Electronic Supplementary Information

Solvent-dependent supramolecular assemblies of π -conjugated anion-responsive acyclic oligopyrroles

Hiromitsu Meada* and Yoshitaka Terashima

College of Pharmaceutical Sciences, Institute of Science and Engineering, Ritsumeikan University, Kusatsu 525–8577, Japan.

Table of Contents

1. Synthetic procedures and spectroscopic data for anion receptors	S2
Supporting Figure 1,2 Synthesis of dipyrrolyldiketone BF ₂ complexes.	S2
2. X-ray crystallographic data	S10
Supporting Figure 3 Ortep drawings of single-crystal X-ray structures.	S11
Supporting Figure 4 Assembly structures in the solid state.	S11
3. Optimized structures by DFT calculations	S12
Supporting Figure 5 Optimized structures of the receptors.	S12
Cartesian coordination of optimized structures	S13
4. Anion-binding properties	S31
Supporting Figure 6 UV/vis absorption spectral changes and corresponding titration plots of 2b and 3	3b upon the
addition of anion in CHCl ₃ .	S31
Supporting Figure 7 Fluorescence emission spectral changes of 2b and 3b upon the addition of anio	n in CHCl ₃ .
	S32
5. Formation of supramolecular gels	S33
Supporting Figure 8 Photographs of supramolecular gels in various solvents.	S33
Supporting Figure 9 Phase transitions of supramolecular gels in various solvents.	S34
Supporting Figure 10,11 UV/vis absorption spectra and fluorescence emission spectra in solution	on, gels, or
precipitates.	S35
Supporting Figure 12,13 Variable-temperature UV/vis absorption spectra in various solvents.	S37
Supporting Figure 14 FT-IR spectra of 2d in various solution and as xerogel.	S38
Supporting Figure 15,16 VT ¹ H NMR spectral changes.	S39
Supporting Figure 17 SEM images of xerogel obtained from CH ₂ Cl ₂ and 1,4-dioxane of 2d.	S40
Supporting Figure 18 XRD patterns of xerogels of 2d.	S41
Supporting Figure 19 Possible packing model structures.	S42
6. Anion-responsive behaviors of supramolecular gels	S43
Supporting Figure 20 Photographs of precipitates or solutions with Cl ⁻ as added as a TBA salt in vario	us solvents. S43
Supporting Figure 21,22 UV/vis absorption spectra and fluorescence emission spectra in the gels or	precipitates
with Cl ⁻ .	S44
Supporting Figure 23 Photographs of solutions of 2d with Cl [−] as added as a TATA salt.	S45
Supporting Figure 24 UV/vis absorption and fluorescence emission spectra of solutions of anion cor with Cl ⁻ as added as a TATA salt.	nplex of 2d S46

1. Synthetic procedures and spectroscopic data for anion receptors

General Procedures: Starting materials were purchased from Wako Pure Chemical Industries Ltd., Nacalai Tesque Inc., and Sigma-Aldrich Co. and used without further purification unless otherwise stated. UV-visible spectra were recorded on a Hitachi U-3500 spectrometer for the solution state and a System Instruments surface and interface spectrometer SIS-50 for the solid (gel) state. Fluorescence spectra were recorded on a Hitachi F-4500 fluorescence spectrometer for ordinary solution and a Hamamatsu Quantum Yields Measurements System for Organic LED Materials C9920-02 for gelated materials, respectively. NMR spectra used in the characterization of products were recorded on a JEOL ECA-600 600 MHz spectrometer. All NMR spectra were referenced to solvent. Matrix-assisted laser desorption ionization time-of-flight mass spectrometries (MALDI-TOF-MS) were recorded on a Shimadzu Axima-CFRplus using positive and negative modes. Fast atom bombardment mass spectrometric studies (FAB-MS) were made using a JEOL-HX110 instrument in the positive ion mode with a 3-nitrobenzylalcohol matrix with the help of Prof. Tomohiro Miyatake, Ryukoku University. TLC analyses were carried out on aluminum sheets coated with silica gel 60 (Merck 5554). Column chromatography was performed on Sumitomo alumina KCG-1525, Wakogel C-300, and Merck silica gel 60 and 60H.

Supporting Figure 1 Synthesis of dipyrrolyldiketone BF₂ complexes 2b-d.

N-(4-Bromophenyl)-3,4,5-trimethoxybenzamide, s2b. A mixture of 3,4,5-trimethoxybenzoyl chloride s1b (576.6 mg, 2.5 mmol) and triethylamine (505.9 mg, 5.0 mmol) in THF (14 mL) and 4-bromoaniline (430.0 mg, 2.5 mmol) in THF (14 mL) was stirred at room The solvent was removed temperature for 2 days. under reduced pressure and stirred the resulting residue triturated in chloroform (30 mL). The organic phase was washed with 0.5 M aqueous HCl (5 mL), saturated NaHCO₃ solution (10 mL), water (10 mL) and then dried over Na₂SO₄. Upon removal of the solvent under reduced pressure, the crude product was then added to ethanol (40 mL) and kept in the ice water bath for 12 h. The precipitate was filtered and dried to afford s2b (489.6 mg, 52%) as a white solid. $R_f = 0.50$ (50%) EtOAc/hexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.69 (br, 1H, NH), 7.54 (d, J = 9.0 Hz, 2H, Ar-H), 7.50 (d, J = 9.0 Hz, 2H, Ar-H), 7.06 (s, 2H, Ar-H), 3.93 (s, 6H, OCH₃), 3.91 (s, 3H, OCH₃). MALDI-TOF-MS: *m/z* (% intensity): 364.6 (100), 365.6 (52). Calcd for C₁₆H₁₅BrNO₄ ([M – H]⁻): 364.02.

N-(4-Bromophenyl)-3,4,5-tridodecyloxybenzamide,

s2c. A thionyl chloride (30 mL) solution of 3,4,5-tridodecyloxybenzoic acid $\mathbf{s1c'}^{[S1]}$ (4.0 g, 5.9 mmol) was refluxed for 6 h, and the reaction mixture including 3,4,5-tridodecyloxybenzoyl chloride $\mathbf{s1c}$ was evaporated to dryness. To a dry CH₂Cl₂ (100 mL) solution of the residue were successively added triethylamine (3.0 g, 30.2 mmol) and 4-bromoaniline

(1.1 g, 6.7 mmol), and the mixture was stirred for 9 h at room temperature. The reaction mixture was washed twice with 1 M aqueous HCl (35 mL) and water (30 mL), then the organic phases dried over Na₂SO₄, and evaporated to dryness. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: $CHCl_3/hexane = 3/4$) and recrystallized from CHCl₃/MeOH to afford s2c (2.1 g, 43%) as a white solid. $R_f = 0.54$ (CHCl₃/hexane = 3/4). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.65 (br, 1H, NH), 7.53 (d, J = 9.0 Hz, 2H, Ar-H), 7.48 (d, J = 9.0 Hz, 2H, Ar-H), 7.02 (s, 2H, Ar-H), 4.04–4.00 (m, 6H, OCH₂), 1.82 (tt, J = 7.2 and 6.6 Hz, 4H, OCH₂CH₂), 1.74 (tt, J = 7.2 and 6.6 Hz, 2H, OCH₂CH₂), 1.49–1.44 (m, 6H, OC₂H₄CH₂), 1.35-1.26 (m, 48H, OC₃H₆C₈H₁₆CH₃), 0.88-0.86 (m, 9H, $OC_{11}H_{22}CH_3).$ MALDI-TOF-MS: m/z (% intensity): 828.5 (100), 829.4 (54). Calcd for $C_{49}H_{82}BrNO_4$ ([M]⁺): 827.54.

N-(4-Bromophenyl)-3,4,5-trihexadecyloxybenzamide,

s2d. A thionyl chloride (12 mL) solution of 3,4,5-trihexadecyloxybenzoic acid s1d'^[S1] (1.7 g, 1.74 mmol) was refluxed for 6 h, and the reaction mixture including 3,4,5-trihexadecyloxybenzoyl chloride s1d was evaporated to dryness. To a dry CH₂Cl₂ (26 mL) solution of the residue was successively added triethylamine (378.1 mg, 3.74 mmol) and 4-bromoaniline (335.7 mg, 1.95 mmol), and the mixture was stirred for 6 h at room temperature. The reaction mixture was washed twice with 1 M aqueous HCl (3 mL), dried over Na₂SO₄, and evaporated to dryness. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: CHCl₃) and recrystallized from CHCl₃/MeOH to afford s2d (822.6 mg, 46%) as a white solid. $R_f = 0.26$ (CHCl₃). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.65 (br, 1H, NH), 7.53 (d, *J* = 9.0 Hz, 2H, Ar-H), 7.48 (d, *J* = 9.0 Hz, 2H, Ar-H), 7.02 (s, 2H, Ar-H), 4.04-3.99 (m, 6H, OCH₂), 1.82 (tt, J = 7.2 and 6.6 Hz, 4H, OCH₂CH₂), 1.74 (tt, J = 7.2 and 6.6 Hz, 2H, OCH₂CH₂), 1.49–1.44 6H, $OC_2H_4\underline{CH_2}$), 1.37-1.25 (m, (m, 72H, $OC_{3}H_{6}C_{12}H_{24}CH_{3}$, 0.88–0.86 (m, 9H, $OC_{15}H_{30}CH_{3}$). MALDI-TOF-MS: m/z (% intensity): 994.9 (100), 995.7 (66). Calcd for $C_{61}H_{106}BrNO_4$ ([M]⁺): 995.73.

1-tert-Butoxycarbonyl-2-(4-(3,4,5-trimethoxybenzoyla 2-(4-(3,4,5mino)phenyl)pyrrole and trimethoxybenzoylamino)phenyl)pyrrole, s3b. To a 1,2-dimethoxyethane solution (20 mL) of s2b (357.7 mg, 0.98 mmol), 1-tert-butoxycarbonylpyrrole-2-boronic acid (243.0)1.15 mmol), mg, and tetrakis(triphenylphosphine)palladium(0) (62.2)mg, 0.054 mmol) at room temperature under nitrogen was added an aqueous solution (1.5 mL) of Na₂CO₃ (365.7 mg, 0.05 mmol). The mixture was heated at reflux for 4 h, cooled then partitioned between water and CH_2Cl_2 . The combined extracts were dried over anhydrous Na₂SO₄, and evaporated to give a solid. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 30% EtOAc/hexane) to give **s3b**' (362.1 mg, 80%) as a white solid. $R_f = 0.25$ (30%) EtOAc/hexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.71 (br, 1H, NH), 7.63 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.37 (d, J = 8.4 Hz, 2H, Ar-H), 7.34–7.33 (m, 1H, pyrrole-H), 7.08 (s, 2H, Ar-H), 6.23-6.22 (m, 1H, pyrrole-H), 6.20-6.19 (m, 1H, pyrrole-H), 3.94 (s, 6H, OCH₃), 3.91 (s, 3H, OCH₃), 1.41 (s, 9H, Boc). MALDI-TOF-MS: m/z (% intensity): 452.4 (100), 453.4 Calcd for $C_{25}H_{28}N_2O_6$ ([M]⁺): 452.19. (30).The product s3b' (362.1 mg, 0.80 mmol) was heated at 190 °C for 15 min. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent 30% EtOAc/CH₂Cl₂) to give s3b as a white solid (229.3 mg, 78%). $R_f = 0.78 (30\%)$ EtOAc/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 8.44 (br, 1H, pyrrole-NH), 7.70 (br, 1H, NH), 7.65-7.64 (d, J = 8.4 Hz, 2H, Ar-H), 7.50-7.49 (d, J =8.4 Hz, 2H, Ar-H), 7.08 (s, 2H, Ar-H), 6.88-6.87 (m, 1H, pyrrole-H), 6.52-6.51 (m, 1H, pyrrole-H), 6.31-6.30 (m, 1H, pyrrole-H), 3.94 (s, 6H, OCH₃), 3.91 (s, 3H, OCH₃). MALDI-TOF-MS: m/z (% intensity): 351.7 (100), 352.7 (20). Calcd for $C_{20}H_{19}N_2O_4$ ([M – H]⁻): 351.13.

1-tert-Butoxycarbonyl-2-(4-(3,4,5-tridodecyloxybenzo vlamino)phenyl)pyrrole and 2-(4-(3.4.5tridodecyloxybenzoylamino)phenyl)pyrrole, s3c. To a 1,2-dimethoxyethane solution (20 mL) of s2c (1.02 g, mmol), 1-tert-butoxycarbonylpyrrole-2-boronic 1.23 1.46 acid (308.7)mg, mmol), and tetrakis(triphenylphosphine)palladium(0) (69.5 mg, 0.060 mmol) at room temperature under nitrogen was added an aqueous solution (2.0 mL) of Na₂CO₃ (567.2 mg, 5.32 mmol). The mixture was heated at reflux for 14 h, cooled then partitioned between water and CH₂Cl₂. The combined extracts were dried over anhydrous Na₂SO₄, and evaporated to give a solid. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 4.5% EtOAc/hexane) to give **s3c**' (926.3 mg, 82%) as a white solid. $R_f = 0.23$ (4.5%) EtOAc/hexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.69 (br, 1H, NH), 7.62 (d, *J* = 9.0 Hz, 2H, Ar-H), 7.35 (d, J = 9.0 Hz, 2H, Ar-H), 7.34–7.33 (m, 1H, pyrrole-H), 7.04 (s, 2H, Ar-H), 6.23-6.22 (m, 1H, pyrrole-H), 6.19-6.18 (m, 1H, pyrrole-H), 4.05-4.00 (m, 6H, OCH₂), 1.82 (tt, *J* = 7.2 and 6.6 Hz, 4H, O CH₂CH₂), 1.75 (tt, J = 7.2 and 6.6 Hz, 2H, OCH₂CH₂), 1.49–1.44 (m, 6H, OC₂H₄CH₂), 1.41 (s, 9H, Boc), 1.37-1.25 (m, 48H, $OC_3H_6C_8H_{16}CH_3),$ 0.88-0.86 (m, 9H. $OC_{15}H_{30}CH_3$). MALDI-TOF-MS: m/z (% intensity): 913.1 (100), 914.2 (58). Calcd for C58H93N2O6 ([M -H]⁻): 913.70. The product **s3c**' (915.1 mg, 1.0 mmol) was heated at 190 °C for 25 min. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: CHCl₃) to give s3c (629.4 mg, 77%) as a white solid. $R_f = 0.18$ (CHCl₃). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 8.43 (br, 1H, pyrrole-NH), 7.68 (br, 1H, NH), 7.63 (d, J = 9.0 Hz, 2H, Ar-H), 7.48 (d, J = 9.0 Hz, 2H, Ar-H), 7.04 (s, 2H, Ar-H), 6.87-6.86 (m, 1H, pyrrole-H), 6.51-6.50 (m, 1H, pyrrole-H), 6.31-6.29 (m, 1H, pyrrole-H), 4.04 (t, J = 6.6 Hz, 4H, OCH₂), 4.01

(t, J = 6.6 Hz, 2H, OCH₂), 1.81 (tt, J = 7.8 and 6.6 Hz, 4H, OCH₂<u>CH₂</u>), 1.74 (tt, J = 7.8 and 6.6 Hz, 2H, OCH₂<u>CH₂</u>), 1.50–1.45 (m, 6H, OC₂H₄<u>CH₂</u>), 1.33–1.25 (m, 48H, OC₃H₆<u>C₈H₁₆</u>CH₃), 0.88–0.86 (m, 9H, OC₁₉H₃₈<u>CH₃</u>). MALDI-TOF-MS: m/z (% intensity): 812.9 (100), 813.9 (56). Calcd for C₅₃H₈₅N₂O₄ ([M – H]⁻): 813.65.

1-tert-Butoxycarbonyl-2-(4-(3,4,5-trihexadecyloxyben zovlamino)phenvl)pvrrole and 2-(4-(3,4,5trihexadecyloxybenzoylamino)phenyl)pyrrole, s3d. To a 1,2-dimethoxyethane solution (20 mL) of s2d (523.4 mg, 0.52 mmol), 1-tert-butoxycarbonylpyrrole-2boronic acid (137.6 mg, 0.65 mmol), and tetrakis(triphenylphosphine)palladium(0) (36.3 mg, 0.031 mmol) at room temperature under nitrogen was added an aqueous solution (1.0 mL) of Na₂CO₃ (207.3 mg, 1.95 mmol). The mixture was heated at reflux for 6 h, cooled then partitioned between water and CH₂Cl₂. The combined extracts were dried over anhydrous Na₂SO₄, and evaporated to give a solid. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 9.5% EtOAc/hexane) to give s3d' (413.6 mg, 73%) as a white solid. $R_f = 0.23$ (9.5%) EtOAc/hexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.69 (br, 1H, NH), 7.62 (d, *J* = 9.0 Hz, 2H, Ar-H), 7.35 (d, J = 9.0 Hz, 2H, Ar-H), 7.34–7.33 (m, 1H, pyrrole-H), 7.04 (s, 2H, Ar-H), 6.22 (m, 1H, pyrrole-H), 6.19–6.18 (m, 1H, pyrrole-H), 4.04 (t, J = 6.0 Hz, 4H, OCH_2), 4.01 (t, J = 6.0 Hz, 2H, OCH_2), 1.82 (tt, J = 7.2and 6.6 Hz, 4H, O CH₂CH₂), 1.75 (tt, J = 7.2 and 6.6 Hz, 2H, OCH₂CH₂), 1.49–1.44 (m, 6H, OC₂H₄CH₂), 1.41 (s, 9H, Boc), 1.37–1.25 (m, 72H, OC₃H₆C₁₂H₂₄CH₃), 0.88–0.86 (m, 9H, OC₁₅H₃₀CH₃). MALDI-TOF-MS: *m/z* (% intensity): 1082.2 (100), 1083.1 (68). Calcd for $C_{70}H_{118}N_2O_6$ ([M]⁺): 1082.89. The product s3d' (413.0 mg, 0.38 mmol) was heated at 190 °C for 25 min. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: CHCl₃) to give s3d as a white solid (165.4 mg, 44%). $R_f = 0.28$ (CHCl₃). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 8.43 (br, 1H, pyrrole-NH), 7.68 (br, 1H, NH), 7.63 (d, J = 9.0 Hz, 2H, Ar-H), 7.48 (d, J = 9.0 Hz, 2H, Ar-H), 7.04 (s, 2H, Ar-H), 6.87-6.86 (m, 1H, pyrrole-H), 6.51-6.50 (m, 1H, pyrrole-H), 6.31–6.29 (m, 1H, pyrrole-H), 4.04 (t, J =6.6 Hz, 4H, OCH₂), 4.01 (t, J = 6.6 Hz, 2H, OCH₂), 1.81 (tt, J = 7.8 and 6.6 Hz, 4H, OCH₂CH₂), 1.74 (tt, J = 7.8and 6.6 Hz, 2H, OCH₂CH₂), 1.50-1.45 (m, 6H, $OC_2H_4CH_2$), 1.33–1.25 (m, 72H, $OC_3H_6C_{12}H_{24}CH_3$), 0.88-0.86 (m, 9H, OC₁₉H₃₈CH₃). MALDI-TOF-MS: m/z (% intensity): 983.6 (100), 984.6 (71). Calcd for $C_{65}H_{110}N_2O_4([M]^+)$: 982.85.

1,3-Bis(5-(4-(3,4,5-trimethoxybenzoylamino)phenyl)p yrrol-2-yl)-1,3-propanedione, 2b'. A THF solution (10 mL) of **s3b** (68.7 mg, 0.19 mmol) was treated with malonyl chloride (9.6 mg, 0.14 mmol) at room temperature and stirred for 3 h at the same temperature. After confirming the consumption of the starting pyrrole by TLC analysis, the mixture was washed with saturated Na₂CO₃ aq. and water, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 4.5% MeOH/CHCl₃) and recrystallized from CHCl₃/hexane to afford 2b' (26.6 mg, 35%) as a pale yellow solid. $R_f = 0.22$ (4.5% MeOH/CHCl₃). ¹H NMR (600 MHz, DMSO- d_6 , 20 °C; diketone **2b'** was obtained as a mixture of keto and enol tautomers in the ratio of 1:0.42): δ (ppm) keto from 12.05 (br, 2H, pyrrole-NH), 10.21 (br, 2H, NH), 7.91-7.88 (m, 4H, Ar-H), 7.81-7.76 (m, 4H, Ar-H), 7.28 (s, 4H, Ar-H), 7.21-7.20 (m, 2H, pyrrole-H), 6.70-6.69 (m, 2H, pyrrole-H), 4.31 (s, 2H, CH), 3.87 (s, 12H, OCH₃), 3.73 (s, 6H, OCH₃); enol from 16.91 (br, 1H, OH), 11.88 (br, 2H, pyrrole-NH), 10.20 (br, 2H, NH), 8.03-8.02 (m, 4H, Ar-H), 7.96–7.94 (m, 4H, Ar-H), 7.27 (s, 4H, Ar-H), 7.11-7.10 (m, 2H, pyrrole-H), 6.87 (s, 1H, CH), 6.75-6.74 (m, 2H, pyrrole-H), 3.86 (s, 12H, OCH₃), 3.72 (s, 6H, OCH₃). MALDI-TOF-MS: *m/z* (% intensity): 771.2 (100), 772.2 (48). Calcd for $C_{43}H_{39}N_4O_{10}$ ([M – H]⁻): 771.27.

BF₂ complex of 1,3-bis(5-(4-(3,4,5trimethoxybenzoylamino)phenyl)pyrrol-2-yl)-1,3-pro panedione, 2b. To a CH₂Cl₂ solution (40 mL) of 2b' (20.6 mg, 0.025 mmol), BF₃·OEt₂ (13.5 μL, 0.11 mmol) was added and stirred for 45 min at room temperature. of the solvent, flash column After removal chromatography (eluent: 4.5% MeOH/CHCl₃) and crystallization from CHCl₃/hexane afforded 2b (8.3 mg, 41%) as a pale red solid. $R_f = 0.38 (5\% \text{ MeOH/CHCl}_3)$. ¹H NMR (600 MHz, DMSO- d_6 , 20 °C): δ (ppm) 12.39 (br, 2H, pyrrole-NH), 10.27 (br, 2H, NH), 7.98 (d, J = 9.0 Hz, 4H, Ar-H), 7.85 (d, J = 9.0 Hz, 4H, Ar-H), 7.48-7.47 (m, 2H, pyrrole-H), 7.30 (s, 4H, Ar-H), 7.22 (s, 1H, CH), 6.92-6.91 (m, 1H, pyrrole-H), 3.88 (s, 12H, OCH₃), 3.74 (s, 6H, OCH₃). UV/vis (CHCl₃, $\lambda_{max}[nm]$ $(\varepsilon, 10^5 \text{ M}^{-1} \text{ cm}^{-1}))$: 525.0 (0.94). MALDI-TOF-MS: m/z(% intensity): 819.3 (100), 820.3 (50). Calcd for $C_{43}H_{38}BF_2N_4O_{10}$ ([M - H]⁻): 819.27. This compound was further characterized by X-ray diffraction analysis.

1,3-Bis(5-(4-(3,4,5-tridodecyloxybenzoylamino)pheny A CH₂Cl₂ l)pyrrol-2-yl)-1,3-propanedione, 2c'. solution (20 mL) of s3c (474.4 mg, 0.58 mmol) was treated with malonyl chloride (49.3 mg, 0.35 mmol) at room temperature and stirred for 2 h at the same temperature. After confirming the consumption of the starting pyrrole by TLC analysis, the mixture was washed with saturated Na₂CO₃ aq. and water, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 2% MeOH/CH₂Cl₂) and recrystallized from CH2Cl2/MeOH to afford 2c' (212.0 mg, 43%) as a pale yellow solid. $R_f = 0.23$ (2%) MeOH/CHCl₃). ¹H NMR (600 MHz, CDCl₃, 20 °C; diketone 2c' was obtained as a mixture of keto and enol tautomers in the ratio of 1:0.41); δ (ppm) keto from 9.60 (br, 2H, pyrrole-NH), 7.77 (br, 2H, NH), 7.71-7.68 (m, 4H, Ar-H), 7.60-7.57 (m, 4H, Ar-H), 7.16-7.15 (m, 2H,

pyrrole-H), 7.04 (s, 4H, Ar-H), 6.58-6.57 (m, 2H, pyrrole-H), 4.25 (s, 2H, CH), 4.05–4.00 (m, 12H, OCH₂), 1.85-1.80 (m, 8H, OCH₂CH₂), 1.79-1.72 (m, 4H, OCH₂CH₂), 1.48–1.44 (m, 12H, OC₂H₄CH₂), 1.35–1.25 $(m, 144H, OC_{3}H_{6}C_{8}H_{16}), 0.88-0.86$ (m, 18H, 18H)OC₁₁H₂₂CH₃); enol from 16.69 (br, 1H, OH), 9.44 (br, 2H, pyrrole-NH), 7.76 (br, 2H, NH), 7.71-7.68 (m, 4H, Ar-H), 7.60-7.57 (m, 4H, Ar-H), 7.06 (s, 4H, Ar-H), 6.98-6.97 (m, 2H, pyrrole-H), 6.62-6.61 (m, 2H, pyrrole-H), 6.37 (s, 1H, CH), 4.05–4.00 (m, 12H, OCH₂), 1.85-1.80 (m, 8H, OCH₂CH₂), 1.79-1.72 (m, 4H, OCH₂CH₂), 1.48–1.44 (m, 12H, OC₂H₄CH₂), 1.35–1.25 $(m, 144H, OC_{3}H_{6}C_{8}H_{16}), 0.88-0.86$ (m, 18H, 18H)MALDI-TOF-MS: m/z (% intensity): $OC_{11}H_{22}CH_{3}$). 1696.8 (100), 1697.6 (48). Calcd for C₁₀₉H₁₇₁N₄O₁₀ ([M – H][–]): 1697.30.

BF₂ complex of 1,3-bis(5-(4-(3,4,5tridodecyloxybenzoylamino)phenyl)pyrrol-2-yl)-1,3-p ropanedione, 2c. To a CH₂Cl₂ solution (45 mL) of 2c' (138.9 mg, 0.082 mmol), BF₃·OEt₂ (100 µL, 0.81 mmol) was added and stirred for 1 h at room temperature. After removal of the solvent, silica gel column chromatography (Wakogel C-300, eluent: 2% MeOH/CH₂Cl₂) and crystallization from CHCl₃/MeOH afforded **2c** (83.2 mg, 59%) as a red solid. $R_f = 0.32$ (2% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 9.39 (br, 2H, pyrrole-NH), 8.01 (br, 2H, NH), 7.66 (d, *J* = 9.0 Hz, 2H, Ar-H), 7.49 (d, *J* = 9.0 Hz, 2H, Ar-H), 7.22-7.21 (m, 2H, pyrrole-H), 7.11 (s, 4H, Ar-H), 6.65–6.64 (m, 2H, pyrrole-H), 6.57 (s, 1H, CH), 4.04-4.00 (m, 12H, OCH₂), 1.80 (tt, J = 7.8 and 6.6 Hz, 8H, OCH_2CH_2), 1.75 (tt, J = 7.8 and 6.6 Hz, 4H, OCH2CH2), 1.49-1.45 (m, 12H, OC2H4CH2), 1.35-1.25 $(m, 96H, OC_3H_6C_8H_{16}CH_3), 0.88-0.86$ (m, 18H, 18H)UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , 10⁵ $OC_{11}H_{22}CH_3$). $M^{-1}cm^{-1}$)): 523.0 (0.77). MALDI-TOF-MS: m/z (% intensity): 1744.6 (100), 1745.6 (90). Calcd for $C_{109}H_{170}BF_2N_4O_{10}([M-H]): 1744.30.$

1,3-Bis(5-(4-(3,4,5-trihexadecyloxybenzoylamino)phe nyl)pyrrol-2yl)-1,3-propanedione, 2d'. A THF solution (3 mL) of **s3c** (201.73 mg, 0.21 mmol) was treated with malonyl chloride (16.01 mg, 0.11 mmol) at room temperature and stirred for 2 h at the same temperature. After confirming the consumption of the starting pyrrole by TLC analysis, the mixture was washed with saturated Na₂CO₃ aq. and water, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was then chromatographed over flash silica gel column (eluent: 1.5% MeOH/CH₂Cl₂) and recrystallized from CHCl₃/MeOH to afford 2d' (43.01 mg, 21%) as a pale yellow solid. $R_f = 0.26$ (1.5%) MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C; diketone 2d' was obtained as a mixture of keto and enol tautomers in the ratio of 1:0.18); δ (ppm) keto from 9.57 (br, 2H, pyrrole-NH), 7.76 (br, 2H, NH), 7.71-7.68 (m, 4H, Ar-H), 7.60-7.57 (m, 4H, Ar-H), 7.16-7.15 (m, 2H, pyrrole-H), 7.05 (s, 4H, Ar-H), 6.58-6.57 (m, 2H, pyrrole-H), 4.25 (s, 2H, CH), 4.05–4.00 (m, 12H, OCH₂), 1.85-1.80 (m, 8H, OCH₂CH₂), 1.79-1.72 (m, 4H, OCH₂CH₂), 1.48–1.44 (m, 12H, OC₂H₄CH₂), 1.35–1.25 $(m, 144H, OC_3H_6C_{12}H_{24}), 0.88-0.86$ (m, 18H, 18H)OC₁₅H₃₀CH₃); enol from 16.69 (br, 1H, OH), 9.41 (br, 2H, pyrrole-NH), 7.75 (br, 2H, NH), 7.71-7.68 (m, 4H, Ar-H), 7.60–7.57 (m, 4H, Ar-H), 7.08 (s, 4H, Ar-H), 6.98-6.97 (m, 2H, pyrrole-H), 6.62-6.61 (m, 2H, pyrrole-H), 6.36 (s, 1H, CH), 4.05-4.00 (m, 12H, OCH₂), 1.85-1.80 (m, 8H, OCH₂CH₂), 1.79-1.72 (m, 4H, OCH₂CH₂), 1.48–1.44 (m, 12H, OC₂H₄CH₂), 1.35–1.25 $(m, 144H, OC_3H_6C_{12}H_{24}), 0.88-0.86$ (m, 18H, 18H) $OC_{15}H_{30}CH_3$). MALDI-TOF-MS: m/z (% intensity): 2033.7 (100), 2034.2 (74). Calcd for C₁₃₃H₂₂₀N₄O₁₀ ([M – H][–]): 2033.68.

BF₂ complex of 1,3-bis(5-(4-(3,4,5trihexadecyloxybenzoylamino)phenyl)pyrrol-2-yl)-1,3 -propanedione, 2d. To a CH₂Cl₂ solution (4 mL) of 2d' (15.4 mg, 0.0075 mmol), BF₃·OEt₂ (6.0 µL, 0.048 mmol) was added and stirred for 1 h at room temperature. After removal of the solvent, flash silica gel column chromatography (eluent: 1% MeOH/CH₂Cl₂) and crystallization from CHCl₃/MeOH afforded 2d (5.9 mg, 37%) as a pale red solid. $R_f = 0.22$ (1%) MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 9.45 (br, 2H, pyrrole-NH), 7.94 (br, 2H, NH), 7.69 (d, J = 9.0 Hz, 2H, Ar-H), 7.54 (d, J = 9.0 Hz, 2H, Ar-H), 7.22-7.21 (m, 2H, pyrrole-H), 7.09 (s, 4H, Ar-H), 6.67-6.66 (m, 2H, pyrrole-H), 6.56 (s, 1H, CH), 4.04-4.00 (m, 12H, OCH₂), 1.81 (tt, J = 7.8 and 6.6 Hz, 8H, OCH_2CH_2), 1.75 (tt, J = 7.8 and 6.6 Hz, 4H, OCH₂CH₂), 1.49–1.45 (m, 12H, OC₂H₄CH₂), 1.35–1.25 $(m, 96H, OC_3H_6C_{12}H_{25}CH_3), 0.88-0.86$ (m, 18H, 18H)OC₁₅H₃₀CH₃). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ $M^{-1}cm^{-1}$): 524.0 (0.71). MALDI-TOF-MS: m/z (% intensity): 2081.6 (100), 2082.6 (94). Calcd for $C_{133}H_{218}BF_2N_4O_{10}([M-H]^-): 2081.68.$

Supporting Figure 2 Synthesis of dipyrrolyldiketone BF₂ complexes 3b–d.

Methyl N-(4-bromophenyl)-3,4,5-trimethoxybenzamide, s4b. The apparatus was charged with anhydrous THF (17.5 mL) of NaH as a suspension in 60% mineral oil (41.2 mg, 1.71 mmol). Benzamide s2b (398.4 mg, 1.09 mmol) in anhydrous THF (17.5 mL) was added dropwise. After 4 h, CH₃I (186.9 mg, 1.32 mmol) was added to the mixture and stirred for 5 h at the room temperature. After confirming the consumption of the starting benzamide by TLC analysis, the reaction mixture was added dropwise into H₂O (50 mL) and stirred for 30 min, and the mixture was washed with dilute HCl aq., extracted with ether, then organic layer was washed three times with dilute HCl aq., saturated NaCl aq., dried over anhydrous Na2SO4, filtered, and evaporated to dryness. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 50% EtOAc/hexane) to give s4b (238.5 mg, 58%) as a white solid. $R_f = 0.45 (50\%)$ EtOAc/hexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.39 (d, J = 9.0 Hz, 2H, Ar-H), 6.94 (d, J = 9.0 Hz, 2H, Ar-H), 6.52 (s, 2H, Ar-H), 3.80 (s, 3H, OCH₃), 3.65 (s, 6H, OCH₃), 3.47 (s, 3H, NCH₃). FAB-MS: *m/z* (% intensity): 379.5 (100), 380.5 (79). Calcd for $C_{17}H_{19}BrNO_4$ ([M]⁺): 379.04.

Methyl *N*-(4-bromophenyl)-3,4,5-tridodecyloxybenzamide, s4c. The apparatus was charged with anhydrous THF (15.0 mL) of NaH as a suspension in 60% mineral oil (45.6 mg, 1.90 mmol). Benzamide s2c (829.3 mg, 1.0 mmol) in anhydrous THF (17.0 mL) was added dropwise. After 4 h, CH₃I (170.9 mg, 1.20 mmol) was added to the mixture and stirred for 6 h at the room temperature. After confirming the consumption of the starting benzamide by TLC analysis, the reaction mixture was added dropwise into H₂O (50 mL) and stirred for 30 min, and the mixture was washed with dilute HCl aq., extracted with ether, washed three times with dilute HCl aq., saturated NaCl aq., dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: $CHCl_3/hexane = 3/4$) to give s4c (591.0 mg, 70%) as a white solid. $R_f = 0.45$ $(CHCl_3/hexane = 3/4)$. ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.35 (d, J = 9.0 Hz, 2H, Ar-H), 6.91 (d, J = 9.0 Hz, 2H, Ar-H), 6.47 (s, 2H, Ar-H), 3.89 (t, J = 6.6 Hz, 2H, OCH₂), 3.71 (t, J = 6.6 Hz, 4H, OCH₂), 3.45 (s, 3H, NCH₃), 1.69-1.64 (m, 6H, OCH₂CH₂), 1.46-1.37 6H, $OC_2H_4CH_2),$ 1.37-1.25 (m, (m, 48H, $OC_{3}H_{6}C_{8}H_{16}CH_{3}$, 0.89–0.86 (m, 9H, $OC_{15}H_{30}CH_{3}$). FAB-MS: m/z (% intensity): 841.4 (100), 842.2 (79). Calcd for $C_{17}H_{19}BrNO_4$ ([M]⁺): 841.56.

Methyl *N*-(4-bromophenyl)-3,4,5-trihexadecyloxybenzamide, s4d. The apparatus was charged with anhydrous THF (22.0 mL) of NaH as a suspension in 60% mineral oil (74.9 mg, 3.12 mmol). Benzamide

s2d (1.57 g, 1.58 mmol) in anhydrous THF (24.0 mL) was added dropwise. After 4 h, CH₃I (260.0 mg, 1.83 mmol) was added to the mixture and stirred for 12 h at the room temperature. After confirming the consumption of the starting benzamide by TLC analysis, the reaction mixture was added dropwise into H_2O (100 mL) and stirred for 30 min, and the mixture was washed with dilute HCl aq., extracted with ether, washed three times with dilute HCl aq., saturated NaCl aq., dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: $CHCl_3/hexane = 3/4$) to give s4d (1.03 g, 68%) as a white solid. $R_f = 0.40$ $(CHCl_3/hexane = 3/4)$. ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.35 (d, J = 9.0 Hz, 2H, Ar-H), 6.91 (d, J = 9.0 Hz, 2H, Ar-H), 6.47 (s, 2H, Ar-H), 3.89 (t, J =6.6 Hz, 2H, OCH₂), 3.71 (t, J = 6.6 Hz, 4H, OCH₂), 3.45 (s, 3H, NCH₃), 1.69–1.64 (m, 6H, OCH₂CH₂), 1.46–1.37 1.37-1.25 (m, 72H, 6H, $OC_2H_4\underline{CH}_2),$ (m, $OC_{3}H_{6}C_{12}H_{24}CH_{3}$, 0.89–0.86 (m, 9H, $OC_{15}H_{30}CH_{3}$). FAB-MS: m/z (% intensity): 1009.5 (100), 1010.5 (79). Calcd for $C_{17}H_{19}BrNO_4$ ([M]⁺): 1009.75.

1-*tert*-Butoxycarbonyl-2-(4-(3,4,5-trimethoxybenzoyl-*N*-methylamino)phenyl)pyrrole and 2-(4-(3,4,5trimethoxybenzoyl-*N*-methylamino)phenyl)pyrrole,

s5b. To a 1,2-dimethoxyethane solution (15 mL) of s4b (229.0)mg, 0.60 mmol), 1-tertbutoxycarbonylpyrrole-2-boronic acid (169.5 mg, 0.80 mmol), and tetrakis(triphenylphosphine)palladium(0) (44.1 mg, 0.038 mmol) at room temperature under nitrogen was added an aqueous solution (1.5 mL) of Na₂CO₃ (283.5 mg, 2.47 mmol). The mixture was heated at reflux for 6 h, cooled then partitioned between water and CH₂Cl₂. The combined extracts were dried over anhydrous Na₂SO₄, and evaporated to give a solid. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 45% EtOAc/hexane) to give s5b' (207.4 mg, 74%) as a white solid. $R_f = 0.55$ (45% EtOAc/hexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.31–7.30 (m, 1H, pyrrole-H), 7.27 (d, J = 8.4 Hz, 2H, Ar-H), 7.04 (d, J = 8.4 Hz, 2H, Ar-H), 6.60 (s, 2H, Ar-H), 6.20 (t, J = 3.0 Hz, 1H, pyrrole-H), 6.13-6.12 (m, 1H, pyrrole-H), 3.78 (s, 3H, OCH₃), 3.65 (s, 6H, OCH₃), 3.52 (s, 3H, NCH₃), 1.39 (s, 9H, Boc). MALDI-TOF-MS: m/z (% intensity): 465.3 (100), 466.3 (18). Calcd for $C_{26}H_{29}N_2O_6$ ([M – H][–]): 465.20. The product s5b' (204.8 mg, 0.44 mmol) was heated at 190 °C for 15 min. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent 50% EtOAc/hexane) to give s5b (118.0 mg, 74%) as a white solid. $R_f = 0.44$ (50%) EtOAc/hexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 8.38 (br, 1H, pyrrole-NH), 7.36 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.05 (d, J = 8.4 Hz, 2H, Ar-H), 6.87–6.86 (m, 1H, pyrrole-H), 6.58 (s, 2H, Ar-H), 6.48-6.47 (m, 1H, pyrrole-H), 6.29-6.28 (m, 1H, pyrrole-H), 6.31-6.30 (m, 1H, pyrrole-H), 3.78 (s, 3H, OCH₃), 3.62 (s, 6H, OCH₃), 3.50 (s, 3H, NCH₃). MALDI-TOF-MS: m/z (%

intensity): 365.3 (100), 366.3 (18). Calcd for $C_{21}H_{21}N_2O_4$ ([M – H]⁻): 365.15.

1-tert-Butoxycarbonyl-2-(4-(3,4,5-tridodecyloxybenzo yl-N-methylamino)phenyl)pyrrole and 2-(4-(3,4,5tridodecyloxybenzoyl-N-methylamino)phenyl)pyrrole, **s5c**. To a 1,2-dimethoxyethane solution (15 mL) of **s4c** (423.3 mg, 0.50 mmol), 1-tert-butoxycarbonylpyrrole-2-boronic acid (131.8 mg, 0.62 mmol), and tetrakis(triphenylphosphine)palladium(0) (35.6 mg, 0.030 mmol) at room temperature under nitrogen was added an aqueous solution (2.0 mL) of Na₂CO₃ (175.9 mg, 1.65 mmol). The mixture was heated at reflux for 6 h, cooled then partitioned between water and CH_2Cl_2 . The combined extracts were dried over anhydrous Na₂SO₄, and evaporated to give a solid. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 10% EtOAc/hexane) to give **s5c'** (418.2 mg, 90%) as a white solid. $R_f = 0.23$ (10%) EtOAc/hexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.31–7.30 (m, 1H, pyrrole-H), 7.22 (d, J = 8.4 Hz, 2H, Ar-H), 7.01 (d, J = 8.4 Hz, 2H, Ar-H), 6.54 (s, 2H, Ar-H), 6.23–6.22 (m, 1H, pyrrole-H), 6.09–6.08 (m, 1H, pyrrole-H), 3.88 (t, J = 6.6 Hz, 2H, OCH₂), 3.71 (t, J =6.6 Hz, 4H, OCH₂), 3.48 (s, 3H, NCH₃), 1.69–1.63 (m, 6H, OCH₂CH₂), 1.43–1.34 (m, 6H, OC₂H₄CH₂), 1.39 (s, 9H, Boc), 1.32-1.25 (m, 48H, $OC_{3}H_{6}C_{8}H_{16}CH_{3}$), 0.88-0.86 (m, 9H, OC11H22CH3). MALDI-TOF-MS: m/z (% intensity): 827.5 (100), 828.5 (37). Calcd for $C_{25}H_{27}N_2O_6$ ([M - Boc]]: 827.16. The product s5c' (410.2 mg, 0.44 mmol) was heated at 190 °C for 20 min. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: CHCl₃) to give s5c (332.4 mg, 90%) as a white solid. $R_f = 0.18$ (CHCl₃). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 8.34 (br, 1H, pyrrole-NH), 7.31 (d, J = 8.4 Hz, 2H, Ar-H), 7.01 (d, J = 8.4 Hz, 2H, Ar-H), 6.85–6.84 (m, 1H, pyrrole-H), 6.52 (s, 2H, Ar-H), 6.46-6.44 (m, 1H, pyrrole-H), 6.28–6.26 (m, 1H, pyrrole-H), 3.87 (t, J = 6.6 Hz, 2H, OCH_2), 3.70 (t, J = 6.6 Hz, 4H, OCH_2), 3.48 (s, 3H, NCH₃), 1.67–1.61 (m, 6H, OCH₂CH₂), 1.40–1.37 (m, 6H, OC₂H₄CH₂), 1.33–1.24 (m, 48H, OC₃H₆C₈H₁₆CH₃), 0.88–0.86 (m, 9H, OC₁₁H₂₂CH₃). MALDI-TOF-MS: m/z (% intensity): 827.6 (100), 828.8 (29). Calcd for $C_{54}H_{87}N_2O_4$ ([M – H]⁻): 827.67.

1- tert-Butoxycarbonyl-2-(4-(3,4,5-trihexadecyloxybe nzoyl-N-methylamino)phenyl)pyrrole and 2-(4-(3,4,5trihexadecyloxybenzoyl-N-methylamino)phenyl)pyrr ole, s5d. To a 1,2-dimethoxyethane solution (15 mL) of s4d (506.0 mg, 0.50 mmol), 1-tert-butoxycarbonylpyrrole-2-boronic acid (131.8 mg, 0.62 mmol), and tetrakis(triphenylphosphine)palladium(0) (33.0 mg. 0.028 mmol) at room temperature under nitrogen was added an aqueous solution (2.0 mL) of Na₂CO₃ (239.7 mg, 2.25 mmol). The mixture was heated at reflux for 7 h, cooled then partitioned between water and CH₂Cl₂. The combined extracts were dried over anhydrous Na₂SO₄, and evaporated to give a solid. The residue was then chromatographed over silica gel column

(Wakogel C-300, eluent: 12.5% EtOAc/hexane) to give s5d' (504.0 mg, 92%) as a white solid. $R_f = 0.23$ (12.5% EtOAc/hexane). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 7.32–7.31 (m, 1H, pyrrole-H), 7.22 (d, J = 8.4 Hz, 2H, Ar-H), 7.01 (d, J = 8.4 Hz, 2H, Ar-H), 6.54 (s, 2H, Ar-H), 6.19 (t, J = 3.0 Hz, 1H, pyrrole-H), 6.09–6.08 (m, 1H, pyrrole-H), 3.88 (t, J = 6.6 Hz, 2H, OCH₂), 3.71 (t, J = 6.6 Hz, 4H, OCH₂), 3.48 (s, 3H, NCH₃), 1.69–1.63 (m, 6H, OCH₂CH₂), 1.40–1.35 (m, 6H, OC₂H₄CH₂), 1.39 (s, 9H, Boc), 1.30-1.29 (m, 72H, $OC_{3}H_{6}C_{12}H_{24}CH_{3}$, 0.88–0.86 (m, 9H, $OC_{15}H_{30}CH_{3}$). MALDI-TOF-MS: m/z (% intensity): 995.4 (100), 996.4 (68). Calcd for $C_{66}H_{111}N_2O_4$ ([M - Boc]⁻): 995.85. The product s5d' (500.0 mg, 0.45 mmol) was heated at 190 °C for 20 min. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: CHCl₃) to give s5d as a white solid (366.2 mg, 80%). $R_f = 0.20$ (CHCl₃). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 8.34 (br, 1H, pyrrole-NH), 7.31 (d, J = 8.4 Hz, 2H, Ar-H), 7.01 (d, J = 8.4 Hz, 2H, Ar-H), 6.85–6.84 (m, 1H, pyrrole-H), 6.52 (s, 2H, Ar-H), 6.46-6.44 (m, 1H, pyrrole-H), 6.28-6.26 (m, 1H, pyrrole-H), 3.87 (t, J = 6.6 Hz, 2H, OCH₂), 3.70 (t, J =6.6 Hz, 4H, OCH₂), 3.48 (s, 3H, NCH₃), 1.67–1.61 (m, 6H, OCH₂<u>CH</u>₂), 1.40–1.37 (m, 6H, OC₂H₄<u>CH</u>₂), 1.33–1.24 (m, 72H, $OC_3H_6\underline{C_{12}H_{24}}CH_3$), 0.88–0.86 (m, 9H, $OC_{15}H_{30}CH_{3}$). MALDI-TOF-MS: m/z(% intensity): 995.5 (100), 996.5 (66). Calcd for C₆₆H₁₁₁N₂O₄ ([M – H]⁻): 995.85

1,3-Bis(5-(4-(3,4,5-trimethoxybenzoyl-N-methylamin

o)phenyl)pyrrol-2-yl)-1,3-propanedione, 3b'. Α CH₂Cl₂ solution (8 mL) of **s5b** (58.0 mg, 0.16 mmol) was treated with malonyl chloride (12.3 mg, 0.087 mmol) at room temperature and stirred for 3 h at the same temperature. After confirming the consumption of the starting pyrrole by TLC analysis, the mixture was washed with saturated Na₂CO₃ aq. and water, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 4% MeOH/CHCl₃) and recrystallized from CHCl₃/hexane to afford **3b'** (24.8 mg, 39%) as a pale yellow solid. $R_f = 0.25$ (4%) MeOH/CHCl₃). ¹H NMR (600 MHz, CDCl₃, 20 °C; diketone **3b'** was obtained as a mixture of keto and enol tautomers in the ratio of 1:0.12): δ (ppm) keto from 9.51 (br, 2H, pyrrole-NH), 7.46, (d, J = 8.4 Hz, 4H, Ar-H), 7.12–7.11 (m, 2H, pyrrole-H), 7.11 (d, J = 8.4 Hz, 4H, Ar-H), 6.56 (s, 2H, Ar-H), 6.54–6.53 (m, 2H, pyrrole-H), 4.23 (s, 2H, CH), 3.78 (s, 6H, OCH₃), 3.62 (s, 12H, OCH₃), 3.51 (s, 6H, NCH₃); enol from 16.7 (br, 1H, OH), 9.38 (br, 2H, pyrrole-NH), 7.47 (d, J = 8.4 Hz, 4H, Ar-H), 6.95–6.94 (m, 2H, pyrrole-H), 6.58–6.57 (m, 2H, pyrrole-H), 7.10 (d, J = 8.4 Hz, 4H, Ar-H), 6.34 (s, 1H, CH), 3.79 (s, 6H, OCH₃), 3.64 (s, 12H, OCH₃), 3.52 (s, 6H, NCH₃). MALDI-TOF-MS: m/z (% intensity): 799.7 (100), 800.7 (51). Calcd for C₄₅H₄₃N₄O₁₀ ([M -H]⁻): 799.29.

BF₂ complex of 1,3-bis(5-(4-(3,4,5trimethoxybenzoyl-N-methylamino)phenyl)pyrrol-2yl)-1,3-propanedione, 3b. To a CH₂Cl₂ solution (15 mL) of 3b' (16.7 mg, 0.021 mmol), BF₃·OEt₂ (26.0 μL, 0.21 mmol) was added and stirred for 40 min at room temperature. After removal of the solvent, silica gel column chromatography (Wakogel C-300, eluent: 5% MeOH/CH₂Cl₂) and crystallization from CH₂Cl₂/hexane afforded **3b** (12.8 mg, 72%) as a pale yellow solid. R_f $= 0.38 (5\% \text{ MeOH/CH}_2\text{Cl}_2).$ ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 9.62 (br, 2H, pyrrole-NH), 7.53 (d, *J* = 8.4 Hz, 4H, Ar-H), 7.21–7.20 (m, 2H, pyrrole-H), 6.68-6.67 (m, 1H, pyrrole-H), 6.58 (s, 4H, Ar-H), 6.53 (s, 1H, CH), 3.79 (s, 6H, OCH₃), 3.65 (s, 12H, OCH₃), 3.54 (s, 6H, NCH₃). UV/vis (CH₂Cl₂, λ_{max} [nm] (ϵ , 10⁵ $M^{-1}cm^{-1}$): 515.0 (0.87). MALDI-TOF-MS: m/z (% intensity): 847.8 (100), 848.8 (90). Calcd for $C_{45}H_{42}BF_2N_4O_{10}([M-H]^-): 847.30.$

BF, complex of 1,3-bis(5-(4-(3,4,5tridodecyloxybenzoyl-N-methylamino)phenyl)pyrrol-2-yl)-1,3-propanedione, 3c. A CH₂Cl₂ solution (20 mL) of s5c (332.4 mg, 0.40 mmol) was treated with malonyl chloride (31.2 mg, 0.22 mmol) at room temperature and stirred for 5 h at the same temperature. After confirming the consumption of the starting pyrrole by TLC analysis, the mixture was washed with saturated Na₂CO₃ aq. and water, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was then chromatographed over silica gel column (Wakogel C-300, eluent: 2.5% MeOH/CH₂Cl₂) and recrystallized from CHCl₃/MeOH to afford crude 1,3-bis(5-(4-(3,4,5tridodecyloxybenzoyl-N-amino)phenyl)pyrrol-2-yl)-1,3propanedione 3c' (153.3 mg) as a pale yellow solid. R_f = 0.25 (2.5% MeOH/CH₂Cl₂). MALDI-TOF-MS: m/z(% intensity): 1724.8 (100), 1725.9 (50). Calcd for $C_{111}H_{175}N_4O_{10}$ ([M - H]⁻): 1725.33. The crude **3c'** in CH₂Cl₂ solution (40 mL) was treated with BF₃·OEt₂ (84 µL, 0.68 mmol) stirred for 1 h at room temperature. After removal of the solvent, silica gel column chromatography (Wakogel C-300, eluent: 2.5% MeOH/CH₂Cl₂) and crystallization from CHCl₃/ice MeOH afforded **3c** (104.2 mg, 33%) as a red solid. R_f $= 0.37 (2.5\% \text{ MeOH/CH}_2\text{Cl}_2)$. ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 9.65 (br, 2H, pyrrole-NH), 7.51 (d, *J* = 8.4 Hz, 4H, Ar-H), 7.19–7.18 (m, 2H, pyrrole-H), 7.13 (d, J = 8.4 Hz, 4H, Ar-H), 6.66–6.65 (m, 2H, pyrrole-H), 6.53 (s, 4H, Ar-H), 6.52 (s, 1H, CH), 3.88 (m, 4H, OCH₂), 3.72 (m, 8H, OCH₂), 3.49 (s, 6H, NCH₃), 1.68-1.63 (m, 12H, OCH₂CH₂), 1.49-1.38 (m, 4H, OCH₂CH₂), 1.33–1.31 (m, 12H, OC₂H₄CH₂), 1.28–1.24 (m, 96H, OC₃H₆C₈H₁₆CH₃), 0.88–0.86 (m, 18H, OC₁₁H₂₂<u>CH₃</u>). UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , 10⁵ $M^{-1}cm^{-1}$): 513.0 (0.97). MALDI-TOF-MS: m/z (% intensity): 1772.7 (100), 1773.7 (73). Calcd for $C_{111}H_{174}BF_2N_4O_{10}([M-H]^-): 1773.33.$

BF₂ **complex of 1,3-bis(5-(4-(3,4,5-trihexadecyloxybenzoyl-***N***-methylamino)phenyl)pyrr ol-2-yl)-1,3-propanedione, 3d.** A CH₂Cl₂ solution (14

mL) of s5d (358.0 mg, 0.36 mmol) was treated with malonyl chloride (30.5 mg, 0.21 mmol) at room temperature and stirred for 3 h at the same temperature. After confirming the consumption of the starting pyrrole by TLC analysis, the mixture was washed with saturated Na₂CO₃ aq. and water, dried over anhydrous Na₂SO₄, filtered, and evaporated to dryness. The residue was then chromatographed over silica gel column (eluent: MeOH/CH₂Cl₂) 1.5% and recrystallized from CHCl₃/MeOH to afford crude 1,3-bis(5-(4-(3,4,5trihexadecyloxybenzoyl-N-amino)phenyl)pyrrol-2-yl)-1, 3-propanedione 3d' (111.2 mg) as a pale yellow solid. $R_f = 0.18$ (1.5% MeOH/CH₂Cl₂). MALDI-TOF-MS: *m/z* (% intensity): 2060.6 (100), 2061.6 (72). Calcd for $C_{135}H_{222}N_4O_{10}$ ([M - H]⁻): 2060.70. The crude **3d'** in CH₂Cl₂ solution (35 mL) was treated with BF₃·OEt₂ (66 µL, 0.54 mmol) stirred for 1 h at room temperature. After removal of the solvent, silica gel column chromatography (Wakogel C-300, eluent: 2% MeOH/CH₂Cl₂) and crystallization from CH₂Cl₂/MeOH

afforded **3d** (72.0 mg, 20%) as a red solid. $R_f = 0.44$ ¹H NMR (600 MHz, CDCl₃, $(2\% \text{ MeOH/CH}_2\text{Cl}_2).$ 20 °C): δ (ppm) 9.63 (br, 2H, pyrrole-NH), 7.51 (d, J =8.4 Hz, 4H, Ar-H), 7.19-7.18 (m, 2H, pyrrole-H), 7.13 (d, J = 8.4 Hz, 4H, Ar-H), 6.66-6.65 (m, 2H, pyrrole-H),6.53 (s, 4H, Ar-H), 6.52 (s, 1H, CH), 3.88 (m, 4H, OCH₂), 3.72 (m, 8H, OCH₂), 3.49 (s, 6H, NCH₃), 1.68-1.63 (m, 12H, OCH2CH2), 1.49-1.38 (m, 4H, OCH₂CH₂), 1.33-1.31 (m, 12H, OC₂H₄CH₂), 1.28-1.24 $(m, 96H, OC_{3}H_{6}C_{12}H_{24}CH_{3}), 0.88-0.86$ (m, 18H, 18H)OC₁₅H₃₀CH₃). UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , 10⁵ $M^{-1}cm^{-1}$)): 513.0 (0.95). MALDI-TOF-MS: m/z (% intensity): 2109.5 (100), 2110.5 (94). Calcd for $C_{113}H_{174}BF_2N_4O_{10}([M-H]^-): 2109.71.$

[S1] G. Johansson, V. Percec, G. Ungar and D. Abramic, J. Chem. Soc., Perkin Trans 1, 1994, 447.

[S2] H. Maeda, Y. Haketa and T. Nakanishi, J. Am. Chem. Soc., 2007, **129**, 13661.

2. X-ray crystallographic data

Single-crystal X-ray analysis. Crystallographic data for a pyrrole derivative s5b and BF_2 complexes 2b and 3b are summarized in Supporting Table 1. A single crystal of s5b was obtained by vapor diffusion of hexane into CH_2Cl_2 solution of s5b. The data crystal was a colorless prism of approximate dimensions 0.50 mm \times 0.30 mm \times 0.05 mm. Data was collected at 123 K on a Rigaku RAXIS-RAPID diffractometer with graphite monochromated Mo-Ka radiation ($\lambda = 0.71075$ Å), structure was solved by direct method. A single crystal of 2b was obtained by vapor diffusion of hexane into an acetone solution of 2b. The data crystal was a red-colored prism of approximate dimensions 0.45 mm × 0.10 mm × 0.07 mm. Data was collected at 123 K on a Rigaku RAXIS-RAPID diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71075$ Å), structure was solved by direct method. In each case, the non-hydrogen atoms were refined anisotropically. A single crystal of 3b was obtained by vapor diffusion of heptane into $CHCl_3$ solution of **3b**. The data crystal was a red-colored prism of approximate dimensions 0.30 mm × 0.20 mm × 0.10 mm. Data was collected at 93 K on a Rigaku RAXIS-RAPID diffractometer with graphite monochromated Cu-K α radiation ($\lambda = 1.54187$ Å), structure was solved by direct method. In each case, the non-hydrogen atoms were refined anisotropically. The calculations were performed using the Crystal Structure crystallographic software package of Molecular Structure Corporation.^[S3] The scattering arising from the presence of disordered solvents in the crystals was removed by use of the utility SQUEEZE in the PLATON software package.^[S4] CIF files (CCDC-824850-824852) can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

	S5b	2b	3b
formula	$C_{21}H_{22}N_2O_4$	$C_{43}H_{39}N_4O_{11}BF_2{\cdot}0.5C_3H_6O$	$C_{45}H_{43}N_4O_{10}BF_2$
		·water	
fw	366.41	865.63	848.64
crystal size, mm	$0.50\times0.30\times0.05$	$0.45\times0.10\times0.07$	$0.30 \times 0.20 \times 0.10$
crystal system	orthorhombic	triclinic	monoclinic
space group	Pbca (no. 61)	P-1 (no. 2)	$P2_1/c$ (no. 14)
<i>a</i> , Å	9.166(2)	10.755(3)	22.3431(4)
<i>b</i> , Å	17.124(4)	16.694(6)	21.4597(4)
<i>c</i> , Å	23.657(5)	23.830(9)	24.7703(5)
α, °	90	91.432(14)	90
<i>β</i> , °	90	99.301(12)	105.6660(8)
γ, °	90	103.498(11)	90
<i>V</i> , Å ³	3713.3(15)	4097(2)	11435.6(4)
$ ho_{ m calcd},~ m gcm^{-3}$	1.311	1.412	0.986
Ζ	8	2	8
Т, К	123(2)	123(2)	93(2)
μ , mm ⁻¹	0.091 (Mo-Kα)	0.107 (Mo-Kα)	0.619 (Cu-Kα)
no. of reflns	32797	29879	157385
no. of unique reflns	4241	14024	16887
variables	248	1094	1142
λ, Å	0.71075 (Mo-Kα)	0.71075 (Mo-Kα)	1.54187 (Cu-Kα)
$R_1 (I > 2\sigma(I))$	0.0391	0.0897	0.1076
$wR_2 (I > 2\sigma(I))$	0.0935	0.1657	0.2759
GOF	1.050	0.801	0.914

Supporting Table	 Crystallograph 	ic details for con	npounds s5b, 2b, and 3b.
------------------	------------------------------------	--------------------	--------------------------

Supporting Figure 3 ORTEP drawings (top and side view) of single-crystal X-ray structures of (a) **s5b**, (b) **2b** (two independent structures (i) and (ii)), and (c) **3b** (two independent structures (i) and (ii)). Thermal ellipsoids are scaled to the 50% probability level.

Supporting Figure 4 Assembled structures of (a) **2b** ((i) dimeric structure and (ii, iii) two kinds of stacking structures (top and side view), and (iv) assembled structures) and (b) **3b** ((i) assembled structure and (ii) packing diagram) in the solid state: Atom color code: brown, pink, yellow, green, blue, and red represent carbon, hydrogen, boron, fluorine, nitrogen, and oxygen, respectively.

- [S3] CrystalStructure (Ver. 3.8), Single Crystal Structure Analysis Software, Rigaku/MSC and Rigaku Corporation, 2006.
- [S4] (a) A. L. Spek, *PLATON, A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, 2005. (b) P. van der Sluis, A. L. Spek, *Acta Crystallogr. Sect. A*, 1990, 46, 194.

3. Optimization of anion receptors

DFT and AM1 calculation. Ab initio calculations of anion receptors were carried out by using Gaussian 03 program^[S5] and an HP Compaq dc5100 SFF computer. The structures were optimized, and the total electronic energies were calculated at the B3LYP level using a 6-31G(d,p) basis set for **2b** and **3b** and at AM1 level for **2d** and **3d**.

Supporting Figure 5 Optimized structures of (a) **2b**, (b) **3b** (six conformations according to the orientation of amide moieties for each compound) at B3LYP/6-31G(d,p) level, and (c) **2d** and **3d** at AM1 level. As observed in (a) and (b), the relative stabilities according to the orientations of amide moieties suggest that amide-NH **2b** and amide-N-methyl **3b** prefer *trans*- and *cis*-conformations, respectively.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011


```
Supporting Figure 5 (Continued).
```

Cartesian Coordination of 2b-1

-2858.0781581 hartree

H,0.702452321,-0.0713424892,3.5166150156 H,-1.9030248244,-0.9086505679,16.3570628367 H,-0.3184352584,-1.2386055394,17.1295692739 H,-0.0985932901,1.7887848487,-13.7302856519 H,3.3334745835,-1.8901954751,16.9256140065 H,3.2132415686,-0.6467601312,15.6500128262 H.3.624371194 -2.3323562121 15 2215664666 H,2.670005007,-1.1521113741,13.4294123778 H,-1.1010588513,-1.5446868521,11.3914503805 H,-3.020162893,-0.0468626695,-11.1569520006 H,-1.9475750692,1.2088473421,-9.8803915151 H,0.253000171,-1.7514539903,9.8868326371 H,0.0142243759,0.6316921393,-3.5991495791 H,4.403498713,1.115325143,1.924545514 H,3.1329588497,1.2536132404,-0.2126566035 H,-1.7784109548,3.1679867652,-17.3405498914 H,-2.0617071893,3.8236954505,-15.7061419301 H,-3.3119697951,2.8111767221,-16.4939493762 H,-5.0642321927,-0.2589958837,-16.9401170427 H,-4.7306309867,-1.1805395863,-15.4486806441 H.-3.3903499162,-0.7540985328,-16.561339693 H,3.948681621,1.6470640859,-2.5374608967 H,3.7134741769,1.8605942837,-5.2103343525 H,-6.3905570574,-1.0122151122,-12.001290398 H,-5.3544349809,0.0982054737,-11.067219398 H,-4.7556888126,-1.5286024803,-11.5097970669 H,0.4913286275,-1.3926542031,5.3624946817 H,-0.1332788342,-1.9151378215,7.6646854446 H,3.1739594002,0.4113414431,9.1255858442 H,3.7717519093,0.9927695821,6.8058636445 H,2.7992727206,0.9240237042,-7.2731767641 H.1.7300115154.0.8792656316.-9.4940535693 H,-2.1106971639,1.3808481506,-7.6279657891

N,0.9637675932,0.9591095111,-3.700603336 N,1.0525814169,-1.136782467,9.8531393713 N,-0.9501664735,1.0673675622,-9.9436796734 N,1.6897474611,0.1356820538,3.477699663 O,0.3211477137,0.1231058933,1.1846224315 O,-4.1932323254,0.8412199239,-15.4742051655 O,1.648934702,-2.0237744609,15.828363912 O,-2.4401714611,-2.3476864386,13.4053335044 O,2.6875688789,-0.2152123695,11.1772172691 O,0.0759304558,0.4045675711,-1.2466476356 O,-4.9216727554,-0.1718144187,-13.0927122141 O,-0.970934562,-2.6823314707,15.7621599843 O,0.7656881074,0.9878468139,-11.4716520557 O,-1.5925043713,1.7931795365,-15.863875632 H.4.705582876,0.7360525845,4.5718943774 H,-1.0505211948,1.488530679,-5.4304801438 H,-2.4190120467,-4.371278361,12.8798897455 H,-3.9318930503,-3.71047524,13.5563948094 H,-2.5447193256,-4.0407603651,14.6349775881 H,-1.7504716957,-2.2071485916,17.573502818 B,-0.6772562817,0.2697412461,0.0580068725 C.1.632702567.-0.8322323844.11.0684687629 C,-1.0969931853,1.4005882403,-13.569504825 C,-0.4342947028,0.9877628668,-11.2250960604 C,-3.6628276397,0.3461446625,-13.1703827512 C,-2.7522292055,0.3880724797,-12.1121225822 C,-0.4694333672,-1.6675434019,12.2651338613 C,-1.0900333036,-2.1070818538,13.4383062671 C,-0.3571710889,-2.2177555216,14.6284485423 C,1.0164380799,-1.8830521533,14.6301280301 C,1.626449578,-1.4359850796,13.4595486105 C,0.8872806535,-1.332442096,12.272868249 C.-1.4671983363.0.9216654244.-12.3135331552 C,3.0329246552,-1.7004003301,15.8946461676 C,3.6388964031,0.8079066999,2.6234630401

C,2.3112847544,0.5070847101,2.3043863805 C,2.5612145278,0.1991171854,4.5269686294 C,1.5647398733,0.5267637728,1.0771552307 C,2.1075299109,0.9198617312,-0.1478951969 C,1.3250785452,0.8023228885,-1.2981183179 C,-2.2374125818,2.9683188715,-16.3705308099 C,-4.3441252226,-0.4216383341,-16.1361647175 C,1.8133747398,1.0767137996,-2.6212514709 C,3.0612864662,1.4571556641,-3.1240238329 C,2.9419894001,1.5571697164,-4.5178327415 C,1.619947437,1.2391170541,-4.8647065304 C,-5.3646245488,-0.6783989296,-11.8424764703 C,2.1820736028,-0.1433871227,5.8948021147 C,0.9674962069,1.2011799393,-6.1705106789 C,1.0749005456,-0.9651689966,6.1725792967 C,0.7262715146,-1.275404669,7.4787724739 C,1.4761765396,-0.7844516248,8.5607907537 C,2.5908065899,0.0308555575,8.2999413596 C,2.9230638726,0.3407293865,6.9867985658 C,1.7224771776,1.0401363192,-7.3452412982 C,1.1322403206,1.0004769608,-8.6025889499 C,-0.2635268493,1.1161642801,-8.7187462186 C,-1.0305218195,1.2786557762,-7.552886941 C,-0.4270879444,1.3252692277,-6.304752459 C,-2.8435134166,-3.7028135149,13.639864691 C,-1.2442155294,-1.6873449642,16.7581733278 C,-2.0063422127,1.3667232191,-14.6286695692 C,-3.2938685711,0.8429807243,-14.4394596289 F,-1.4327453375,-0.86666670338,0.0022184572 F,-1.4046718132,1.4153266101,0.263888407 C, 3. 7940466425, 0. 6191689073, 4. 0043006037

Cartesian Coordination of 2b-2 -2858 0778879 hartree

H 3 5975363483 -0 4955193928 -0 0160027959 H,9.3110203046,-2.5275130417,-1.0014845542 H,7.8521090418,0.9770293101,1.0168593579 H,5.5804647842,0.0802806833,0.9730225962 H,-15.2489023183,-1.5660881162,1.8169964657 H,-16.4942030158,-2.1798877126,0.6961509567 H,-16.593139711,-0.5011296273,1.3028516956 H.-16.7769332504.1.5755327835.-1.6709198069 H,-16.5184242712,3.2124477473,-0.985443787 H,-17.943253423,2.2530998794,-0.5005542138 H,-10.7289411394,-0.9867310315,0.3686833678 H,10.060303175,0.7537125403,0.5644847691 H,-3.6005115279,-0.5044498162,0.0386073134 H,13.7570592567,-1.4005530677,0.0219746541 H,11.3270767522,2.1332347382,-0.3462290423 H,-12.6246129723,-1.0374502833,-0.3625350427 H,-11.896864083,3.1757334145,0.1325093529 H,-14.3951184119,5.7589427887,0.6822989851 H,-13.1677712342,5.0665260033,-0.4139214798 H,-13.0203870895,4.840168137,1.3526527707 H,-2.2452525288,-4.4611699291,-0.3580582255 H,0.002313358,-3.4289676142,-0.2183507409 H,17.6108525695,-0.5541560281,1.5005397137 H,16.0699718819,-0.4392209921,2.391601226 H,16.8849828247,1.0486513124,1.8163294 H,17.2387317841,3.7785255426,-0.4465385587

H,15.6513306207,3.8943616722,-1.2537113892 H,16.6640990781,2.4298429246,-1.4670488659 H,2.2611731607,-4.4651267199,-0.3253368675 H,4.9527522417,-4.477434493,-0.3282584859 H,12.4009713517,5.5678885737,-0.1288958823 H,11.4665746758,4.2529544966,0.6306657395 H,11.7207767373,4.2656844955,-1.1402198953 N,-3.6326439791,-1.5035952023,-0.1034258406 N,10.0197713492,-0.1273851086,0.0737570358 N,-10.0778805763,-0.2990650386,0.0202467012 N,3.6360790362,-1.5036522063,-0.0523984832 O,1.2376787431,-0.340330252,0.0402557816 O,-9.9101191652,1.9252582933,-0.5271470395 O,-15.1634696534,-0.9209197301,-0.1698158736 O,16.0146416721,-0.1372841148,0.3242699725 O,15.7933382584,2.6489338109,0.4212574754 O,-1.2312170739,-0.3376129399,0.0201573833 O,-14.5642736888,3.7656069266,0.4422611678 O,11.3705116548,-1.7825085473,-0.775220802 O,-16.2081846915,1.6229924804,0.3401196254 O.13.4153101872.3.8334654777.0.0065974808 H,-4.9361315029,-4.4830233658,-0.3827229738 H,-5.58676383,0.2293636933,-0.8293724911 H,-7.8729278065,1.121769375,-0.7188403755 H -9.2892831276 -2.711998199.0.6151146462 H,-7.0005595209,-3.5899793056,0.5657687483 H,7.0104404621,-3.4085202346,-1.1047251749 B,0.0030775513,0.5263402614,0.1558259016 C,-8.7418395597,-0.7283060389,-0.0468343189 C,-7.6762806407,0.0957347961,-0.444866838 C,-8.4741754842,-2.0636784199,0.3018253673 C 14 6825694455 1 8726457512 0 2136753695 C,14.7927146083,0.4742027902,0.2153317483 C,-16.8893620733,2.2042032272,-0.7801270109 C,-15.9176390242,-1.3001592854,0.9882837364 C,6.3783695562,-0.4923714719,0.5092350761 C,7.6697331072,0.0127485385,0.5480800068 C,8.7436738059,-0.7114262559,0.0038792244 C.8.4904189166.-1.9622673533.-0.5845781641 C,7.190679775,-2.4520562316,-0.6242464563 C,-7.1817273912,-2.5631334667,0.2651217018 C,-10.5991013844,0.9549835844,-0.2293726383 C,13.659276281,-0.3218888018,0.0380828224 C,11.237235074,-0.6521270507,-0.3220595202 C,13.4171287316,2.4701367762,0.025992726 C,12.2852818571,1.6698446119,-0.1451542329 C,-12.961258533,-0.0276744299,-0.1517862082 C,-14.3395808458,0.1662053404,-0.021278712 C,-14.858067293,1.4535982585,0.177480879 C,-13.9733596711,2.554302169,0.2453242213 C,-12.6012207441,2.3551184015,0.1042958318 C,-12.0907801876,1.0636979073,-0.0879438343 C,12.40839277,0.2693557566,-0.1340152192 C,-13.7265136521,4.9134400304,0.517100523 C,-2.8978385691,-3.6039556095,-0.2751896688 C,-2.489412922,-2.2719612209,-0.1606424365 C,-4.7465938291,-2.2905613691,-0.1665787513 C,-1.1989417054,-1.6431067322,-0.0872190635 C,0.0026130675,-2.3524768233,-0.1289464159 C,1.2046955364,-1.6459709263,-0.0685982045

 $\begin{array}{l} C,16.6748461415,0.0004960837,1.5886406115\\ C,16.3597870484,3.2165014776,-0.767367054\\ C,2.4958749356,-2.2750759799,-0.1248913298\\ C,2.9099703126,-3.6036964875,-0.2575189921\\ C,4.3125154089,-3.609382096,-0.2700501695\\ C,4.7533767484,-2.2836022132,-0.1410554518\\ C,12.1750316377,4.5018357082,-0.1695719509\\ C,-6.1033645329,-1.7516616285,-0.1306165415\\ C,6.1067777174,-1.7381818901,-0.0843692181\\ C,-6.3860534219,-0.42132489,-0.4858485922\\ F,0.0131232475,1.4291679649,-0.8725124768\\ F,-0.0057001278,1.1026561713,1.3986399769\\ C,-4.3001453898,-3.6163175401,-0.2768487492\end{array}$

Cartesian Coordination of 2b-3

-2858.0773828 hartree

H,-4.925601846,-4.4751639497,-0.4615351626 H,-15.2696634342,-1.6159383778,1.7070645467 H,15.6984351802,-2.7398226036,0.1239361885 H,14.1399852189,-2.3974566433,-0.6718396919 H,14.2809926471,-2.2880119285,1.1081600594 H,17.9776951529,1.9189013433,0.664487198 H,16.8649989989,0.7834815783,1.4753535857 H,16.5971662394,2.552343796,1.6050759384 H,15.3401172245,5.342947361,-1.2278937556 H,14.2712672326,4.2670035196,-2.1669468764 H,-2.2349232041,-4.4490746979,-0.3880305033 H,-3.607156723,-0.511049786,0.119180407 H,0.0092544559,-3.4205748895,-0.1049015249 H,2.2632890737,-4.4232414218,-0.4024903375 H,4.9534537535,-4.4183457721,-0.4955251074 H,3.5904004251,-0.460428613,0.0232512926 H.-5.5784476336,0.2444526248,-0.7759334886 H,-7.8681123848,1.1301569403,-0.680952716 H,-9.2994007928,-2.7404856961,0.5245080232 H,-7.0083069065,-3.6137955291,0.4890449252 H,6.9752496404,-3.3179761904,-1.3011909518 H,9.2590296412,-2.4272870937,-1.2425435316 H,7.8875830507,1.0093796762,0.9469151001 H,5.6098386669,0.09170708,0.9447220048 H,-10.7365122632,-1.0092516762,0.3091192677 H,10.7112460538,-0.7903654214,-0.6570793069 H,-11.9051257674,3.157581111,0.1454706248 H,-12.6258016854,-1.0459041329,-0.4353731037 H,12.5558928609,-0.9780820287,0.3102028015 H,11.9224150019,3.2741318967,0.1053820467 H,-14.4098912777,5.7294536022,0.7180403266 H,-13.1704031386,5.058129059,-0.3776291699 H,-13.0421942787,4.7984635925,1.3858975471 N,-3.6343492926,-1.50461339,-0.0588789069 N,10.0682207548,-0.2004133568,-0.1498193004 N,-10.0823650419,-0.3132515128,-0.016116245 N,3.6319226642,-1.4660777759,-0.0580784627 O,1.2230648685,-0.3205937879,0.1157587168 O.-9.9112887549,1.9225135523,-0.5132182033 O,15.2531017339,-0.7781307012,0.0368264862 O,-14.5756827113,3.7409898486,0.4385253087 O,16.1854127307,1.7189616972,-0.2675250338 O.-1.2374512963.-0.3333015779.0.1115870452 O,14.4466247642,3.9027226838,-0.1166190471

O,9.9025096521,1.8867685033,0.7993113083 O,-16.2176614911,1.599588049,0.2792379303 O,-15.1664524143,-0.9336432398,-0.2664529585 H,15.8791974074,3.6868436927,-1.6305438385 H,-17.9445772464,2.245740969,-0.565828075 H,-16.7641772512,1.5972611722,-1.7384708672 H,-16.5163613263,3.2184729851,-1.0128857285 H,-16.5050537704,-2.2082340277,0.5638692966 H,-16.6090434973,-0.5410535344,1.2009749017 B,-0.0120373962,0.4806313064,0.4686723773 C,-2.8913740688,-3.5968583722,-0.2862241584 C,-2.4883851619,-2.2687420472,-0.118766203 C,-4.744925149,-2.2909901603,-0.1688249378 C,-1.2021092138,-1.6391462076,0.0011063026 C,0.0034319687,-2.34384237,-0.0174672502 C,1.2011158515,-1.6265014221,0.0027079839 C,15.0197821109,4.3086339071,-1.3657999231 C,16.9395108153,1.7421870784,0.9515037187 C,2.4942344548,-2.2420222711,-0.1209515778 C,2.9101482775,-3.5616207662,-0.3203077029 C,4.3113057849,-3.5572040547,-0.3811792227 C,4.7493546994,-2.2342304849,-0.2167322848 C,14.8026568622,-2.1187396294,0.1575195303 C,-6.1032571019,-1.7555183643,-0.1406867241 C,6.1023287676,-1.6853474778,-0.1869374246 C,-6.3823338784,-0.4162886799,-0.4638255705 C,-7.6740871694,0.0975455992,-0.430897392 C,-8.7445349252,-0.7385299518,-0.0731007782 C,-8.480276554,-2.0826577557,0.2431127378 C,-7.1865173419,-2.5792627826,0.2140424586 C,7.1661456267,-2.3800155855,-0.7898773444 C,8.4555883902,-1.8718319105,-0.7639462179 C,8.7345532065,-0.6430528233,-0.140713194 C,7.6832054327,0.0646980649,0.4646946003 C,6.3961999598,-0.4611525895,0.4385520979 C,-15.9309499573,-1.3343234066,0.8775461394 C,-16.8875833064,2.2052085008,-0.8348386565 C,13.964238245,2.6198645809,-0.0714167429 C,14.8388495104,1.5240229358,-0.0976144481 C,12.5893022321,2.4213646272,0.0674212284 C,-10.6023657975,0.9452936514,-0.2444752481 C,10.5884947128,0.9933944637,0.318187118 C,-13.7391507852,4.8873814813,0.5442081549 C,12.07739014,1.1284588479,0.1718936799 C,-12.095574528,1.0500387894,-0.1160826972 C,-12.6087519356,2.3374330221,0.0948424712 C,-13.9823440827,2.533629937,0.2252455754 C,-14.865803577,1.4341755099,0.1273902676 C,-14.3445272901,0.150863092,-0.0898321423 C,-12.9648450266,-0.0401973523,-0.2094766964 C,12.9442059226,0.0216066068,0.15795441 C,14.3214427551,0.2169297869,0.0292366726 F,-0.0166443607,1.6173710592,-0.2859630242 F.-0.015607061.0.7034632227.1.8223738375 C,-4.2934095369,-3.611667522,-0.314411204

Cartesian Coordination of 2b-4

-2858.0605646 hartree H,-2.7417388293,-0.8157467146,-0.9139692547 H,-8.8000460207,-0.2083749298,-1.671383811 H,-6.4331175074,-3.5430222422,-0.3432722159 H,-4.4682231371,-2.0904752741,-0.1700496434 H,7.0110225266,-1.4724247479,1.8353170162 H,7.0798869227,-2.0759931504,3.512461488 H,7.6576174905,-3.1084422039,2.1730757888 H,11.1105716466,-3.8959783347,3.1966444507 H,11.7686375996,-4.6570913369,1.7117976102 H,10.4213113129,-5.4285385295,2.5925031676 H,11.0080977031,3.2773487123,-0.5087385721 H.-8.6276427271,-3.7879160706,-1.4974633277 H,4.1804932766,1.0385864105,-0.5521204719 H,-12.4525957425,-1.3461317859,-1.7240842591 H,-9.3052313036,-1.4919131531,1.2033076161 H,9.570045749,0.7169356922,1.6753666675 H,12.1546369087,-0.9991756602,-1.3016669254 H,12.7634800732,-4.5323924873,-1.8887061257 H,12.0481324868,-3.01799035,-2.5033335531 H,1.8614933285,4.5293499435,-0.2721697918 H,-0.0547503959,2.9415248849,-0.4376267917 H,-14.8180294465,2.1214547295,-1.3692143707 H,-13.1115207272,2.0322604817,-1.8800112983 H,-13.5250555945,2.6047161456,-0.2336404211 H,-12.7327519181,0.7409517509,3.6530950714 H,-14.1915038117,0.5161110367,2.6343680451 H-13.8075669739.2.1240915462.3.3103326739 H,-2.5180262023,3.3458632039,-0.3969017319 H,-5.1148674256,2.645410933,-0.4832453235 H,-8.9525196937,0.5704905996,4.1484276653 H,-8.3256530253,0.156209675,2.5296625935 H,-9.2161171404,-1.0644893226,3.4856148798 N,3.958246159,2.0223899836,-0.5061369962 N.-8.847572981,-2.8758978786,-1.1139369134 N,10.499906875,2.4225610786,-0.3136899962 N,-3.0493001601,0.1325334866,-0.7541769751 O,-0.4327118044,-0.3547304872,-0.7941941448 O,12.4759806963,1.4751122492,-0.8497881674 O,8.8808799978,-1.5153427119,2.7688860969 O,-13.8065720531,0.5569040492,-0.5729730051 O,-12.6347407006,1.5893882193,1.7431549815 O,1.9486660163,0.2866960154,-0.7099682548 O,11.6073651561,-3.581832387,-0.5403519292 O,-10.9463413256,-3.4767076891,-1.6829534698 0,9.8700257362,-3.7992490245,1.5175970731 O,-10.3766594809,0.5008794046,2.7253460343 H,4.4577898126,5.2295397862,-0.1618453513 H,6.2764167624,1.0123874659,-1.4667341929 H,8.7013056423,0.7133580786,-1.4317304371 H,9.1334223984,4.4031997061,0.7307686134 H,6.6916691739,4.7099618644,0.7006593068 H,-6.8368442041,1.2505062165,-1.5025227031 B,0.9872672434,-0.8759470617,-0.8235776585 C,9.0925655858,2.5274536779,-0.3284743068 C,8.2647258334,1.5768160244,-0.9446300981 C,8.5021721594,3.6635300704,0.2466937968 C,-12.0396653666,0.5521569183,1.0725661297 C,-12.6056359929,0.0739766364,-0.1183918471 C,10.8638412812,-4.4748906058,2.2992150163 C,7.5843575076,-2.0829100825,2.5444781691 C,-5.4058847489,-1.6648904491,-0.5155863481 C,-6.5186483592,-2.4917863649,-0.603219406

C,-7.7628661131,-1.9809856474,-1.0036195627 C,-7.8586119474,-0.6173980333,-1.32546142 C,-6.7447172333,0.2056515201,-1.2238482653 C,7.124629565,3.8358477938,0.2250227374 C,11.3424696595,1.3199741713,-0.409620238 C,-11.9873869072,-0.9592444102,-0.8254583462 C,-10.2246048417,-2.6667362249,-1.11543931 C,-10.8382359454,-0.0167471357,1.5510532956 C,-10.218085409,-1.0426607413,0.8366730934 C,9.9987059175,-0.1428201193,1.1754181252 C,9.6833934809,-1.4146696073,1.6600822036 C,10.2322581991,-2.5587936048,1.0627146193 C,11.1200124497,-2.416454331,-0.0279176047 C,11.4485806048,-1.1445986397,-0.4947149302 C,10.8778078112,-0.0084276133,0.0985474392 C,-10.7937973574,-1.5090327404,-0.3561320781 C,12.5112445454,-3.5021538802,-1.6350192435 C,2.7113138385,3.8636382039,-0.3183365144 C,2.6569711718,2.4753441625,-0.4737044446 C,4.834194368,3.0603042357,-0.3669726637 C,1.5743781651,1.5354075099,-0.5799370486 C,0.2282637365,1.9047671533,-0.5470072479 C,-0.7446190169,0.9105486107,-0.6594742555 C,-13.8003252802,1.9126911295,-1.0339042101 C.-13.3824724489.1.2043818322.2.9042655189 C,-2.1578477434,1.1770413784,-0.6378484386 C,-2.9125469456,2.3475669728,-0.520160625 C,-4.2662424003,1.9834780707,-0.5756966651 C.-4.3355251618,0.5901910266,-0.7249590575 C,-9.1485402928,0.002437918,3.2382902488 C,6.2829607712,2.8766904428,-0.3649265816 C,-5.4936353067,-0.2944420113,-0.8188160257 C,6.8861879961,1.7490295288,-0.9514693926 F,1.1961030333,-1.4932685623,-2.0265732217 F,1.169219194,-1.6940703699,0.2591394591 C,4.0642342506,4.2274467169,-0.2500794513 H,13.425193117,-2.9588014434,-1.3658040759

Cartesian Coordination of 2b-5

-2858.0605612 hartree

H,-3.5865010039,-1.5274400611,-0.3400516345 H,7.7211380568,-0.102288915,1.7031876765 H,9.2758256825,-3.799261709,0.1556623659 H,9.6452954071,4.4228046061,-3.2206210866 H,9.8820249217,5.4819834046,-1.7929823545 H,8.5375522987,5.7920508595,-2.9253930655 H,6.0331916259,1.2671007043,-2.0024276188 H,6.2102921461,1.6503162054,-3.7355011563 H,6.3570311556,2.9512124968,-2.5186823682 H,-5.4053856686,-0.7973698234,-1.4832561391 H,10.6570448489,-2.1150917729,1.403750126 H,-10.633365275,-1.8509527697,-1.7579931664 H,3.5485272838,-1.6276190729,0.4603213808 H,-0.0800533445,-4.5193470154,0.2197192544 H,5.4476810534,-0.9792824688,1.5283341149 H-7.4108624663.0.7689364827.4.0468620566 H,-7.3427384267,-0.0061846904,2.4412649341 H,-8.9035247686,0.1359334215,3.3024074626 H -4.9635963299 -5.5009951619 -0.6814919677 H,-2.3067804501,-5.5269931405,-0.2612120516 H,-9.126932874,4.0645677144,3.4030313265 H,-10.0488555276,5.1731577954,2.336274867 H.-8.5073570215,5.7040551953,3.0653824305 H,-7.7330075452,5.657657932,-0.4361759047 H,-8.7224113695,6.4944752192,-1.6674338551 H,-7.886505834,4.9752530545,-2.0852040812 H,10.6744002677,2.3716019536,1.7126841516 H,10.3805917875,5.988791676,1.8615732223 H,9.9509906903,4.4237470767,2.6024247328 H,11.4466270363,4.574519509,1.6358816494 H,2.1672640382,-5.5932204906,0.3740289822 H,4.8457958213,-5.6385752197,0.6209732229 H,-9.3701354618,-3.5907679506,-0.5036103576 N,3.5709613187,-2.6356987118,0.5114498509 N,-9.9872775357,-1.1876400632,-1.3459933628 N,9.9978354476,-1.4372889068,1.0390777566 N,-3.6301248922,-2.533449866,-0.4140215773 O,-1.2371735863,-1.4025701029,-0.0676390962 O,11.613574111,0.0168113766,1.6428228335 O,-8.120982921,1.9283453184,2.560870425 0,9.6639743667,4.6434161833,0.5445024955 O,-8.2825282029,4.4096998089,1.5200749229 O,1.2018364214,-1.4389450168,0.2514060601 O,-9.6040104875,4.8385255949,-0.901854581 O.-11.5378318021.0.2940433993.-2.0455455183 O,8.2265663499,4.2051543416,-1.7012376871 0,7.9644428249,1.6224558699,-2.7197724596 H,-7.642483844,0.1289465693,-1.7938062781 H,-7.1195974964,-4.5293852935,-0.1867859154 H,6.9886983872,-4.6883550976,-0.0252178995 H,-10.4706224714,2.6805750153,-2.068289783 H.-9.1825941486,-0.0403552861,1.0042461762 H,8.9821351641,-0.2380553806,-1.2563949327 B,-0.0376844436,-0.57526819,0.3421739397 C,-7.5334561733,-0.8819500637,-1.420469768 C,-6.2636180824,-1.4141239749,-1.2324603531 C,6.5580658107,1.8980409526,-2.7308881446 C,9.1410566503,5.0169109286,-2.4497709657 C,-9.4377803269,3.5702098539,-0.4074320594 C,-8.8202042294,3.3526085687,0.8334655966 C,8.4323719914,-3.1854345474,0.4585793681 C,7.5639550296,-1.096848273,1.3037283909 C,9.5302402199,3.3455118372,0.1495301273 C,8.7933601675,3.1473666065,-1.0403088486 C,8.6057342433,1.8454111825,-1.5273213438 C,-8.6719307818,-1.6570280313,-1.1506327439 C,-0.0596328449,-3.4397277109,0.1870157867 C,1.1498471709,-2.7485120475,0.2850700653 C,-1.2319370125,-2.7130809991,-0.029490083 C.6.2736449379.-1.5994574312.1.1920597126 C,-6.0766551095,-2.7359921602,-0.7881102682 C,6.0298348228,-2.900693999,0.7155701223 C,-7.9426038836,0.6279360928,3.105236275 C,-4.7454215058,-3.3019724097,-0.5888852757 C,-4.3261677984,-4.6402433728,-0.5415150228 C,-2.939628651,-4.6540843739,-0.3315957333 C,-2.5143244823,-3.3252282189,-0.2475376432 C,-9.0481849364,4.8527254656,2.6482229032 C,-8.4052341353,5.521610797,-1.2871576033 C,10.07240407,2.2511231047,0.8216191861

C,9.8623148606,0.9521482494,0.3346436155 C,-9.856310322,1.1987074852,-0.6271764553 C,10.4054652093,4.9066064174,1.7288192539 C,2.8242355004,-4.7370224698,0.4270035767 C,2.4269188177,-3.3968097409,0.4036796913 C,4.6757835022,-3.4335236405,0.5928249909 C,-9.2399726543,0.9662939726,0.6130431191 C,-8.7244324079,2.0380956831,1.3429455391 C,9.1317758198,0.7496716467,-0.8381826087 C,4.2214888266,-4.7604492323,0.5440553604 C,-8.4966067013,-2.9817782324,-0.7188565227 C,-7.2250049654,-3.5103882458,-0.5448450622 C,7.1410368485,-3.6858499641,0.361299353 C,10.5448009217,-0.158762763,1.0686975789 C,-9.9618835862,2.4961071949,-1.1297719844 C,-10.5105464586,0.1024562675,-1.4075536378 F,-0.2030353695,-0.1837820159,1.6464870542 F,0.0942128835,0.457530687,-0.5399480531 C,8.6632568421,-1.8806627401,0.921551339

Cartesian Coordination of 2b-6

-2858.0605011 hartree H,3.5217930959,-1.9789453665,0.5052897419 H,13.761267904,2.3781883392,-2.8656431592 H,14.5634339661,2.9998132688,-1.3871938632 H,-12.9519761073,0.1973634965,-2.2385642592 H,15.0941492528,2.9757139767,2.2924034845 H,14.9740037408,1.214975568,2.0231775214 H,13.7053111473,2.0680294949,2.9484957985 H,12.9356058586,0.0707122197,1.980528756 H,10.0792449208,-0.7034307815,-1.1382118856 H,-10.1985637749,-0.752760848,0.9256537274 H,-10.019501095,-3.2367337854,-1.6770563174 H,9.9587287557,-3.2665230775,1.4631973156 H,-3.5996497223,-1.973518249,-0.469516037 H,2.1961750838,2.0006190201,0.2849261344 H,-0.0610702165,0.9592775218,0.2013848687 H,-14.2226421568,4.2100260984,-2.1148734158 H,-12.5733865979,3.6295149488,-2.4670887888 H,-12.9489783741,4.3435990918,-0.8678162626 H,-12.9240609927,2.4829247959,3.0948683134 H,-14.3439415025,2.6179701106,2.0078862462 H,-4.9542024924,2.0217435482,-0.5405736402 H,-9.4613550492,1.2157950386,3.8588695832 H,-8.8747163101,0.5780830386,2.2986940397 H,5.5850764828,-2.6678405908,-0.1690968735 H,7.8616888756,-3.5412926353,0.0787139833 H,9.1113243108,0.1744913051,1.8422482577 H,6.8350665753,1.0545314831,1.6001471648 H,-6.8755681659,1.0796348173,-1.6589786401 H,-9.1439616694,0.2089257794,-1.9891248305 N,-3.6483897907,-0.9670105642,-0.4066251402 N,9.9367808757,-2.31364994,1.1187448767 N,-9.9990319658,-2.2864112149,-1.3254430494 N,3.5655342805,-0.9720481756,0.4449682213 O,1.177701431,-2.1387685841,0.1724895877 O,-12.5150238491,3.1789884324,1.1644854663 O,13.7324950553,2.4665175066,0.8975658926 O,10.6197479584,1.3906174609,-2.5414031713 O,12.0831147919,-2.317282604,1.8183279258

O,-1.2667295984,-2.1358282127,-0.1154928703 O,-10.7406757844,1.5167538171,2.3321664376 0,12.4749921147,3.1318617559,-1.40046762 O,-12.1351559902,-2.2790440566,-2.0547137772 O,-13.767870173,2.4486993086,-1.2234622302 H,4.8746695768,2.0165851008,0.5425859185 H,8.9057517963,2.3896104739,-1.8835961934 H,9.3704199991,2.5893607491,-3.5942289336 H,10.2855069834,3.4459878653,-2.3199547224 H,13.816367286,4.1341164858,-2.5454400059 B,-0.0724918381,-2.9878984985,0.2581369868 C,11.192964131,-1.7258895694,1.2181645354 C,-12.4587635274,0.4627308187,-1.3111653845 C,-11.2531352335,-1.6920287449,-1.441333386 C,-11.253726413,1.1148660056,1.133847242 C,-10.912862599,-0.0716635892,0.4834943065 C,10.825929623,-0.0711395349,-0.6740406459 C,11.1902885429,1.1101924587,-1.324774001 C,12.1680104863,1.9518481327,-0.7745360892 C,12.7939536111,1.5896080931,0.4399327058 C,12.4455419355,0.3974080453,1.0728601387 C,11.4521541455,-0.4262743823,0.5223985097 C,-11.5142554069,-0.3932087231,-0.7438240971 C,14.4063448311,2.1494719089,2.1089416623 C.2.841042682.1.1377514574.0.3691405351 C,2.4303615402,-0.1980870319,0.3341254264 C,4.6757262543,-0.1856821855,0.5610942796 C,1.1441470049,-0.829369765,0.2218129695 C,-0.0566376292,-0.1198122586,0.1511670255 C,-1.2428405296,-0.8265580328,-0.0534535472 C,-13.3384615941,3.7336441173,-1.6870303178 C,-13.3880620367,3.0698497724,2.2965671381 C,-2.5212349066,-0.1933740802,-0.2321414489 C,-2.9306763307,1.1422723723,-0.2776589154 C,-4.3174114141,1.1509089511,-0.4869291672 C -4.7529464394 -0.1804496385 -0.5684505818 C,-9.7530640148,0.6981476983,2.944340604 C,6.0247011075,-0.7288166184,0.6936429878 C,-6.0952509437,-0.7221863634,-0.7617210423 C,6.3417529489,-2.0375706792,0.2890751474 C,7.6324568171,-2.5355937593,0.4188164434 C,8.6540788829,-1.7441641021,0.9638305534 C,8.3454684981,-0.4414276443,1.3863194259 C,7.0567004208,0.0540981355,1.2426442692 C,-7.1086421976,0.0724919338,-1.3287933395 C,-8.3933213629,-0.4171084146,-1.5218555251 C,-8.717895318,-1.7267361699,-1.133166613 C,-7.7133934871,-2.5314200282,-0.574678692 C,-6.4264765142,-2.0389262162,-0.395322759 C,9.7492862545,2.5272917857,-2.5722327946 C,13.734488676,3.1476252757,-2.0855147654 C,-12.796412592,1.655428179,-0.667954505 C,-12.2013631268,1.9902801313,0.5577658908 F,0.033157498,-4.0007861198,-0.6500422302 F,-0.2256799801,-3.4089746095,1.5545549178 C,4.235974694,1.1459642206,0.5122944478 H,-13.5592098541,4.0895422139,2.646423203 H,-2.2909990649,2.0051881786,-0.1611682705 H,-10.1500177606,-0.2921876752,3.2005545448 H,-7.9537943264,-3.5437571506,-0.2628260434

H,-5.6850871176,-2.6806259124,0.0719331707

Cartesian Coordination of 3b–1 –2936.6756521 hartree

H,-11.9375551897,4.2050864874,-1.4772895393 H,6.8159081595,1.1965214127,2.1378346653 H,-6.676836402,1.3408145046,-2.0015074935 H.-8.9135382384,0.4461134215,-2.5032234807 H,-7.8997895192,-3.2186014947,-0.5052324389 H,-5.6727329951,-2.3319740702,0.0119190016 H,7.8621547261,-3.2953096175,0.3327539691 H,8.2564862191,1.5996548676,-3.945746412 H,9.1864089286,2.7776659595,-2.9753891099 H,12.5922680728,3.6997603063,-3.8812982733 H 4 8979817733 2 2400327128 1 0202813023 H,8.0217168877,1.6737104372,-2.1784402109 H,9.087054853,0.2771289816,2.3778001744 H,-12.1917596865,4.5516246621,0.2615365203 H,-12.3422692986,1.8054830675,3.6696411132 H,-13.7252522876,2.3386682708,2.6604986653 H,-12.8161690999,3.5258765278,3.6372818974 H,-2.2318088438,2.2948575793,-0.0929880105 H,-4.8632457057,2.3227364586,-0.6604791236 H,-8.9197658561,0.143072727,4.0162967588 H -8 414184602 -0 1556830354 2 3310676262 H,-9.7424988309,-1.1112492389,3.0512914576 H,5.5992043757,-2.3848864818,0.0773075938 N,9.9402297938,-2.1294929258,1.5248366269 N,-9.8475508537,-1.9956440068,-1.8479235958 N,3.5728997322,-0.7330751569,0.7736842761 N,-3.5836610457,-0.6712947361,-0.4260782059 O,1.1896041686,-1.8758080874,0.4113427073 O,13.1213995735,2.801185392,-0.1846618486 0,9.7689064563,0.7686351043,-2.8821520181 O,12.1467114617,-1.7560131868,1.9143056382 O,-1.2343929556,-1.8530594546,0.0037491026 O,-10.1948156797,0.8905180167,2.6480771102 O,11.5294391245,2.8666695413,-2.3672005665 O,-11.9974056721,-1.6025260833,-2.4682272997 O,-13.192017343,2.8658665763,-0.4766301302 O,-11.838460289,2.9132603458,1.9680352842 C,-10.7562342673,0.8249988709,1.4059615484 C,-6.3639439787,-1.719289939,-0.5597794717 C,8.7544222236,1.7731005165,-2.9896502367 C,12.6661874317,2.8205299554,-3.2385177846 C,-12.2776130188,1.8918622154,-0.160779452 C,-11.6353386527,1.8824738103,1.0857306177 C,4.2544652363,1.3762436938,0.9390074575 F,-0.2936580419,-3.1039405598,1.7485709662 F,0.066649367,-3.7429402867,-0.4292415133 H,-3.5353405405,-1.6777806167,-0.4913858246 H,-12.5811161947,0.8623827863,-2.0214232844 H,-9.8630990714,-1.0143740929,0.7310292042 H,-9.8533270678,-2.8872851297,-3.7807202852 H,-10.802891532,-3.7293035258,-2.5476781227 H,-9.0195738561,-3.8087160236,-2.5062371291 H,10.9516799738,-3.8887628602,2.0643694398 H.9.1744529236.-3.952411918.2.2253936813 H,2.2275540787,2.253390526,0.6820558433 H,-0.0308493586,1.2298623259,0.4275667966

H,-13.5138303155,4.8182468603,-0.9114727127 C,8.6368373219,-1.5722241504,1.3689218912 C.8.3229572352,-0.3003259804,1.8687570059 C,7.0424203954,0.2190703036,1.7241506138 C,-6.9439922134,0.3478494053,-1.6545465547 C,-8.2047025737,-0.1577524643,-1.9472401101 C,-8.5682343733,-1.4489396901,-1.5379386982 H,10.1586835286,-3.0735261232,3.4203548028 C,-7.6277108366,-2.2236924153,-0.8436950104 C,-10.5254960573,-0.1967663255,0.4835986464 C 10.3533360984 -0.2491660109 -0.8083125504 C,10.5044827128,0.7966304283,-1.722034772 C,11.4341908975,1.8189952097,-1.4873598314 C,12.235459296,1.7733751351,-0.3248967525 C,12.0948445518,0.7177406484,0.5745189737 C,11.1438772559,-0.2877712913,0.3419348336 C,-11.1698463571,-0.1730151425,-0.7633937181 C,13.9724078778,2.7954965723,0.9539370393 C,2.8643647195,1.3833431786,0.7524118756 C,2.4468554362,0.0525641421,0.6566284258 C,4.6837045004,0.0407452147,0.9506967993 C,1.1616281752,-0.5671952237,0.4811139033 C,-0.0305035547,0.151351086,0.3651740324 C,-1.2068687211,-0.5447886114,0.0812691389 C,-12.6631976321,4.1841512615,-0.6538615781 C,-12.7358817248,2.6128451705,3.044267854 C,-2.4678544858,0.0971908889,-0.1754948905 C,-2.8662522472,1.4348833661,-0.2524333454 C,-4.2348855011,1.449798737,-0.5603533882 C,-4.6692186429,0.1205307912,-0.6690955265 C,-9.2690386313,-0.1217251577,3.0175242876 C,6.0256620462,-0.5190856874,1.0927374801 C,-5.9944478538,-0.4216301444,-0.959134733 C,6.3459340225,-1.7996603698,0.6060938011 C,7.6286124186,-2.3171965472,0.7414035983 C,-11.0424011634,-1.2825047992,-1.7679864448 C,-12.0496209934,0.8640131611,-1.0774732345 C,11.1206535489,-1.4195288698,1.329141344 C,10.061792363,-3.3336587122,2.3597878303 C,-9.8806078053,-3.1765605325,-2.7236844544 B,-0.0716559523,-2.7120218169,0.4529841416 H,3.5216084508,-1.7412653726,0.7970919218 H,12.6455017996,1.9148963138,-3.8556213718 H,13.5995693575,2.8624876811,-2.6688047691 H,9.634016277,-1.0254443163,-1.0361902787 H,12.7205777119,0.6328526817,1.453079737 H,14.6171292181,1.9083979216,0.9726275103 H,14.5898014453,3.6906313684,0.869264307 H,13.3966325473,2.839542049,1.8865217914

Cartesian Coordination of 3b-2

-2936.6756398 hartree

 $\begin{array}{l} \text{H,-}1.1926223867,-}7.1867039975,5.5822784436\\ \text{H,1.8444844339,-}8.8146104545,9.0137160396\\ \text{H,3.5651892131,-}8.9574760824,8.5368461981\\ \text{H,5.3059482776,-}10.1068763363,4.6780608416\\ \text{H,4.8734821485,-}11.1969652862,6.0348144939\\ \text{H,6.1481400543,-}9.9636869659,6.2449448109\\ \text{H,0.6549809698,1.438963184,2.3775513455}\\ \text{H,0.7790772543,-}2.8096472677,5.1416075511\\ \end{array}$

H,4.3610733609,-7.4272197677,2.107272331 H,2.6763402835,-7.0091859635,2.5211308624 H,3.0527380758,-8.5985705159,1.7943402973 H,-2.0255472195,5.7673635837,-1.9743025784 H,1.0897095815,6.4200208647,1.5766462396 H,0.9469537197,-0.3232806726,4.1229286649 H,2.8606841544,-10.1013016367,9.715835861 H,-0.6246445894,-4.7947480047,5.46906451 H,1.3364684502,7.9134075963,-0.3495801048 H,-0.0697992068,-10.5052005653,6.7203608912 H,1.0801919951,-8.6131338672,3.0351821833 H,0.8573952568,8.4486865156,-4.7738418682 H,-2.8182172051,8.8655972296,-6.9628439389 H,-3.8552528999,6.9587181111,-9.8728480228 H,-4.1271705014,7.3111096581,-8.1452207398 H,-3.383554269,8.5448080588,-9.2024845587 H,1.1130437884,3.8840209416,2.4783584564 N,-1.631365424,-8.8311172042,3.4950034909 N,-1.1661614396,9.985813666,-3.589766 N,-0.5704346151,-2.4877699435,2.1865851599 N,-0.3874112712,4.2890353948,-0.4065667023 O,-1.0332601485,-0.6078536376,0.3544503822 O,1.8947046184,6.6563955299,-6.3008219557 O,2.299137064,-10.455020505,7.8013899331 O 4 2642884629 -9 2095370516 6 2547916343 O,-0.9669941055,1.6862900541,-0.5280262914 O,-2.1752821025,6.8949882648,-8.7632257254 O,-1.6903281982,-10.7455247009,4.7186916266 O,0.2393048018,5.7483434557,-8.3567137751 O,3.6892626541,-8.3437998553,3.7700485078 O,-2.2593635444,10.7657147164,-5.4219027538 C,2.9865005342,-9.3415456704,5.7727585991 C,-0.2817845669,-3.2806886046,3.2601890075 C,3.4137309987,-7.8200946818,2.4785468046 C,-0.2965032309,6.6858268358,-1.0486791216 C,-0.6255478986,-4.6995801611,3.3129053767 C,-1.3721843455,6.6347755936,-1.9530645934 C,0.6827898907,5.5541187759,1.0751977073 F,-0.2230317479,-0.141089213,-1.79470664 F,-2.4653221584,0.0954585334,-1.350546754 H,-0.8434442413,3.9438999914,-1.2388049895 H,-1.1032810026,-2.7397604448,1.3666846343 H,-2.5090133667,7.6549368662,-3.462273753 H,0.8353448141,9.8073710232,-1.8406292315 H,0.9905572965,5.2745978619,-10.1798979786 H,1.4701157023,5.1072502464,-4.9629377563 H,-0.9742894165,11.3296957658,-1.9902294151 H,-2.6131809881,11.2561826486,-2.6818368915 H,-1.3245979569,12.0797705278,-3.5720063214 H,-2.9213184722,-10.2649434539,2.6670712656 H,-3.1635730333,-8.596183498,2.0797436155 H,-0.7155831429,-4.989586059,1.1676535488 H,-1.2947488058,-7.3697208795,1.2922483294 C,0.09086891,1.1226143712,1.5122131003 C,-0.350585989,-0.1965375953,1.395134301 C,2.6666741234,-9.514512826,8.8157942297 C,5.1932196715,-10.1841658515,5.7640420321 C,-0.1249398946,-1.2013280594,2.3990527115 C,0.4816165214,-1.1805847679,3.6582399913 H,-3.7364358635,-9.0772452367,3.6948701135

C,0.3829998024,-2.4730583607,4.1946218843 C,1.9921260815,-9.919286339,6.5750648999 C,0.6605561315,6.1749555842,-9.6583703863 C,1.9711730769,5.2762565228,-5.9245922644 C,-0.838658185,-5.4516729217,2.1429711288 C,-1.1598008155,-6.8026487803,2.2080511703 C,-1.2796229969,-7.4505814632,3.446007645 C,-1.0818178003,-6.7047144879,4.617101331 C,-0.7521198173,-5.3568216416,4.5495565732 C,0.4837893307,7.855809946,-1.0184637211 C,-1.5602592132,9.8888322613,-4.9214100343 C,0.6812282824,-10.0230090314,6.1062517774 C,-1.0627942743,-9.7486161324,4.3769520568 C,2.6521705504,-8.8677469305,4.4853824473 C,1.338578746,-8.9651824916,4.024084458 C,0.190715558,8.1496718215,-5.5728762502 C,0.6279912159,7.1620337039,-6.4595346245 C,-0.1861057936,6.7518808244,-7.5250639475 C,-1.4524772797,7.3536467195,-7.7011636635 C,-1.8742363619,8.3545986887,-6.8277710621 C,-1.0585313543,8.7458691114,-5.755160475 C,0.350317471,-9.5374296922,4.8403242841 C,-3.4542559306,7.4697356306,-8.9967153905 C,0.6853632665,4.2345677476,1.5501093329 C.0.0158680696.3.4479883991.0.6080097518 C,0.0058656362,5.5717684903,-0.1533996446 C,-0.2837566728,2.0441830779,0.5316491146 C,0.2041449974,8.9244486576,-1.8602951642 C,-1.6600592765,7.7071416043,-2.7895087397 C,-0.8690170046,8.8637543766,-2.7619571739 C,-2.9428727703,-9.2132736914,2.9508619137 C,-1.5423528867,11.2374348391,-2.9159051458 B,-1.1874186354,0.2341112218,-0.8942834338 H,-0.1663321214,6.6335609153,-10.2086714449 H,1.4963264265,6.8804083387,-9.5843446368 H,1.5302513355,4.6300728224,-6.6879431489 H,3.034214618,5.0510202483,-5.8189140996

Cartesian Coordination of 3b-3

-2936.6752753 hartree

H,-0.0947021838,-4.1542408559,0.1871255618 H,10.1297995739,2.8421406703,1.2596552106 H.9.4431322169.6.3284183284.0.5055304324 H,9.0695877182,4.9236052149,1.5398339888 H,10.6709809229,5.0573705674,0.7584902219 H,2.1526779003,-5.2271466527,0.3384958465 H,-7.8242491491,6.4970902555,0.0505229006 H,9.1442448684,-0.5677086977,-1.1648255123 H,4.8225751659,-5.2746844775,0.6798998054 H,-9.3676440024,-3.1537536156,-0.6619897217 H,-7.1301494296,-4.0923450747,-0.2434815649 H,6.9782766624,-4.2665748999,0.0508369339 H.-9.9248478936.3.1677042933.-1.4404464082 H,-9.298454047,-0.3635717954,0.9321604287 H,-7.1206514266,5.022412321,-0.664809234 H,5.3727225978,-0.6822774805,1.8178291183 H,-7.8180533117,-0.5638990474,4.2177234839 H,-7.6643640306,-0.9373213475,2.4796265136 H,-9.2827916525,-0.7788658258,3.2222796545 H,-4.9667166447,-5.136223847,-0.779863726

H,-2.3196952752,-5.1626589018,-0.2903216703 H,-9.0679287413,3.0020672634,4.2889126161 H,-9.7193649623,4.4553310426,3.4644831796 H,-8.2224654344,4.5671793605,4.4323103448 H,-7.078183414,5.2647345848,1.1089606947 N,-9.9391965431,-0.7783965391,-1.7213652528 N,9.9430263757,-1.0672924836,1.4765525403 N,-3.6255771604,-2.1687033244,-0.5503050439 N,3.5442677494,-2.2721344998,0.6008289899 O.-1.243383607.-1.0383395478.-0.1362820688 O -8.2113771903.1.0055466623.3.0191405033 O,9.0770074727,4.6398292649,-0.52991143 O,-7.9724583835,3.6633531229,2.633756445 O,1.1859467595,-1.0741662344,0.2534637404 O,-8.9647487325,4.8411839264,0.3024599145 O,-11.2324935445,1.0447278763,-2.1277881638 O,8.0269875735,3.5230028022,-2.7550467897 O,8.1684516304,0.7641406061,-3.1411054232 O,11.2930439501,0.7146397868,1.8809135552 C,8.9572075463,4.2448169689,-3.571857681 C,-7.2215887727,-3.1077357565,-0.6909871882 C,7.1180599262,-3.297913691,0.5198291256 C,10.3478165145,0.2456793096,1.2525040803 C,-9.5484093476,2.6931241178,-0.5422800426 C-10.3176555393.0.5424247899.-1.4834244133 C,8.6144403264,-1.5404129672,1.266344473 F,0.1022669735,0.8174466883,-0.5828678765 F,-0.2569677277,0.1907844585,1.5987493693 H.3.523390633,-1.2629135105,0.571778477 H,-3.5834639285,-1.1613892051,-0.4906040072 H,-7.5816486375,0.4235505913,-2.2310528055 H -5 348624702 -0 5068290077 -1 8292334404 H,6.2047261729,0.3227096316,-2.5769130121 H,6.5770797966,0.3356698079,-4.3216868158 H,6.4201902482,1.8796543463,-3.4354265771 H,9.6116064626,3.5550674354,-4.1174288323 H,9.5590920814,4.9315534023,-2.9691933617 H,10.5726481756,-2.8983294178,2.2852847455 H,10.6084877026,-1.5453615005,3.441490571 H,11.837768066,-1.6435242728,2.1718898683 H,-10.5612552747,-1.1869394405,-3.7154423982 H,-11.8253357243,-1.298725871,-2.482464259 H,8.3569891614,4.8151706228,-4.2832000248 H,9.257676274,-3.3933788301,0.3741128917 H,7.6475351342,0.1819961455,2.1262085128 C,2.4068784495,-3.0320454681,0.433493684 C,4.6466235247,-3.071168959,0.7016268841 C,-9.2033948792,0.7059080872,0.8055529413 C,-8.6578999317,1.4890847878,1.8235587985 C,9.1374769782,0.4993745009,-0.9819026625 C,4.1982950093,-4.3965970081,0.6020002444 H,-10.5802623899,-2.5734791209,-2.5993048192 C,-8.4848170989,-2.5788218323,-0.9242733462 C,-8.9953216855,3.4796674169,0.4701427988 C,-8.5474544819,2.8876158886,1.6601491685 C,8.4045733105,-2.8061255137,0.6990558638 C,7.5007611194,-0.7866013101,1.6609593127 C,9.1297080139,3.2794659352,-0.6126814296 C,8.5948573949,2.7239364936,-1.7965654911 C,8.6101022087,1.3329765174,-1.9715781625

C,-8.6349837266,-1.2935795586,-1.4675354036 C,-0.0735077163,-3.0747060335,0.1530422517 C,1.1328591895,-2.3829592798,0.2823230583 C,-1.2399796162,-2.3478882446,-0.0921999043 C,6.2134780831,-1.2761678907,1.4710819769 C,-6.0609301605,-2.3708695617,-0.9894442004 C,5.9940795292,-2.5413747495,0.8976592802 C,-8.2534427279,-0.3979816043,3.2315125564 C,-4.7388863723,-2.9379402871,-0.7341614811 C,-4.328191177,-4.2757776425,-0.6425136951 C,-2.9467970901,-4.2894971517,-0.3984498649 C,-2.5185344434,-2.9604973762,-0.3355562151 C,-8.8073166376,3.9283884339,3.7678869684 C.-7.662143044.5.4277928825.0.1995014202 C,9.6740849229,2.445230013,0.3622264435 C,9.6676078662,1.0531334531,0.1850746136 C,-9.6438496898,1.3099789,-0.3827557787 C,9.5990991896,5.2572502133,0.6391026945 C,2.8055441021,-4.3719392062,0.4375106344 C,6.7567107122,0.8416292939,-3.3710287472 C,-6.220399951,-1.0876473765,-1.5422858415 C,-7.4835439822,-0.5603903695,-1.785849786 C,-10.7753629802,-1.504683288,-2.6883185913 C,10.7900177001,-1.836267262,2.400099545 B,-0.0553404527,-0.2080706791,0.3025997008

Cartesian Coordination of 3b-4

-2936.6690282 hartree

H,14.4583131519,1.4713166455,3.8405109446 H,-6.9833995178,-3.3726046674,-0.8348078324 H.7.0992468663.-2.4322048152.-1.3916938577 H,9.3202385728,-1.4826621988,-1.0831824099 H,7.6249194192,1.6266813619,1.3734462481 H,5.4316610459,0.6580244155,1.0968402963 H,-7.9081362122,1.4759528422,-0.8330658159 H,-14.0423830017,4.9355704145,2.103964104 H,-15.248452575,4.0217076617,1.1518194601 H,-17.6528925863,1.7847611236,2.5067378225 H,-4.8046562733,-3.976099556,-1.6610808467 H,-13.6463498146,4.4022038794,0.4485336577 H,-9.3027936499,-2.5947640596,-0.7820031328 H.16.0977156943.1.2803878514.3.1460006293 H.18.3411057406.0.3520413705.0.5247953583 H,17.3092289312,0.2555307612,-0.9283005339 H,17.0665549926,-0.8950672174,0.4256566814 H,2.3719841396,-3.7622297726,-1.0588987961 H,5.0591966413,-3.6506397688,-0.9918187036 H,16.0365120482,2.8201758659,-3.3458596336 H,14.4080426731,3.2375252878,-2.7487658982 H,14.7129499247,1.6279985518,-3.4635250218 H,-5.6194623512,0.7075807068,-0.9502504535 N,-10.1305543116,0.0171004737,-0.7735639728 N.9.964581822.0.6866072601.0.3982528574 N,-3.6533689225,-1.112024879,-0.6012428232 N,3.591407038,-0.852321772,-0.1751108011 O,-1.3196434023,0.0766594122,-0.0818633987 O,-16.1237008711,-0.5276803926,-0.1293912176 O,-13.635063593,2.9564494719,1.9585209116 O,-11.1651556958,-1.9121027479,-0.0437122092 O,1.1339640744,0.1644485723,0.0606855688

O,15.5767484895,1.9529881047,-1.5866246197 O,-16.0792057859,1.8050451277,1.2266112307 O,10.7507159686,0.2001624421,-1.7115760661 O,14.7046918784,-0.1788391851,2.5809757283 O,16.4645074567,1.0707252827,0.8037490839 C,14.6425888822,1.4146902466,-0.7529842752 C,6.2686007023,0.1881223047,0.5882808 C,-14.1841615908,4.14078032,1.3691137927 C,-16.7557695302,1.1885176516,2.3302775064 C,14.2521415311,0.3655261218,1.4051227025 C,15.1376516401,0.9413576778,0.4834241855 C,-4.215823999,-3.1416664515,-1.3095501266 F,-0.2258989789,0.8344000841,1.8486980459 F-0.1608296455.2.1035830571-0.0648224349 H,3.5007311561,0.1245290963,0.0626717525 H,-3.6714860551,-0.1727100297,-0.2319477425 H,12.2382976324,-0.2075248747,1.8343653461 H,12.8872205832,1.608262654,-2.0079931152 H,9.7402689437,1.270272309,2.4185727786 H,9.5265307283,2.5848177457,1.2382283268 H,11.1415471226,1.961182349,1.5778194611 H,-11.3921779506,1.4510266995,-1.6494000107 H,-9.7595042044,1.368265345,-2.3314423758 H,-2.1265932073,-3.8942541919,-1.415399024 H.0.0588128155 - 2.8829732484 - 0.7720116786 H,15.5184212608,0.1531195709,4.4067106243 C,-8.8007190286,-0.4997863864,-0.8062112885 C,-8.5005385225,-1.8754686394,-0.816734262 C,-7.1799384524,-2.3052060439,-0.8498457658 C,7.2099998264,-1.5458832914,-0.7752284274 C,8.4756467504,-1.0098787992,-0.6034956351 C 8 6650111713 0 1576133084 0 1630647127 H,-10.0364091969,2.163947095,-0.7671378379 C,7.5351574273,0.7398294249,0.7600305926 C,13.2858615895,1.2954529595,-1.0519715318 C,-12.4714703467,1.2468560762,0.7841230477 C,-13.6806475668,1.8224145219,1.1869176512 C,-14.8986494902,1.2082445499,0.864707681 C,-14.8936567265,-0.0037715506,0.1376073302 C,-13.6839661905,-0.5872123755,-0.237478128 C,-12.471161725,0.0452561146,0.0735412304 C,12.4053593848,0.7353868583,-0.1151864017 C,-16.1858683305,-1.7576079738,-0.8399641949 C,-2.8194928691,-3.0966825746,-1.1888668577 C,-2.4775794832,-1.8182811543,-0.7377935631 C,-4.7255426592,-1.8889054618,-0.9349873148 C,-1.2257411594,-1.1860656393,-0.4247440184 C,0.0058383864,-1.8398892908,-0.4958737803 C,1.1715122415,-1.1024095748,-0.2778373228 C.15.2276540463.0.748618665.3.5391842635 C, 17.3364380901, 0.1331157334, 0.1585408263C,2.4928508884,-1.6462775258,-0.4260049236 C,2.9755299327,-2.9028403863,-0.8044830206 C,4.3760361498,-2.8414521786,-0.779426524 C,4.74807581,-1.5467398147,-0.384763585 C,15.1441490382,2.4313898402,-2.8540534026 C,-6.1025236435,-1.4045247988,-0.890312541 C,6.0712851585,-0.9619637606,-0.1885854542 C,-6.4105056916,-0.0345860069,-0.8916702944 C,-7.7265076236,0.4082909667,-0.8451317929

C,10.9818416569,0.5334800243,-0.5564667356 C,12.8888113276,0.2698220291,1.1100400842 C,-11.2076590751,-0.7055612736,-0.2583162045 C,-10.3397554999,1.3275354791,-1.4061046782 C,10.0992556295,1.6787068501,1.4692306837 B,-0.1473617023,0.8509391917,0.4785714561 H,-17.0418894793,0.1603025107,2.0901569257 H,-16.1268008458,1.2010174171,3.2278402953 H,-11.5505607295,1.7378555656,1.0768144807 H,-13.6520794692,-1.539003294,-0.7510813849 H,-17.2468350717,-1.9856370039,-0.9484870365 H,-15.7306869515,-1.6703521143,-1.8340630664 H,-15.6936206873,-2.5683314269,-0.2891639236

Cartesian Coordination of 3b–5 -2936.6688954 hartree

H,15.5965765292,3.3858009731,-3.5972366419 H,-10.3902755244,-1.7618785496,2.1562527011 H,-11.3795891965,-2.2766833482,0.7738481179 H,-11.8541388102,-0.8623738494,1.722499321 H,16.273995729,1.0511328125,2.6095926265 H,18.2980425437,0.5434853181,-0.278133762 H,17.1438581431,0.5743096471,-1.6389335375 H,17.0577653002,-0.7343142267,-0.4156612098 H,0.0354626278,-3.1204935714,-0.45626479 H,5.0231970532,-3.7401192818,-1.1216290142 H,14.0153522445,3.6571518593,-2.8165897678 H,14.3023199359,2.1672661579,-3.7611552616 H,-5.6872024898,0.3591150511,-0.0681818529 H,-4.8629989111,-4.2524393538,-1.0507019716 H,2.3405388336,-3.9131156628,-1.0026845165 H,15.8271845354,-0.2321134078,3.7715748994 H,7.0030740789,-2.4210457085,-1.5643093608 H,-6.982509304,-3.7435672386,0.0474625229 H 12 3484694545 -0 4069985738 1 4514657354 H,12.6139462833,1.881499801,-2.1784441259 H,-12.7222268883,-1.0974451039,-0.8220547277 H,-11.9819030666,2.8914702393,0.6050250238 H,-14.436741202,5.5080767274,1.1365889556 H,-13.0267938253,4.9362231141,0.2029353877 H,-13.2767969139,4.375901253,1.8816406244 H.-2.1749604588.-4.1393432846.-0.9778753044 H,11.1782970863,1.7373079344,1.550435204 H,-3.6889341326,-0.5286095565,0.5441006454 H,9.8628682116,0.9133652271,2.4100014565 H,-16.9596224983,-0.5503889623,-0.027367421 H,5.4696321624,0.3463795389,1.3530210142 H,7.657657732,1.345918592,1.5632160008 H,9.5303635544,2.3518107854,1.4164627201 H,14.6970746018,1.1114205779,3.4556124506 H,9.2221949864,-1.4427323879,-1.3259294556 N,-3.6807930875,-1.4432750033,0.116669898 N.9.9333431162.0.5778029769.0.323388062 N,-10.1890175664,-0.5102446887,0.489103577 N,3.5695565217,-1.0692309751,0.0637128117 O,-16.279401935,1.6797066235,-0.4165304111 0,15.3175158811,2.2810417683,-1.9358461506 O,-9.9911727923,1.5898074113,-0.4344465734 O,1.1227567882,-0.1356876865,0.565551474 O,-15.2446045048,-0.8003163079,-1.2037562514 O,16.4330821372,1.1484336454,0.2434723569 O,14.8665710592,-0.3727073112,1.9931255184 O.-1.3326846765.-0.2607409659.0.5851908942 O,-14.6235970778,3.6135372159,0.4776655563 O,10.5535349896,0.3512497847,-1.8829942054 H,3.4786277764,-0.1205854506,0.3968248503 H,-7.9926906984,1.1001563996,0.2369884429 H,-9.2887927761,-3.0006692422,0.2949857835 H,-16.3693050186,2.0214392516,-2.4769545622 H,-16.2028684738,3.4902886928,-1.462108651 H,-17.7433500002,2.5891147332,-1.4870492888 H,-15.8125663197,-1.8020357414,0.5410933928 H,-16.7858568757,-2.0857230654,-0.9266915368 B-0.1353120406.0.4836703987.1.1333110825 C,15.0874186403,1.0073213319,0.0202521248 C,4.7196426106,-1.7113044205,-0.2949273331 C,14.7621955438,2.9015271342,-3.0887002735 C,-6.1389070219,-1.7571371244,-0.0280330032 C,6.042288259,-1.1130704697,-0.1391564537 C,-6.4654587662,-0.3919146427,0.0345831193 C,-4.2626857346,-3.4329606427,-0.6834478196 C,-0.01282024,-2.1073597588,-0.0842936851 C,1.1544582652,-1.3662321642,0.1124454045 C,15.4516516796,0.4517270617,3.0079618251 C 17 2716339823 0 3279643732 -0 5806253298 C,2.4699312573,-1.8635440518,-0.1811645882 C,2.9457473339,-3.0665227146,-0.7118190698 C,4.3429795832,-2.9721543265,-0.7836158001 C,14.3009342455,0.290790534,0.9331472962 C,-16.6565965731,2.4972960223,-1.5322840991 C,-16.2598276241,-1.3282063337,-0.3424177251 C 6 2746906227 -0 0436911502 0 7369524078 C.7.538769895.0.5239808498.0.8696843106 C,8.6304173672,0.0388852416,0.1319729705 C,8.4070959478,-1.0477827692,-0.7371460281 C,7.1435632022,-1.6003245237,-0.868217619 C,-7.1929340045,-2.6792027774,0.0756874758 C,-10.7029128637,0.6862989098,-0.0089400995 C,12.9205760657,0.1783268729,0.7402390077 C,10.8712065742,0.5648478091,-0.7201269563 C,14.4746913436,1.6077335533,-1.1030686023 C,13.1014794079,1.4717076022,-1.3037163725 C,-13.0723115324,-0.1184810104,-0.5161691414 C,-14.4345878776,0.1644642208,-0.6579986681 C,-14.935078243,1.4274240624,-0.313621191 C,-14.0487634203,2.416356022,0.1700411779 C,-12.1989740668,0.8635816094,-0.0453329055 C,12.3209962615,0.768554601,-0.3748921886 C,-13.7806758154,4.6573305454,0.9490065838 C.-2.8618704569.-3.3704264687.-0.6546508109 C,-2.5077176931,-2.1179421014,-0.1443582444 C,-4.7621751921,-2.2159854049,-0.1954316804 C,-1.2454651908,-1.4877753923,0.1306901454 C,-8.5057909688,-2.2541196698,0.2311825675 C,-7.7747326584,0.0445514247,0.2021583711 C,-8.8241480245,-0.8858995353,0.2989384911 C,10.135987049,1.4407128344,1.491196519 C,-11.0017905311,-1.407073126,1.3228705288 F,-0.1168097481,0.3381952115,2.4980996984 F,-0.2047255198,1.7799549857,0.7115175353

C,-12.6877340125,2.1364575496,0.2850854053

Cartesian Coordination of 3b-6

-2936.6684577 hartree

H,-2.5214051382,-4.5499505928,-15.3251625316 H,-0.9058589963,0.7321846554,16.6688269604 H,2.3069791898,-0.4686360867,17.6105147738 H,2.6754488023,0.6895408542,16.3017511921 H,3.0273962917,-1.0556165169,16.0866677645 H,2.3466053618,-1.2425245715,-11.3515585019 H,-2.1138643064,1.2682524188,15.4609470812 H,3.0807514929,-3.1340679482,12.8219749634 H,1.4935653677,-3.9470765393,12.9421260985 H,1.402840224,-1.9485126648,11.7202913105 H,-0.4684690108,1.8452475816,12.4964003864 H,-1.6151872134,-2.4361268596,-12.5185979989 H.-2.1384075568.4.4700761065.4.6062940245 H,2.7502703226,-4.2575175162,14.1695009617 H,-1.3411530139,2.4612959362,16.5388952298 H,-2.5691852625,-2.9174939004,-14.6070188716 H,-2.4510051474,-4.3552597218,-13.5518894009 H,0.385137302,0.4938693791,5.4389550882 H,0.5901883329,-0.3073767936,7.7367233167 H,-2.412813654,2.5120044314,8.973395857 H,-2.6592236302,3.2745885064,6.6719797789 H,-0.4879958426,3.6299088606,-7.2745354232 H,-0.08337645,2.7723306608,-9.5100221922 H,-0.3161545222,-1.2590882095,-8.006465357 H,-0.7606617385,-0.396496298,-5.7799943852 N,0.1543798519,0.1803559877,-10.2416345348 N.-0.8358958904.0.5862648004.9.89314276 N,-0.6836147039,1.51592778,-3.8614387354 N,-0.9506289399,1.6791887306,3.4010273657 O,-0.332341703,0.4869335808,-1.4230219288 O,-0.7316181802,-3.9108434616,-14.6564940543 O,1.8483999447,-2.4678011336,14.374785203 O,1.948214532,-3.9268600131,-14.9832690737 O,-0.4155245214,0.5453933447,1.0441520703 O,3.5924235479,-2.5919004396,-13.1576617465 O,-1.2884356066,-1.6076316514,-10.0952279199 O,1.0006958745,-0.5378196318,16.0595437143 O,-0.1379028119,1.8094363262,15.0447885968 O,1.3200781387,-0.2136725913,9.782688912 C,-0.9109716052,1.7555705501,0.9656495175 C,0.8318960875,-0.3799825984,14.7074613855 C,0.2095198373,0.7740396748,14.2127622833 C,-0.0096464827,0.9253825195,12.83986542 C,-0.5500716813,-2.448573416,-12.7085704424 C,-0.0055203751,-3.1843584773,-13.7603698371 C,-1.8020496447,3.6430658385,3.9982269622 F,-0.8407767637,-1.4143103081,-0.1587580546 F,1.2903561129,-0.5647295356,-0.108163471 H.-0.6130113191.0.7276246473.3.399608308 H,-0.2628087829,0.6009177175,-3.7897357392 H,-2.0187964243,4.3984480343,1.9180263252 H,-1.5464193509,3.3836528375,-0.2966328333 H,5.255312579,-2.1396647749,-14.2230659277 H,3.9503724397,-0.93347849,-14.3789258197 H,3.8276627793,-2.5001388887,-15.2371852682 H,2.4548145444,-5.7553473817,-15.701634146

H,0.9585298824,-5.7526270065,-14.7285124296 H,-2.3575112532,1.5817533564,11.0388402207 H,-2.0408672238,-0.1024487921,11.472424142 H,-2.9047277477,0.2723731575,9.9710831472 H,0.9779305228,0.6105729659,-12.1226733885 H,1.6040948759,1.6124658851,-10.7987531343 H,2.5555028949,-5.6236232674,-13.9234086504 H,-1.8449153777,4.3008397461,-2.5840414402 H,-1.74299518,4.261172514,-5.2734375916 C,0.3387946704,0.0873111129,10.4537200173 C,-0.3631632606,-1.0511164954,-10.6719004064 C,2.3148201059,-3.5007785517,13.5159672119 C,0.2875499404,-1.7227742958,-11.8495650881 C,0.4073106761,-0.0672822581,11.9512743816 C,1.0501090624,-1.2165935319,12.4348920457 H,-0.0197014161,1.9079358038,-11.4641744461 C,1.2483522521,-1.3845758983,13.8049131926 C,-1.1378158594,2.3843950185,-0.2594437592 C,-0.8264371518,1.7001732437,-1.4359529741 C,4.1767939866,-2.0063890238,-14.3269090973 C,1.9724391724,-5.35012708,-14.8102640028 C,-1.0149451635,2.2572937061,-2.7475214118 C,-1.4874238905,3.4913734871,-3.2041160293 C,-1.4240885223,3.4748993589,-4.6048959096 C,-0.9155400535,2.2288609484,-5.0024618202 C,-2.1464618134,-3.9252081642,-14.5136991837 C,-1.1623998707,1.9465546961,5.8604291571 C,-0.6600468538,1.6953556221,-6.3375535136 C,-0.2542458338,0.9299439854,6.2013578537 C,-0.1232600711,0.4679630511,7.5062486465 C,-0.8995091779,1.0274929434,8.5359112259 C -1 803914018 2 0517969071 8 203940245 C,-1.9352397173,2.497504533,6.895374835 C,-0.4685561737,2.5555839161,-7.4275232058 C,-0.2273885197,2.0621842643,-8.706010029 C,-0.1637302633,0.6802306354,-8.947636313 C,-0.3461609612,-0.1895246282,-7.855415014 C,-0.5935298057,0.3112870301,-6.5868826231 C,-1.1853165023,1.535125728,15.9822516816 C,2.3393180334,-0.3287958321,16.5284138473 C,2.2253993003,-2.5129022451,-13.0658107476 C,1.395584639,-3.2263715696,-13.942159066 C,1.6726782849,-1.7568232791,-12.0275891029 C,-1.3116186044,2.4231526737,4.4875259547 C,-1.1980380727,2.3693469269,2.2340862678 C,-1.7293727958,3.6100456785,2.5978634804 C,0.7111777296,1.131246695,-11.2083254832 C,-2.1020942231,0.5941078366,10.6392822527 B,-0.050763718,-0.2962655573,-0.1593025457

$\label{eq:cartesian Coordination of 2d} (AM1)$

-1.705462 hartree H,19.6378899861,-6.6200200413,-1.26972 H,-20.1734399996,0.1830100425,5.17951 H,-20.9530500028,-1.3100299559,4.52976 H,-26.0312599973,1.2594900548,9.73309 H,-26.8106300005,-0.2334899435,9.08335 H,-15.3313899883,5.5602100323,-2.30011 H,-15.5268399875,5.9538300327,-0.54899 H,-20.9627100006,-0.3003899559,2.22162 H,-20.1825599975,1.1924500425,2.87161 H,-19.0048600014,-0.65802996,0.69686 H,-18.2211799982,0.8326400384,1.34814 H,-19.0017200035,-1.66980996,3.01194 H,-18.2213800004,-0.1763899616,3.66235 H,-17.370029978,10.4379800366,-1.76358 H,-17.1748699789,10.0441400362,-3.51442 H,-19.0176399694,14.52892004,-4.72853 H,-19.2127999686,14.9227200405,-2.97772 H,32.6191799779,-10.5056700687,-4.91996 H,31.7247199754,-11.6818500668,-5.95649 H,21.8827499901,-4.7106200461,-2.22944 H,20.9876599876,-5.8868100442,-3.26601 H,20.8880000401,19.035419956,-5.94776 H,22.5110800411,19.5194099526,-5.30468 H,21.0839100409,19.4297199556,-4.19233 H,16.1817200036,1.7214599659,0.31862 H,15.9173700028,1.3154399665,-1.44465 H,13.5801999916,-4.0069900286,-0.98295 H,19.2118200314,14.9233299595,-2.97361 H,19.0164300306,14.53004996,-4.72451 H,23.9333899812,-8.9384400504,-2.34629 H,24.8280699837,-7.7623200523,-1.30951 H,24.0299399876,-5.8698200506,-2.76788 H,23.1351499852,-7.0461000487,-3.80444 H,29.1235099788,-10.0803300613,-2.38597 H,28.2289599763,-11.2565900594,-3.42265 H,27.9929600055,2.6258799411,8.94428 H,28.7727800024,1.1335599394,8.29361 H,20.7705200273,12.9626299563,-2.70716 H,20.5750900265,12.5693599567,-4.45808 H,17.8111300123,5.8416499625,-2.63845 H,18.0067800131,6.2350899621,-0.88742 H,22.906019998,-0.9526700482,6.04691 H,22.1261200011,0.5396999534,6.69756 H,22,9149500001,0.0579899517,3.7396 H,22.1349200033,1.5503099534,4.39033 H,20.9536599972,-1.3114300441,4.5291 H,20.1736100004,0.1809799575,5.17978 H,32.4020900042,2.0078799318,13.14197 H,31.912910007,3.3386099328,12.01412 H,32.6947600039,1.8424299312,11.36176 H,31.2716399763,-11.2395200658,-2.92435 H,30.3771399739,-12.415740064,-3.96096 H,30.4729799803,-9.3470700642,-4.3825 H,29.5784399778,-10.5233700623,-5.41911 H,28.7639500003,0.1229699394,10.60084 H,27.9841400034,1.6152799411,11.2515 H,22.4162900359,17.0534199528,-5.67063 H.22.6116700367.17.4466599524.-3.9199 H,28.3252099828,-8.1880000596,-3.84433 H,27.4306399803,-9.3643200578,-4.88095 H,12.0831100002,0.0758899746,-0.9174 H,18.2906400267,12.6806999615,-2.36708 H,18.0952600259,12.2873899619,-4.11799 H,20.1331800361,17.1663199576,-3.58029 H,19.9378000353,16.773049958,-5.3311 H,26.0811499787,-10.0975300549,-2.88449 H,26.9757399812,-8.9213100568,-1.84777 H,17.369400022,10.4381699634,-1.76053

H,17.1740200212,10.0448299638,-3.51146 H,16.4480600173,8.1958199654,-1.15394 H,16.2526800164,7.8024199658,-2.90491 H,15.3309000117,5.5604699677,-2.29819 H,15.5265500125,5.9535999673,-0.54699 H,-18.0962899741,12.2864900381,-4.12148 H,-18.2914399733,12.6803000385,-2.37065 H,-21.0852399591,19.4286700444,-4.19751 H,-22.5125799589,19.5179700474,-5.30969 H,-20.8895699599,19.033850044,-5.95286 H-16.1817099964.1.7218900341.0.31787 H,-15.9175699972,1.3154000335,-1.44533 H,-25.2824900173,-8.2068299468,-4.34036 H-26.1771900148-7.0307899449-3.30351 H,-24.8271900163,-7.7639699477,-1.3072 H,-23.9324500188,-8.9398399496,-2.34422 H,-18.9285699822,8.4772500399,-1.49628 H.-18.733299983.8.0834100394.-3.24715 H,21.4962400312,14.8120599547,-5.0646 H,21.691660032,15.2053299543,-3.31372 H.20.9627999994,-0.3004500441,2.22155 H,20.1822000025,1.1917499575,2.87245 H,18.732560017,8.0840899606,-3.24498 H,18.9280600179,8.4774299601,-1.49402 H.22.6805999861.-6.6033800478.-0.7711 H,21.7856899836,-7.7792900459,-1.80804 H,-4.7136000111,-5.2618899901,-2.11367 H,-21.692699968,15.2045200457,-3.31755 H,-21.4975099688,14.8107400453,-5.06835 H,5.9182599966,-1.5927300125,0.66894 H,8.3057499977,-1.0913900175,0.8695 H.9.1284699922.-3.7019100192.-2.5316 H,6.7192399912,-4.1744100141,-2.71699 H,-6.7192800088,-4.1742999859,-2.71699 H,-9.1285000078,-3.7017399808,-2.53161 H.-8.3057100023.-1.0909699825.0.86927 H,-5.9182300034,-1.5923599875,0.66873 H,-27.4301200197,-9.3663699422,-4.8782 H,-28.3247600172,-8.1903199404,-3.84133 H,-18.0071199869,6.2351200379,-0.88918 H,-17.8116899877,5.8411900375,-2.64012 H,-16.2533499836,7.8019500342,-2.90734 H,-16.4485199827,8.1958400346,-1.15646 H,-13.5801500084,-4.0068599714,-0.98219 H,-20.5328300115,-5.4455399568,-0.23066 H,-19.6372700139,-6.6205199587,-1.26839 H,-20.7713899727,12.9620300437,-2.71047 H,-20.5761899735,12.5682500433,-4.4613 H,-19.8500099774,10.7195900418,-2.10339 H,-19.6547899783,10.3257900414,-3.85423 H,-22.4177399641,17.0518700472,-5.67492 H,-22.6128899633,17.4456300476,-3.92427 H,-16.8894699924,3.5992900356,-2.03396 H,-17.0862599916,3.993530036,-0.28243 H,-14.402509993,3.3157000303,-1.6875 H,-14.6034099922,3.7025900307,0.06387 H,-29.5777600222,-10.5258799377,-5.41599 H,-30.4723600197,-9.3498599358,-4.37911 H,-31.2702800237,-11.2425899342,-2.92092 H,-30.3757200261,-12.418529936,-3.95779

H,-29.1223100212,-10.0829299387,-2.38292 H,-28.2277100237,-11.2589199406,-3.41985 H,-23.1349300148,-7.0472399513,-3.80244 H,-24.0297800124,-5.8712199494,-2.76564 H,-22.6798700139,-6.6045699522,-0.76917 H,-21.7849200164,-7.7802299541,-1.80634 H,-26.9747100188,-8.9234299432,-1.84509 H,-26.0800600213,-10.0993899451,-2.88205 H,-19.9391899647,16.771710042,-5.33566 H,-20.1343399639,17.1654800424,-3.58493 H.4.7135199889 - 5.2620500099 - 2.11363 H,-20.9875900124,-5.8875299558,-3.26439 H,-21.8827300099,-4.7115699539,-2.22759 H,-0.0000200085,-4.04291,-1.55297 H,-31.7238800246,-11.6848199332,-5.953 H,-32.6184100221,-10.5089099313,-4.9162 H,-24.8673599991,0.4170300524,5.25755 H,-24.087909996,1.9100000507,5.90731 H,-2.0083500105,-4.9911899958,-1.97952 H,-18.377700009,-4.2856099613,0.31193 H,-17.4810800115,-5.4566499632,-0.72873 H,-19.7369500075,-3.5514999584,-1.68858 H,-18.84111001,-4.7274899603,-2.72623 H,-17.567570005,-2.365089963,-1.11634 H-16.6630000075-3.5546699649-2.18149 H,-32.5511300286,-13.5822099315,-4.51901 H,-33.9171900266,-12.6177599286,-5.21609 H,-33.4480700261,-12.4031599296,-3.47941 N,3.711829995,-2.3895600078,-0.78751 N,-3.711820005,-2.3894099922,-0.78759 N,10.2645999957,-2.0288900216,-0.65931 N,-10.2645900043,-2.0285499784,-0.65945 O,1.2342299974,-1.2110500026,-0.21484 0,11.2392599928,-3.4381100237,-2.22192 O,-11.2393300072,-3.4382799763,-2.22156 Q.-15.9935200072.-3.4028999663.-0.20107 O,-16.4987000013,-0.5979699653,0.04028 O,15.9936199928,-3.4032100337,-0.20183 O,-14.2386299975,1.17316003,-0.17418 O,16.4987199987,-0.5983300347,0.04039 O,14.2386000025,1.17277997,-0.17332 0,-1.2341900025,-1.2110099974,-0.21485 H,30.7257300031,1.4920999353,9.81199 H,2.0082799895,-4.9912400042,-1.97953 H,-28.7726799976,1.1344900606,8.2935 H,-27.9933099945,2.6274600589,8.94324 H,-26.8199899984,0.7757700565,6.7755 H,-26.0405999952,2.2687400548,7.42526 H,-24.0785799981,0.9007500507,8.21514 H,-24.8579700012,-0.5922399477,7.5654 H,-30.714809999,0.4840400647,12.11796 H,-29.9355299958,1.976860063,12.76763 H,-17.0312300043,-2.0468699641,1.45661 H,-16.2392200011,-0.5292199658,2.12042 H,-22.1352699967,1.5512300466,4.38944 H,-22.9148599999,0.0582800482,3.73964 H,29.9459400063,2.9843399369,10.46264 H,20.5334099885,-5.4448200432,-0.23221 H,17.567309995,-2.365020037,-1.11732 H,16.6628299925,-3.5547900351,-2.18234

H,-12.0831699998,0.0760900254,-0.91806 H,-22.905400002,-0.9510599518,6.04752 H,-22.1259499989,0.5419500466,6.69725 H,26.1774999852,-7.0289300551,-3.30614 H,25.2828599827,-8.2052300532,-4.34274 H,-32.6946399961,1.8438000688,11.36157 H-31,913259993.3.3406400672.12.01299 H,-32.4018799958,2.0104000682,13.14166 H,-27.9839599966,1.6182100589,11.25105 H,-28.7633099997,0.1252500606,10.60133 H,-29.9462999937,2.9861400631,10.46155 H,-30.7256199969,1.4932500647,9.81184 C,-15.0091700052,-2.4610299684,-0.45054 C,-19.2048700096,-4.5393699596,-1.68151 C,-18.0259400094,-4.476759962,-0.73546 C,-17.0741400071,-3.371899964,-1.15519 C,-22.2247399991,0.4425400468,4.53644 C,-16.963710002,-0.9307199643,1.36588 C,-30.6280299966,1.5933200645,11.97227 C,-24.7686199989,0.5164400522,7.41829 C,-26.1299199976,1.160050055,7.57233 C.-28.0826099968.1.5187700591.9.09033 C,4.7386699932,-3.23032001,-1.18223 C,2.4839999937,-3.0065000052,-1.06719 C,2.753089991,-4.2701900058,-1.65294 C,-33.0538900265,-12.5849099304,-4.50852 C,7.9714899963,-1.7723500168,0.07132 C,8.910859995,-2.3550100188,-0.81707 C,8.4325399932,-3.2258700178,-1.82038 C,7.0735999926,-3.4953100149,-1.92491 C,-7.0736300074,-3.4951299851,-1.92496 C,-8.4325600068,-3.2256599822,-1.82044 C,-8.910860005,-2.3547099812,-0.81719 C,-7.9714700037,-1.7719899832,0.07114 C,-6.6176400043,-2.0514799861,-0.04702 C - 27.7932600193 - 9.1783799415 - 3.8334 C,-17.2942099867,6.2939700364,-1.75353 C,-16.9661899837,7.7430500357,-2.04292 C,-13.7406700062,-2.9308299711,-0.81103 C,-20.1697000119,-5.6329299575,-1.27556 C,11.3495099946,-2.5615400239,-1.34701 C,-11.3495400054,-2.5614499761,-1.34691 C,-20.0584799726,13.0209300422,-3.57482 C,-19.1370999773,10.7784900403,-2.96774 C,-21.9006499631,17.5073200461,-4.78923 C,-16.3730799915,4.0523200345,-1.14671 C,-15.1213399931,3.2643200318,-0.82884 C,-29.9409200218,-10.337949937,-4.37118 C,-30.9068600241,-11.4303099349,-3.96564 C,-28.7591900216,-10.2708499394,-3.42773 C,-23.4981900144,-6.8592299505,-2.75768 C,-22.3166300143,-6.792269953,-1.81399 C,-26.6115700192,-9.111329944,-2.88989 C,-20.6519699648,16.7124600435,-4.47126 C,4.1615599907,-4.4109300088,-1.72644 C,-21.351000012,-5.699499955,-2.21967 C,-0.0000100064,-3.05331,-1.08489 C,-1.2024700051,-2.4049299975,-0.77963 C,-32.0894100242,-11.4985399324,-4.90851 C,-24.1772699983,0.8013100509,6.05437

C,-2.4840100063,-3.0064099948,-1.06723 C,-2.753140009,-4.2700999942,-1.65297 F.0.0000600012,0.5824,-0.54533 F,0.0000299992,-0.37924,1.40937 H,26.8200900016,0.7750499435,6.77556 H,24.8585999987,-0.5940800523,7.56483 H,24.0787600019,0.8982699493,8.21549 H,26.8112699995,-0.2355500565,9.08282 H,26.0314400026,1.2567899452,9.73349 H,32.5527099714,-13.5789500685,-4.52255 H,33.4495799739,-12.3996300704,-3.48322 H,33.9183899734,-12.6142300714,-5.21998 H,19.7368299925,-3.5509900416,-1.69003 H,18.84103999,-4.7272100397,-2.72747 H,17.4815499885,-5.4565900368,-0.72968 H,18.378129991,-4.2853500387,0.31077 H,19.6538700217,10.3266799586,-3.85154 H,19.8493200226,10.7199799582,-2.10061 H,-10.4679600029,-1.366779978,0.05855 H,10.4680099971,-1.367300022,0.05884 H,-3.8013300031,-1.489429992,-0.38503 H.3.8013699969 -1.489590008 -0.38493 H,24.087560004,1.9088599493,5.90825 H,24.8674500009,0.4165299476,5.25756 H 18.2208100018.0.8321699616.1.34894 H,19.0049299986,-0.65787004,0.69675 H,18.2215399996,-0.1782000384,3.66258 H,19.0023199965,-1.67098004,3.01124 H,16.2393599989,-0.5307600342,2.1206 H,17.0318099957,-2.0478000359,1.45591 H,30.715460001,0.4815399353,12.11753 H,29.9357200042,1.973709937,12.76814 H,16.8890900076,3.5995399644,-2.03279 H,17.0861000084,3.993299964,-0.28117 H,14.6033100078,3.7021599693,0.06537 H.14.402190007.3.3157399697.-1.68608 H,26.0402500048,2.2673799452,7.42625 C,30.0353200039,1.8755699368,10.60888 C,-18.215669982,8.5361400384,-2.36064 C,20.9786100321,15.2645099558,-4.17794 C,20.2727100002,0.0830399573,3.01875 C,18.215030018,8.5365399616,-2.35826 C,22.3171899857,-6.791210047,-1.81583 C,1.2024799949,-2.4049700025,-0.77962 C,-4.1616100093,-4.4107799912,-1.7265 C,-4.7386900068,-3.23013999,-1.18231 C,-20.9797799679,15.2634700442,-4.1819 C,6.1481799939,-2.9155900129,-1.04609 C,-6.1481900061,-2.9153599871,-1.04618 C,6.6176499957,-2.0518000139,-0.04686 B,0.000029999,-0.48605,0.14261 C,18.3247099994,-0.2740900386,1.50132 C,18.9118499988,-0.5620500398,2.86555 C,16.963929998,-0.9316200357,1.36579 C,30.6282800033,1.5908699355,11.97249 C,16.3728000085,4.0522999655,-1.14535 C,15.1211300069,3.2641599682,-0.82753 C,26.1299600024,1.158639945,7.57267 C,24.7688600011,0.5146599478,7.41836 C,26.7215500018,0.8731899437,8.93636

C,33.0552399735,-12.5815400696,-4.51224 C,19.2049699904,-4.5389800404,-1.68283 C,15.2327099977,-1.0865500321,-0.23342 C,14.1652699996,-0.1830900298,-0.40981 C,18.0262099906,-4.476600038,-0.73654 C,19.1362900227,10.7790999597,-2.96484 C,20.1701099881,-5.6323300425,-1.27703 C,17.0740899929,-3.371940036,-1.1561 C,-12.8926800014,-0.6554399729,-0.77456 C,-22.8159899997,0.157630048,5.90041 C.25.6461999831.-8.017090054.-3.29803 C,-14.1652900004,-0.1827899702,-0.41023 C,-31.9835199953,2.2321400673,12.13032 C,-15.2326900023,-1.0862199679,-0.23347 C,-28.6740499974,1.2339500604,10.45422 C,-30.035279996,1.8774200632,10.60845 C,-12.6881800043,-2.0229499733,-0.95328 C,-20.8635100004,-0.2013399561,4.38269 C,-26.7213099982,0.8752000563,8.93624 C,-16.0443399884,5.5014400338,-1.43576 C,-20.2726799998,0.0838000427,3.01855 C,-18.3247000006,-0.2735599614,1.50116 C,-18.9116200012,-0.5609399602,2.86561 C,-17.887739979,9.9852200377,-2.65003 C-19.7305499695.14.4700100415.-3.86418 C.32.0904199758,-11.4954100676,-4.9121 C,21.351229988,-5.698670045,-2.22137 C,21.5775300399,18.9521099546,-5.07306 C,15.4720600038,1.8140299674,-0.54625 C,12.6881799957,-2.0231200267,-0.95333 C,13.7406999938,-2.9310100289,-0.81146 C 19 7294600305 14 4709099585 -3 86028 C,24.4647199833,-7.9502900515,-2.35424 C,23.4985699856,-6.8579500495,-2.75976 C,28.7602199784,-10.2684100606,-3.4307 C,28.0826500032,1.5171399409,9.09072 C,20.0574900274,13.0217599578,-3.57139 C,17.2937500133,6.2941499636,-1.75166 C,22.8162200003,0.156069952,5.90044 C,22.2247700009,0.4415599532,4.53669 C,20.8637399996,-0.2026800439,4.38268 C,31.9835700047,2.2300599327,12.1308 C,15.0092199948,-2.4612900316,-0.45091 C,30.9080499759,-11.4274000651,-3.96898 C,29.9417699782,-10.335290063,-4.37439 C,28.6743000026,1.2317299396,10.45439 C,21.8993000369,17.5085899539,-4.78474 C,27.7939499807,-9.1761800585,-3.83624 C,12.8926499986,-0.6556700271,-0.7742 C.18.8082700257.12.2282599604.-3.25374 C,20.6507100352,16.7135799565,-4.46682 C,26.6124299808,-9.109350056,-2.89249 C,17.887010021,9.9856899623,-2.64718 C,16.9656400163,7.7432999643,-2.0406 C,16.0439600116,5.5014799662,-1.43395 C,-18.8091799743,12.2275700396,-3.25711 C,-21.5789699601,18.9507700454,-5.07804 C,-15.4721699962,1.8142600326,-0.54712 C,-25.6456700169,-8.018829946,-3.29557 C,-24.4640100167,-7.9518099485,-2.35201

C,24.1773100017,0.8001099491,6.05466

Cartesian Coordination of 3d (AM1) -1.6713693 hartree

H,-11.1100233575,-1.5411788301,0.577434327 H,-9.2707201871,-0.5236991174,-2.8420600367 H,-8.593173785,-0.6588047347,-4.541846761 H,-2.0687410833,17.0712073772,-2.2899822495 H,-1.0445149045,17.2393793796,-0.8043104914 H,-2.8409103052,17.0617191637,-0.6528225884 H,-0.8654190476,14.9297108423,-1.7302204073 H,-1.6328909131,14.9233581224,-0.0963804856 H-12 5287008424 4 4934950463 5 1807866267 H,-13.279379702,3.1067135668,6.0594359195 H,-5.6503943799,-9.2495040406,12.690697857 H,-4.0530238626,-9.548217105,11.9048006972 H,-2.9847008602,10.4810782025,-2.6858091628 H,-3.7104310642,10.5068043968,-1.0331615364 H,9.9060879845,-11.3152258876,9.3520099051 H,8.3040000476,-11.8304487077,8.6990499553 H,4.4161736243,8.7389267976,-2.586453882 H,5.57215712,8.7944938491,-1.2011006614 H,4.9151881377,6.4315063951,-0.5792336235 H,3.7998842824,6.3804108071,-1.9977983057 H,3.0650025111,12.6488330326,0.7108230332 H,1.8488854216,12.5625754633,-0.620349024 H,14.5365375701,6.9755582499,9.3909654227 H,13.4482239481,8.2796157432,8.7797814587 H,9.1987062163,-8.903520024,9.1847934144 H,7.5965749316,-9.418706257,8.5318531367 H.8.9290244433.-5.5809781275.2.2306334039 H,10.531055775,-5.0649855878,2.8835449512 H,13.4363130285,5.462387951,2.7896101914 H,14.5245847616,4.1582021564,3.4007375347 H,11.4590824979,3.9180733076,3.0151377 H,12.5475434693,2.6138638994,3.6260628984 H,12.7733562623,4.0091055051,0.868070998 H,13.861714168,2.7047821776,1.4790350774 H,16.5538950053,11.5575260452,12.9093429822 H,15.8872658428,9.9073839975,13.2481889613 H,14.7961374204,11.2148252023,12.635428059 H,3.6805976786,8.3579130513,0.3998121233 H.2.5215803482.8.2956630162.-0.9827561419 H,15.1998058929,8.4298579155,11.3127370754 H,14.1115491454,9.73384686,10.7015839164 H,13.2104612544,4.0676600201,5.547759535 H,12.1221018294,5.3717816623,4.9366543233 H,11.2194516645,-0.2993484772,-0.2252877888 H,10.1290519607,1.0050674739,-0.8337916166 H,13.1991942632,1.2522967115,-0.4427348724 H,12.1099956066,2.5571691003,-1.0534139927 H,12.5259722519,-0.2366954814,-2.3849070831 H,11.4227141873,1.0925715827,-3.007315983 H,16.0876942295,11.2766293856,10.4746597203 H,17.1758866098,9.972698871,11.0857848449 H,9.371776337,-4.3034049044,0.1294117713 H,10.973645179,-3.7858796037,0.7834200149 H,12.1319413443,-4.9089716256,-1.1566175802 H,10.5341374399,-5.4366543256,-1.8084946046 H,13.8734699881,5.5215760329,7.4693859683

H,12.7851429486,6.8256575894,6.8582173282 H,14.0992794185,6.9160849864,4.7111514284 H,15.1875510629,5.6119687625,5.3223360831 H,14.7622953113,8.369959401,6.6326904268 H,15.850578087,7.0658801272,7.243889124 H,-0.7119819142,16.4063090702,1.3855471256 H,0.5577131483,16.5336055141,2.6715013844 H,-1.1812980508,16.3250011419,3.1345989459 H,7.4825990961,2.6105755432,-2.4235389179 H,6.4838208753,2.5577840334,-3.9274989641 H,8.5431023264,3.0217049279,-5.3121568138 H,9.5412858912,3.0860650563,-3.8098118044 H,-9.2192673789,-5.6623496979,4.0689034398 H,-7.6218829667,-5.9623104705,3.2831482979 H,-7.8309501382,-8.4195343887,3.7964841939 H,-9.4282636494,-8.119441847,4.5821427906 H,-10.8413603639,-2.3039958814,-6.4687161394 H,-9.2967990906,3.8180106196,-3.1818513528 H,-8.5904340431,3.7105030652,-4.8398074443 H,-6.5429414488,-8.3525743076,10.5354367649 H,-4.9455595206,-8.6514011727,9.749536238 H,-7.4353568445,-7.4557162429,8.3800610398 H,-5.8379764635,-7.7547551105,7.5942037249 H,8.0409406153,-8.1391648147,6.4315591116 H.9.6430624381.-7.6238574285.7.0844710808 H,7.111278438,4.9230462535,-4.4528099126 H,8.1730877471,4.9824151084,-2.9939459006 H,8.8229311397,0.6896026998,-3.2632185621 H,7.9506079559,0.6359553282,-4.8763931194 H,10.7950177761,-8.7558523601,5.1515800076 H,9.1930054644,-9.2714740514,4.498670724 H,3.1227686331,10.6508555128,-1.6085654435 H,4.3127467555,10.716934561,-0.2527994534 H,11.2393954132,-7.4763124076,3.0513014465 H,9.6374744429,-7.9924223127,2.3984491991 H,-3.1612570413,-10.4449251768,14.0584300817 H,-4.7584989214,-10.1462750706,14.8442491259 H,-8.5122464879,-5.0674463565,1.1268531748 H,-10.1096547108,-4.7657003832,1.9134544571 H,8.4851445527,-6.8598600243,4.3311759255 H,10.0872413995,-6.3443206093,4.9840466118 H,10.7958820775,2.4645463287,1.0937925724 H,11.8847470572,1.1601468883,1.7041738104 H,7.1521527189,-10.6983984819,10.6320730715 H,8.7542623794,-10.1832596643,11.28501757 H,9.4614649216,-12.5951125865,11.4525300153 H.7.8594398298.-13.1102550308.10.79960305 H,10.3505726568,-10.0355031908,7.2518140088 H,8.7485070042,-10.5508632168,6.5988685801 H,11.6128464695,-4.1200454063,-5.6084276455 H,2.4646447777,10.2938935354,1.3986473188 H,1.2703518226,10.2109615848,0.0475758326 H,6.7082851478,-11.9776355952,12.7306448845 H,8.3102569366,-11.4625501708,13.3835323344 H,15.4253519713,9.823891665,8.5542148693 H.16.5136321902.8.5198454548.9.1654008924 H,1.255554846,12.2392505621,2.4039595464 H,0.0332990647,12.124182462,1.0802942772 H,1.8151648986,14.5904187785,1.6680883981 H,0.5710027348,14.4702583878,0.3635544379

H,-9.6233734537,-6.6317301636,-0.5191706475 H,-11.2189800245,-6.3195095201,0.2637172193 H,-1,920031621,12,7083667935,-2,2364937007 H,-2.6546479757,12.7163064556,-0.587800416 H,0.0362992776,14.1714900983,3.400254981 H,-1.205014651,14.0499333937,2.0945882772 H,11.6839383915,-6.1966695967,0.950897587 H,10.0822793916,-6.7142138427,0.2981506908 H,-3.910763863,14.8308364659,-1.1706834121 H,-3.1406157258,14.8280779127,-2.8031749458 H,-4.9552223231,12.6210538432,-1.6175898854 H,-4.2140545565,12.5986663082,-3.2633898359 H,-5.1588502533,6.0243345678,-3.4980834344 H,-5.8677292575,6.0927163675,-1.8392600881 H,-8.1853653226,6.0104885471,-2.8322520338 H,-7.469085948,5.9241018069,-4.4870292682 H,-6.2736789184,3.8004283776,-3.8643799579 H,-6.9727545811,3.8900297472,-2.202296492 H,-6.0170060688,10.4138125715,-2.0505311384 H,-5.2837023561,10.3700732687,-3.6994446392 H,-4.2604041475,-12.0057571753,12.4175070193 H,-5.8577003371,-11.7070278114,13.2033652492 H,-5.1532066962,-11.1088825026,10.2619707919 H,-6.7505631175,-10.8100177708,11.0478619859 H,-6.0458796343,-10.2121815626,8.1068151098 H,-7.6432226631,-9.9130819438,8.8926772652 H,-4.9503538356,-12.5967413044,15.3911881232 H,-3.4473503591,-11.8650103742,16.0895700527 H,-3.3488250666,-12.8962215226,14.6032640181 H,-10.9867645589,-3.8394322965,-0.2560811534 H,-9.4001992828,-4.1872587924,-1.0964514709 H.-4.0633406627,8.2518971487,-3.1055161879 H,-4.7810290759,8.2988734249,-1.4497868762 H,-7.0929502414,8.2097066465,-2.4553805252 H,-6.3677137528,8.1445785579,-4.107177362 H,-8.3275386064,-6.5589633914,6.2245518953 H,-6.7301538833,-6.85833464,5.4387662284 H,-3.9684868034,-3.9832958407,-8.6088488912 H,3.5668672261,-3.2049852657,-8.9954527394 H,-8.9333715348,-5.7197541761,-5.4225512202 H,-0.0803436958,-3.376692845,-5.9927542939 H,5.6216014731,-2.0420486297,-9.4280432368 H,-4.6979683478,-3.914643486,-4.4233380204 N,10.0484563468,-3.0837419279,-8.7712501042 N,-3.8408580258,-3.9115673225,-7.6294793527 N,3.5284071444,-3.1805364111,-8.0062185791 N,-10.2967289083,-5.1346099575,-7.6966812484 O,10.0301075423,0.8757899903,-4.9686702744 O,10.5196364506,-0.7693943596,-2.6805304867 O,-11.1314072939,-5.0333364141,-1.9534955102 O,-10.5941757144,-2.188997331,-1.8834359102 O,-10.6783712871,-0.7888933801,-4.3730466513 0,12.2926175721,-3.0017306134,-8.3688326179 O,11.5430814641,-3.4316261548,-3.1686201814 O,-1.4586761096,-3.5574716231,-9.0588165258 O,-12.4680055279,-5.4104065615,-7.0499006143 O,0.9917606787,-3.3174828439,-9.1833627892 H,9.065029402,-4.0999294473,-6.4509216751 H,-2.0404399927,-3.5167208058,-4.8559160023 H,-8.5962958991,-3.8580520138,-9.3440001948

H,9.488588178,-4.0485194814,-10.5597488042 H,11.2892648738,-3.8683708952,-10.2809471349 H,10.2902177256,-2.4173394416,-10.7615740128 H,-9.7297633268,-6.1914797303,-9.4297081873 H,-11.5010239764,-6.2942581498,-8.9765177275 H,-10.8321699238,-4.7590379765,-9.7052107634 H,7.9794225686,-2.0216671426,-10.1205125566 H,6.6877999723,-4.1127032582,-5.7747506754 H,-6.5451668636,-5.2409196774,-5.0075666636 H,4.6963393475,-3.091657201,-4.9011143293 H,1.9808789802,-3.2166838771,-5.0575701655 H,-6.2273725326,-3.3780812274,-8.9077013429 H,-11.0837894058,1.3994100174,1.5314202007 H,-11.8349471937,0.0122225968,2.4095489253 H,-8.7235366894,-7.524291279,1.6413523091 H,-10.3208588488,-7.2226128133,2.426702593 H,-14.0819407178,1.1425229672,2.2734301371 H,-13.3312776972,2.5294939065,1.3948710919 H,-12.5570861144,1.5594567078,4.234564382 H,-11.8063136315,2.946348393,3.3560415277 H,-14.0535023683,4.0762700582,3.2196533744 H,-14.8040970554,2.6894519347,4.0983178243 H,-11.3155903898,-6.0288942584,-4.2781550874 H,-10.4351701261,1.6267604869,-3.5075575535 H -9.738992459.1.4983263436 -5.1677278527 H,-8.0985450348,1.6929813582,-2.5391408261 H,-7.4098970104,1.5824559198,-4.2052003142 C,9.2662106385,-9.7532421807,7.1943460118 C,8.3119776745,-3.6434935275,-7.1140893976 C,2.2393980862,10.6765505458,0.3682988569 C,7.7922135385,-12.2618836191,12.7902750007 C,15.4680243964,8.9228301556,9.2213650808 C,1.0044223032,12.6039886266,1.3731265066 C,0.8404687423,14.1085156862,1.392117846 C,-10.2136140246,-5.869761204,0.0531276605 C,-2.8273658946,13.0192484793,-1.6544050404 C,-0.2314249443,14.5346016732,2.3728746076 C,10.5991668858,-5.9159117405,0.8934299438 C,-2.9911436702,14.5218462433,-1.7343227744 C,-4.0466640842,12.3031460036,-2.1941299497 C,-6.0515644694,6.3672167416,-2.9114986686 C,-7.2915205755,5.6578046682,-3.4116802802 C,-7.1602873928,4.1559108929,-3.2760509962 C,-5.1128279392,10.085005296,-2.6278792309 C,-4.8599312473,-11.2440229175,12.9823755205 C,-5.7526052134,-10.3472301783,10.8271376533 C,-6.645210367,-9.4504245588,8.671914458 C,-3.9658760444,-12.1340240382,15.1378516382 C,-10.3872669524,-4.6214257864,-0.7939510541 C,-4.9614094377,8.5827718505,-2.520182577 C,-6.1935939586,7.8692729676,-3.0335609694 C,-10.7438041188,-2.1707583451,-4.310473266 C,-7.7282456357,-7.3208093612,5.6595243829 C,-6.8125572045,-3.9047502482,-8.1379529209 C,2.682102614,-3.1976084037,-5.8877701861 C,4.0961679445,-3.1355085784,-5.8048817696 C,8.705170736,-3.0587033693,-8.3381443701 C,-7.0013421738,-4.9324330392,-5.9616308372 C,6.976759872,-3.6494504898,-6.7315304613 C,7.7066035167,-2.4870039831,-9.1601604571

C,-10.6035806426,-5.6197699058,-9.0205915086 C,-8.9482222332,-4.8249469238,-7.4158517646 C.-8.3425674649.-5.2046576093.-6.1977225025 C,-0.1339166584,-3.3973619875,-7.0859010543 C,1.0272214583,-3.3090970203,-7.8631700742 C,2.3401022928,-3.2292778313,-7.2639973338 C,6.3731914778,-2.5063856979,-8.7708119502 C,-4.1916930624,-3.8815792824,-5.3833087263 C,5.9901947958,-3.0893681005,-7.5554903796 C,-6.2170140758,-4.2859528407,-6.9279648118 C,-8.1546590862,-4.1671384519,-8.3834441063 C,-2.6008560865,-3.6950561245,-7.0126329123 C,10.2892646173,-3.3693692273,-10.1654533654 C,-2.8080543166,-3.6712921103,-5.6097031389 C,4.6022111382,-3.1281255801,-7.1335217885 C,-4.8150876871,-4.0318836058,-6.6526189271 F,-0.2230616443,-4.3601571058,-10.6902867422 F,-0.4222456586,-2.2023741649,-10.4602785847 H,11.3961501414,-2.4788403154,-1.3253857139 H,9.8066742469,-3.0334742007,-2.0397394938 H,10.2015690493,-0.3476103906,-7.2442797449 H,-13.2511418024,6.0407833912,7.005552534 H,-14.0017940733,4.6540487782,7.8842456013 H,-15.5264353644,4.236658057,5.9231085353 H-14.7758353768.5.6234105747.5.0444062532 H,-16.9423945476,10.2641981726,10.5175455583 H,-17.6929536767,8.8776384415,11.3961701234 H,-11.8657159057,-0.5738395112,-2.2881771963 H,-12.6229083416,-1.9871834568,-1.3934995354 H,-12.6089540445,0.9840402472,-0.4300267291 H.-13.3603357174.-0.4036224419.0.4484791934 H,-10.3573050577,-0.153523254,-0.299178643 H,-8.5358017835,-9.0162160032,6.7374389301 H,-6.9384761089,-9.3156844584,5.951650924 H,-15.4437385005,10.7072869282,12.492020501 H,-16.1963271877,9.3169927859,13.3730045353 H,-17.1960962966,10.7668138287,12.9479628948 H,-15.4470085272,7.7491367159,11.5339732962 H,-14.696400005,9.1357644917,10.655311524 H,-16.9713485371,7.3313466479,9.572560262 H,-16.2207317845,8.7180318581,8.6938577902 H,-13.9736388276,7.588143507,8.8303194017 H,-14.7242864743,6.2014395645,9.7090221046 H,-16.2488699676,5.7839757581,7.7478525444 H,-15.4982570307,7.1706948263,6.8691398251 H,6.8553345697,6.8825886186,-2.1196629247 H,5.7418040473,6.8288975574,-3.5394914373 H,6.1794565934,4.5153578184,-1.5250511114 H,5.1170946988,4.4670051678,-2.9839042227 H,7.3990992301,-14.3906849697,12.9326824594 H,7.4929740224,-13.5264216626,14.5221614323 H,9.005364929,-13.8741959201,13.5873265837 C,11.1391882759,-2.8186445916,-7.9386150927 C,-11.336349292,-4.9704691288,-6.7771287889 C,-1.3627899118,-3.5372914528,-7.7417028559 C,11.2386127795,-3.0945618674,-5.4683626782 C,14.4938271063,7.876638466,8.7238545446 C,10.0134932152,-5.8628094893,2.2881972918 C,13.4789812893,4.561213337,3.4566048669 C,12.5046805687,3.5150795539,2.9591335987

C,12.8161150105,3.1078315849,1.5349423669 C,15.8249256728,10.7862784698,12.5617935124 C,10.3518660607,-0.4656893994,-5.0880446938 C,3.4841540542,8.75274253,-0.6318670666 C,15.1570387634,9.3306908706,10.6453397205 C,13.1677017186,4.9687922224,4.8807177522 C,11.1775671118,0.6102355585,-0.8799961159 C,12.153571742,1.6556346928,-0.3867321229 C,11.5048584307,0.2184830849,-2.3088633861 C,16.1307691651,10.3771406108,11.144228268 C,10.4565837956,-4.5841487884,0.1880071424 C,11.0440395235,-4.6415338613,-1.2049244687 C,13.8307451102,6.422673766,6.8022974705 C.14.1419438283.6.0149591727.5.3782083673 C,14.8049696381,7.4688589324,7.2997780837 C,-0.4002162295,16.0319175222,2.3923492828 C,7.3975124627,3.0169713591,-3.466095654 C,10.6935535161,-1.250317852,-3.9677153125 C,11.1272962649,-2.5764256691,-4.1657789194 C,8.6227752213,2.6304177357,-4.2647745297 C,-8.6201244512,-6.4244235606,3.5040097812 C,-8.4300033381,-7.6573380683,4.3612948986 C,-10.8785163835,-2.8613561009,-5.5212723634 C,-8.4090985759,3.4527732111,-3.7629751416 C -5.9435154516 -9.1141893608.9.9702462394 C,-6.8359845147,-8.2174220754,7.8149336386 C,9.1252978258,-8.4214334909,6.4889847769 C,7.2396529358,4.5216302159,-3.4130696756 C,8.778540203,1.1209058259,-4.2979562777 C,9.710616939,-8.4737375496,5.0940758251 C,3.3422933826,10.2588665989,-0.5804785941 C.10.1549145111.-7.194487697.2.9937450698 C,-4.1582010261,-10.9092703467,14.2814539238 C,-9.5109548797,-5.5283645367,1.3486470743 C,9.5695374535,-7.1419876445,4.3886263016 C,11.8415484397,2.0617369157,1.0377785314 C,8.2364790315,-10.980809256,10.6895034412 C,8.3772274644,-12.3125338282,11.394822128 C,8.6809138067,-9.7010456162,8.5892664483 C,-12.4103961933,0.1815382252,0.3287201422 C,-11.3106066653,-0.7296727393,-0.1701997585 C,-12.0338696844,0.8147474145,1.6511325987 C,-9.3220643684,-6.7615698461,2.2060062848 C,-13.1319729279,1.727385806,2.1536478515 C,-12.7562961127,2.3615197285,3.4757293595 C,-13.8541216791,3.2742766428,3.9785167955 C,-11.1358114445,-4.9432483794,-4.2958284978 C,-9.5489174397,1.2600974243,-4.0887916277 C,-8.2895630671,1.9509989735,-3.6143006685 C.-9.4251430611.-0.2428271556.-3.9171572024 C,-1.9441625945,16.7342097486,-1.2325405598 C,-1.7848700365,15.2374660269,-1.1650098444 C,-13.4786780912,3.9086742513,5.3005212843 C,-5.0509384547,-10.0111091409,12.125513613 C,-3.8874671608,10.8007200458,-2.1014272918 C,8.8217466155,-11.0328881287,9.2945691358 C,4.6096229496,8.3398181407,-1.5558986394 C,4.7513683706,6.8339046662,-1.6137088295 C,2.09077973,12.1823923406,0.4071692208 C,5.9050730582,6.4267649672,-2.5049164337

C,6.0525408629,4.9213986912,-2.5633121668 C,7.9301631023,-13.5858507543,13.4963257826 C,10.8852306169,-3.2990645107,-1.8967129805 C,10.9106506062,-2.2930009982,-6.5609661388 C,10.4573443853,-0.9845029318,-6.3848420511 C,-14.2011206218,5.4559700907,7.1252987663 C,-14.5764541796,4.8214677887,5.8033186378 C,-16.743457274,9.4641068296,11.278817957 C,-11.7053379893,-1.3522454461,-1.4964152126 B,-0.2832660529,-3.3476067714,-9.9268135557 C,-11.0826747552,-4.2422743972,-5.4995881552 C,-10.8073742371,-2.8544617094,-3.0792123271 C,-16.3743031238,10.0982319487,12.5948850136 C,-15.6462733127,8.5507647659,10.7747401274 C,-16.021357751,7.9161661184,9.4528599252 C,-14.9236223573,7.0033369735,8.950054156 C,-15.2988855456,6.3687803124,7.6280820145 C,-7.5377020205,-8.5537593922,6.5166371658 C,-10.9943847862,-4.2511795375,-3.0795907018

[S5 (as a complete ref. 9)] Gaussian 03 (Revision C.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

4. Anion-binding properties

Supporting Figure 6 UV/vis absorption spectral changes (left) and corresponding titration plots and 1:1 fitting curves (right) of (a) **2b** $(1.0 \times 10^{-5} \text{ M})$ upon the addition of (i) Cl⁻ and (ii) CH₃CO₂⁻ and (b) **3b** $(1.0 \times 10^{-5} \text{ M})$ upon the addition of (i) Cl⁻ and (ii) CH₃CO₂⁻ in CHCl₃. Anions were added as tetrabutylammonium (TBA) salts.

Supporting Figure 7 Fluorescence emission spectral changes of (a) **2b** $(1.0 \times 10^{-5} \text{ M}, \text{ excited at 525 nm})$ upon the addition of (i) Cl⁻ and (ii) CH₃CO₂⁻ and (b) **3b** $(1.0 \times 10^{-5} \text{ M}, \text{ excited at 515 nm})$ upon the addition of (i) Cl⁻ and (ii) CH₃CO₂⁻ in CHCl₃. Anions were added as TBA salts. Under the conditions excited at each absorption maximum, there are negligibly small changes in spectra by the addition of anions in (a)(i) and (b)(i,ii).

5. Formation of supramolecular gels

Scanning electron microscopy (SEM). SEM images were obtained with a HITACHI S-4800 scanning electron microscope at acceleration voltages of 10 kV using a silicon (100) substrate. A platinum coating was applied using a HITACHI E-1030 ion sputter.

Synchrotron X-ray diffraction analysis (XRD). High-resolution XRD analyses were carried out using a synchrotron radiation X-ray beam with a wavelength of 1.00 Å on BL40B2 at SPring-8 (Hyogo, Japan). A large Debye-Scherrer camera with a camera lengths of 531.527 (xerogel of 2d prepared from CH_2Cl_2), 535.504 (xerogel of 2d prepared from 1,4-dioxane), and 530.981 (solid state of 3d) mm was used with an imaging plate as a detector, where the diffraction pattern was obtained with a 0.01° step in 2 θ . The exposure time to the X-ray beam was 30 (xerogel of 2d prepared from CH_2Cl_2 and solid state of 3d) and 10 (xerogels of 2d prepared from 1,4-dioxane) sec.

Supporting Figure 8 Photographs of gels, precipitates, or solutions of **2d** (left) and **3d** (right) (10 mg/mL) obtained from (a) octane, (b) cyclohexane, (c) CH₂Cl₂, (d) CHCl₃, (e) 1,4-dioxane, and (f) THF.

Supporting Figure 9 Phase transitions of (a) 2c and (b) 2d in (i) CH₂Cl₂, (ii) CHCl₃, and (iii) 1,4-dioxane (10 mg/mL).

Supporting Figure 10 UV/vis absorption (left) and fluorescence emission (right, $\lambda_{ex} = \lambda_{max}$) spectra of **2d** at 1×10^{-5} M (black) and 10 mg/mL (red): (a) octane, (b) CH₂Cl₂, (c) CHCl₃, and (d) 1,4-dioxane. The concentration of 10 mg/mL in CH₂Cl₂, CHCl₃, and 1,4-dioxane provides supramolecular gels.

Supporting Figure 11 UV/vis absorption (left) and fluorescence emission (right, $\lambda_{ex} = \lambda_{max}$) spectra of 3d at 1 × 10⁻⁵ M (black) and 10 mg/mL (red): (a) cyclohexane, (b) CH₂Cl₂, (c) CHCl₃, and (d) 1,4-dioxane. The concentration of 10 mg/mL in cyclohexane, CH₂Cl₂, CHCl₃, and 1,4-dioxane provides solutions. Cyclohexane was used due to poor solubility of 3d in octane.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Supporting Figure 12 Variable-temperature UV/vis absorption spectra of **2d** $(1.0 \times 10^{-5} \text{ M})$ (a) in octane from 60 to -50 °C (left) and from -50 to 60 °C (right), (b) in CHCl₃ from 60 to -60 °C (left) and from -60 to 60 °C (right), and (c) in CH₂Cl₂ from 30 to -20 °C (left) and -20 to 30 °C (right). UV/vis absorption spectra in CH₂Cl₂ and CHCl₃ showed the dramatic changes such as blue-shifted bands at low temperatures (< -5 °C), suggesting the formation of H-aggregates even in diluted solutions.

Supporting Figure 13 Variable-temperature UV/vis absorption spectra of 3d (1.0×10^{-5} M) in CHCl₃ from 60 to $-60 \degree$ C (left) and from -60 to $60 \degree$ C (right).

Supporting Figure 14 FT-IR spectra of **2d** (a) in octane $(2.5 \times 10^{-3} \text{ M})$, (b)(i) in CH₂Cl₂ $(2.5 \times 10^{-3} \text{ M})$ and (ii) as xerogel from CH₂Cl₂, and (c)(i) in 1,4-dioxane $(2.5 \times 10^{-3} \text{ M})$ and (ii) as xerogel from 1,4-dioxane at room temperature. Arrows indicate amide N–H and C=O vibration modes.

Supporting Figure 15 Variable-temperature ¹H NMR spectral changes of **2d** (a) in octane- d_{18} (1 × 10⁻³ M) from 40 to -40 °C, (b) in CDCl₃ (5 × 10⁻³ M) from 60 to 0 °C, and (c) in CD₂Cl₂ (5 × 10⁻³ M) from 30 to 0 °C. Impurity included in octane- d_{18} is indicated as X.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

Supporting Figure 16 Variable-temperature ¹H NMR spectral changes of 3d in CDCl₃ (5 × 10⁻³ M) from 40 to 0 °C.

Supporting Figure 17 SEM images of xerogels prepared from (a) CH₂Cl₂ and (b) 1,4-dioxane of 2d (10 mg/mL).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Supporting Figure 18 XRD patterns of (a) xerogels of 2d prepared from (i) CH_2Cl_2 and (ii) 1,4-dioxane and (b) solid state of 3d. Only assignable peaks are indicated. The measurements were conducted to the xerogels (for 2d) in sample tubes frozen and pumped at 0 °C or -40 °C.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Supporting Table	e 2 Summary of XRD data of (a) xerogels of 2d prepared from (i) CH ₂ Cl ₂ and (ii) 1,4-dioxane and (b)
solid state of 3d .	Lattice parameter of hexagonal columnar structure of 3d : $a = 3.13$ nm, $c = 0.44$ nm, $Z = 1$.

	q (nm ⁻¹)	$d_{\rm obs}({\rm nm})$	$d_{\rm cal}({\rm nm})$	hkl
(a) (i)	0.90	6.96	6.96	001
	1.78	3.51	3.48	002
	2.68	2.34	2.32	003
	3.54	1.78	1.74	004
	4.51	1.39	1.39	005
	5.66	1.11	1.16	006
(a) (ii)	1.06	5.91	5.91	001
	1.92	3.28	2.96	002
	3.20	1.96	1.97	003
	4.26	1.48	1.48	004
	5.31	1.18	1.18	005
	6.29	1.00	0.99	006
	7.44	0.84	0.84	007
(b)	2.31	2.71	2.71	100
	3.98	1.57	1.56	110
	4.64	1.35	1.36	200
	6.30	1.00	1.02	210
	6.95	0.90	0.90	300

Supporting Figure 19 Possible packing model structures of (a) 2d (the value is derived from the xerogel from CH_2Cl_2) and (b) 3d.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

6. Anion-responsive behaviors of supramolecular gels

Supporting Figure 20 Photographs of precipitates or solutions of (i) 2d and (ii) 3d (10 mg/mL) with 1 equiv of TBACl obtained from (a) octane, (b) cyclohexane, (c) CH_2Cl_2 , (d) $CHCl_3$, (e) 1,4-dioxane, and (f) THF.

Supporting Figure 21 UV/vis absorption (left) and fluorescence emission (right, $\lambda_{ex} = \lambda_{max}$) spectra of **2d** (10 mg/mL) with 1 equiv of TBACl in (a) octane, (b) CH₂Cl₂, (c) CHCl₃, and (c) 1,4-dioxane.

Supporting Figure 22 UV/vis absorption (left) and fluorescence emission (right, $\lambda_{ex} = \lambda_{max}$) spectra of **3d** (10 mg/mL) with 1 equiv of TBACl in (a) cyclohexane, (b) CH₂Cl₂, (c) CHCl₃, and (c) 1,4-dioxane. Cyclohexane was used in the examination of anion-responsive behavior due to the poor solubility of **3d** in the absence of anions in octane.

Supporting Figure 24 UV/vis absorption (left) and fluorescence emission (right, $\lambda_{ex} = \lambda_{max}$) spectra of 2d (10 mg/mL) with 1 equiv of TATA^{C3}Cl in (a) octane, (b) CH₂Cl₂, and (c) 1,4-dioxane as solutions. These spectra suggest that TATA^{C3} cation interacts with the receptor–Cl⁻ complex (2d·Cl⁻) to form small aggregates.