzyl-6-deoxy- α -D-glucopyranoside α -*Glc*-12 (46 mg, 0.10 mmol) and methyl 2,3,4-tri-*O*-benzyl- α -D-glucopyranoside α -*Glc*-13 (138 mg, 0.30 mmol) according to general synthetic method C at 120 °C. The product *Glc*,*Glc*-14 was isolated by flash column chromatography (Pentane–EtOAc, 1:3) as a yellow oil (71 mg, 78%); $[\alpha]_D^{23} = +31.2$ (*c*, 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36-7.28$ (m, 30 H, Ar-H), 5.00–4.61 (m, 12 H, $6 \times PhCH_2$), 4.53 (d, $J_{1,2} = 3.4$ Hz, 2 H, H-1), 3.99

(at, J = 9.2 Hz, 2 H, H-3), 3.74 (at, J = 7.7 Hz, 2 H, H-5), 3.47 (dd, $J_{1,2} = 3.4$ Hz, $J_{2,3} = 9.6$ Hz, 2 H, H-2), 3.40 (at, J = 9.2 Hz, 2 H, H-4), 3.34 (s, 6 H, OCH₃), 2.86 (dd, $J_{5,6'} = 1.8$ Hz, $J_{6,6'} = 12.3$ Hz, 2 H, H-6'), 2.72 (dd, $J_{5,6} = 7.0$ Hz, $J_{6,6'} = 12.3$ Hz, 2 H, H-6), 1.65 (br s, 1 H, NH), ¹³C NMR (100 MHz, CDCl₃): $\delta = 138.8$, 138.3, 138.2 (6 × Ar-C), 128.5, 128.5, 128.4, 128.1, 128.0, 127.9, 127.7, 127.6 (Ar-CH), 97.8 (C-1), 82.1 (C-3), 80.2 (C-2), 79.6 (C-4), 75.8, 75.0, 73.3 (6 × Ph<u>C</u>H₂), 69.9 (C-5), 55.1 (OCH₃), 50.6 (C-6); HRMS–ESI calcd for C₅₆H₆₃NO₁₀ (MH⁺) 910.4525; found 910.4529.

Bis(methyl 2,3,4-tri-O-benzyl-6-deoxy-α-D-mannopyranosid-6-yl)amine (Man,Man-16)

The title compound was synthesised from methyl 6-amino-2,3,4-tri-*O*-benzyl-6-deoxy- α -D-mannopyranoside α -*Man*-1 (46 mg, 0.10 mmol) and methyl 2,3,4-tri-*O*-benzyl- α -D-mannopyranoside α -*Man*-15 (138 mg, 0.30 mmol) according to general synthetic method C at 120 °C. The product *Man,Man*-16 was isolated by flash column chromatography (Pentane–EtOAc, 1:3) as a yellow oil (40 mg, 44%); $[\alpha]_D^{23} = +33.4$ (*c*, 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.35-7.28$ (m, 30 H, Ar-H), 4.93 (d, *J* = 11.0 Hz, 2 H, PhCH<u>H</u>'), 4.74–4.61 (m, 12 H, H-1, PhC<u>H</u>₂, PhC<u>H</u>H'), 3.89–3.70 (m, 8 H, H-2, H-3, H-4, H-5), 3.24 (s, 6 H, OCH₃), 2.98 (dd, *J*_{5,6'} = 2.4 Hz, *J*_{6,6'} = 12.0 Hz, 2 H, H-6'), 2.85 (dd, *J*_{5,6} = 7.9 Hz, *J*_{6,6'} = 12.0 Hz, 2 H, H-6), 1.80 (br s, 1 H, NH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 139.7$, 138.6, 138.4 (Ar-C), 128.4, 128.3, 127.9, 127.6, 127.5 (Ar-CH), 98.9 (C-1), 75.1, 72.8, 72.2 (3 × Ph<u>C</u>H₂), 80.3, 76.9, 74.9, 70.9 (C-2, C-3, C-4, C-5), 54.6 (OCH₃), 50.7 (C-6); HRMS–ESI calcd for C₅₆H₆₃NO₁₀ (MH⁺) 910.4525; found 910.4525.

(Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-α-D-glucopyranosid-6-yl) (methyl 2,3,4-tri-*O*-benzyl-6-deoxy-α-D-mannopyranosid-6-yl)amine (*Glc,Man*-17)

From manno *amine and* gluco *alcohol:* The title compound was synthesised from methyl 6-amino-2,3,4-tri-*O*-benzyl-6-deoxy-α-D-mannopyranoside α-*Man*-1 (46 mg, 0.10 mmol) and methyl 2,3,4-tri-*O*-benzyl-α-D-glucopyranoside α-*Glc*-13 (138 mg, 0.30 mmol) according to general synthetic method C at 120 °C. The product *Glc,Man*-17 was isolated by flash column chromatography (Pentane–EtOAc, 1:3) as a yellow oil (43 mg, 47%); $[\alpha]_D^{23} = +30.6$ (*c*, 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36-7.27$ (m, 30 H, Ar-H), 4.99–4.61 (m, 13 H, 6 × PhCH₂, H-1^{II}), 4.53 (d, *J* = 3.6 Hz, 1 H, H-1^I), 3.98 (at, *J* = 9.3 Hz, 1 H, H-3^I), 3.89–3.68 (m, 5 H, H-2^{II}, H-3^{II}, H-4^{II}, H-5^{II}, H-5^{II}), 3.48 (dd, *J*_{1,2} = 3.6 Hz, *J* = 9.6 Hz, 1 H, H-2^{II}), 3.42 (at, *J* = 9.4 Hz, 1 H, H-4^{II}), 3.31, 3.27

 $(2 \times s, 6 \text{ H}, 2 \times \text{OCH}_3)$, 2.96–2.88 (m, 2 H, H-6¹, H-6¹), 2.83 (dd, $J_{5,6} = 7.8 \text{ Hz}$, $J_{6,6}$ 12.0 Hz, 1 H, H-6^{II}), 2.73 (dd, $J_{5,6} = 7.2 \text{ Hz}$, $J_{6,6'} = 12.3 \text{ Hz}$, 1 H, H-6^{II}), 1.68 (br s, 1 H, NH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 138.8$, 138.6, 138.5, 138.4, 138.3, (Ar-C), 128.4, 128.4, 128.3, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 126.6, 127.5, (Ar-CH), 98.9 (C-1^{II}), 97.7 (C-1^I), 82.1 (C-3^I), 80.2 (C-2^{II}), 80.1 (C-4^{II}), 79.7, 77.2, 76.8, 75.8, 75.1, 74.8, 73.3, 72.8, 72.1, 70.9, 69.8 (C-2^{II}, C-3^{II}, C-4^{II}, C-5^{II}, C-5^{II}, 6 × Ph<u>C</u>H₂), 54.9, 54.6 (2 × OCH₃), 50.9 (C-6^{II}), 50.3 (C-6^I); HRMS–ESI calcd for C₅₆H₆₃NO₁₀ (MH⁺) 910.4525; found 910.4507.

The I and II descriptors refer to α -D-glucose and α -D-mannose residues respectively.

From gluco *amine and* manno *alcohol:* The title compound was synthesised from methyl 6-amino-2,3,4-tri-*O*-benzyl-6-deoxy- α -D-glucopyranoside α -*Glc*-12 (46 mg, 0.1 mmol) and methyl 2,3,4tri-*O*-benzyl- α -D-mannopyranoside α -*Man*-15 (138 mg, 0.3 mmol) according to general synthetic method C. The product *Glc,Man*-17 was isolated by flash column chromatography (Pentane– EtOAc, 1:3) as a yellow oil (44 mg, 48%) identical to that described above.

(Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-α-D-glucopyranosid-6-yl) (methyl 2,3,-di-*O*-benzyl-6-deoxy-β-D-glucopyranosid-6-yl)amine (*Glc*, *Glc*-19)

The title compound was synthesised from methyl 6-amino-2,3,4-tri-*O*-benzyl-6-deoxy- α -D-glucopyranoside α -*Glc*-12 (46 mg, 0.1 mmol) and methyl 2,3-di-*O*-benzyl- β -D-glucopyranoside β -*Glc*-18 (112 mg, 0.3 mmol) according to general synthetic method C. The product *Glc*,*Glc*-19 was isolated by flash column chromatography (EtOAc) as a yellow oil (58 mg, 71%); [α]_D²³ = +29.6 (*c*, 0.5 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.39–7.29 (m, 25 H, Ar-H), 5.01–4.60 (m, 10 H, 5 × PhC<u>H</u>₂), 4.54 (d, $J_{1,2}$ = 3.6 Hz, 1 H, H-1¹, 4.31 (d, $J_{1,2}$ = 7.7 Hz, 1 H, H-1^{II}), 3.99 (at, *J* = 9.2 Hz, 1 H, H-3^I), 3.74 (m, 1 H, H-5^{II}), 3.60–3.34 (m, 11 H, 2 × OCH₃, H-2^I, H-4^I, H-2^{II}, H-3^{II}, H-4^{II}), 3.27 (m, 1 H, H-5^{II}), 2.98–2.83 (m, 3 H, H-6^{5I}, H-6^{II}, H-6^{5II}), 2.70 (dd, $J_{5,6}$ = 6.6 Hz, $J_{6,6^{\circ}}$ = 12.4 Hz, 1 H, H-6^I), ¹³C NMR (100 MHz, CDCl₃): δ = 138.8, 138.7, 138.5, 138.2, 138.1 (Ar-C), 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.6 (Ar-CH), 104.8 (C-1^{II}), 98.0 (C-1^I), 82.0 (C-3^I), 84.0, 81.6, 80.0, 79.4, 77.2, 75.7, 75.2, 75.0, 74.8, 73.4 (C-2^{II}, C-3^{II}, C-2^I, C-4^I, 5 × Ph<u>C</u>H₂), 72.0 (C-5^{II}), 69.3 (C-5^I), 57.1, 55.3 (2 × OCH₃), 52.7 (C-6^{II}), 50.5 (C-6^I); HRMS–ESI calcd for C₄₉H₅₇NO₁₀ (MH⁺) 820.4055; found 820.4082.

The I and II descriptors refer to α -D- and β -D-glucose residues respectively.

5. ¹H and ¹³C NMR spectra

Methyl 6-amino-2,3,4-tri-O-benzyl-6-N-cyclohexyl-6-deoxy-α-D-mannopyranoside (α-Man-3)

Methyl 6-amino-2,3,4-tri-O-benzyl-6-N-cyclohexyl-6-deoxy-α-D-mannopyranoside (α-Man-3)

Methyl 3-amino-4,6-*O*-benzylidene-3-*N*-cyclohexyl-3-deoxy-β-D-glucopyranoside (β-*Glc*-7a)

Methyl 3-amino-4,6-*O*-benzylidene-3-*N*-cyclohexyl-3-deoxy-β-D-glucopyranoside (β-*Glc*-7a)

Methyl 3-amino-4,6-*O*-benzylidene-3-*N*-benzyl-3-deoxy-β-D-glucopyranoside (β-*Glc*-7b)

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Methyl 3-amino-4,6-*O*-benzylidene-3-*N*-benzyl-3-deoxy-β-D-glucopyranoside (β-*Glc*-7b)

Methyl 3-amino-4,6-O-benzylidene-3-N-cyclohexyl-3-deoxy-β-D-mannopyranoside (β-Man-8)

Methyl 3-amino-4,6-*O*-benzylidene-3-*N*-cyclohexyl-3-deoxy-β-D-mannopyranoside (β-*Man*-8)

Methyl 3-amino-4,6-*O*-benzylidene-3-*N*-cyclohexyl-3-deoxy-α-D-mannopyranoside (α-*Man*-9)

Methyl 3-amino-4,6-*O*-benzylidene-3-*N*-cyclohexyl-3-deoxy-α-D-mannopyranoside (α-*Man-*9)

Methyl 6-amino-6-N-cyclohexyl-6-deoxy-α-D-mannopyranoside (α-Man-11a)

Methyl 6-amino-6-N-cyclohexyl-6-deoxy-α-D-mannopyranoside (α-Man-11a)

Methyl 6-amino-6-N-cyclopentyl-6-deoxy-α-D-mannopyranoside (α-Man-11c)

Methyl 6-amino-6-*N*-cyclopentyl-6-deoxy-α-D-mannopyranoside (α-*Man*-11c)

Methyl 6-amino-6-deoxy-6,6-di-*N*,*N*-(*n*-pentyl)-α-D-mannopyranoside (α-*Man*-11d)

Methyl 6-amino-6-deoxy-6,6-di-*N*,*N*-(*n*-pentyl)-α-D-mannopyranoside (α-*Man*-11d)

Bis(methyl 2,3,4-tri-O-benzyl-6-deoxy-α-D-glucopyranosid-6-yl)amine (Glc,Glc-14)

Bis(methyl 2,3,4-tri-O-benzyl-6-deoxy-α-D-glucopyranosid-6-yl)amine (Glc,Glc-14)

Bis(methyl 2,3,4-tri-O-benzyl-6-deoxy-α-D-mannopyranosid-6-yl)amine (Man, Man-16)

Bis(methyl 2,3,4-tri-O-benzyl-6-deoxy-α-D-mannopyranosid-6-yl)amine (Man, Man-16)

(Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-α-D-glucopyranosid-6-yl) (methyl 2,3,4-tri-*O*-benzyl-6-deoxyα-D-mannopyranosid-6-yl)amine (*Glc,Man*-17)

(Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-α-D-glucopyranosid-6-yl) (methyl 2,3,4-tri-*O*-benzyl-6-deoxyα-D-mannopyranosid-6-yl)amine (*Glc,Man*-17)

(Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-α-D-glucopyranosid-6-yl) (methyl 2,3-di-*O*-benzyl-6-deoxy-β-D-glucopyranosid-6-yl)amine (*Glc,Glc*-19)

(Methyl 2,3,4-tri-*O*-benzyl-6-deoxy-α-D-glucopyranosid-6-yl) (methyl 2,3-di-*O*-benzyl-6-deoxy-β-D-glucopyranosid-6-yl)amine (*Glc*,*Glc*-19)

6. References

- 1 D. Prosperi, S. Ronchi, L. Lay, A. Rencurosi and G. Russo, Eur. J. Org. Chem., 2004, 395–405.
- 2 R. D. Guthrie and A. M. Prior, J. Chem. Soc., 1970, 1961–1966.
- 3 R. D. Guthrie and G. P. B. Mutter, J. Chem. Soc., 1964, 1614–1621.
- 4 T. M. Tagmose and M. Bols, *Chem. Eur. J.*, 1997, **3**, 453–462.
- 5 S. Cottaz, J. S. Brimacombe and M. A. J. Ferguson, Carbohydr. Res., 1993, 247, 341–346.
- 6 C. Jaramillo, J.-L. Chiara and M. Martín-Lomas, J. Org. Chem., 1994, 59, 3135–3141.
- 7 R. Ruiz Contreras, J. P. Kamerling and J. F. G. Vliegenthart, Recl. Trav. Chim. Pay.-B., 1991, 110, 85–88.
- 8 K. Yoshimoto, Y. Itatani, K. Shibata and Y. Tsuda, Chem. Pharm. Bull., 1980, 28, 208-219.
- 9 K. Neimert-Andersson, S. Sauer, O. Panknin, T. Borg, E. Söderlind and P. Somfai, J. Org. Chem., 2006, 71, 3623–3626.